summaryrefslogtreecommitdiff
path: root/test/test_unbalanced.py
blob: 1395fe14856dc112952998a22243af40b41ea09a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
"""Tests for module Unbalanced OT with entropy regularization"""

# Author: Hicham Janati <hicham.janati@inria.fr>
#
# License: MIT License

import numpy as np
import ot
import pytest


@pytest.mark.parametrize("method", ["sinkhorn"])
def test_unbalanced_convergence(method):
    # test generalized sinkhorn for unbalanced OT
    n = 100
    rng = np.random.RandomState(42)

    x = rng.randn(n, 2)
    a = ot.utils.unif(n)

    # make dists unbalanced
    b = ot.utils.unif(n) * 1.5

    M = ot.dist(x, x)
    epsilon = 1.
    alpha = 1.
    K = np.exp(- M / epsilon)

    G, log = ot.unbalanced.sinkhorn_unbalanced(a, b, M, reg=epsilon, alpha=alpha,
                                               stopThr=1e-10, method=method,
                                               log=True)
    loss = ot.unbalanced.sinkhorn_unbalanced2(a, b, M, epsilon, alpha,
                                              method=method)
    # check fixed point equations
    fi = alpha / (alpha + epsilon)
    v_final = (b / K.T.dot(log["u"])) ** fi
    u_final = (a / K.dot(log["v"])) ** fi

    np.testing.assert_allclose(
        u_final, log["u"], atol=1e-05)
    np.testing.assert_allclose(
        v_final, log["v"], atol=1e-05)

    # check if sinkhorn_unbalanced2 returns the correct loss
    np.testing.assert_allclose((G * M).sum(), loss, atol=1e-5)


@pytest.mark.parametrize("method", ["sinkhorn"])
def test_unbalanced_multiple_inputs(method):
    # test generalized sinkhorn for unbalanced OT
    n = 100
    rng = np.random.RandomState(42)

    x = rng.randn(n, 2)
    a = ot.utils.unif(n)

    # make dists unbalanced
    b = rng.rand(n, 2)

    M = ot.dist(x, x)
    epsilon = 1.
    alpha = 1.
    K = np.exp(- M / epsilon)

    loss, log = ot.unbalanced.sinkhorn_unbalanced(a, b, M, reg=epsilon,
                                                  alpha=alpha,
                                                  stopThr=1e-10, method=method,
                                                  log=True)
    # check fixed point equations
    fi = alpha / (alpha + epsilon)
    v_final = (b / K.T.dot(log["u"])) ** fi

    u_final = (a[:, None] / K.dot(log["v"])) ** fi

    np.testing.assert_allclose(
        u_final, log["u"], atol=1e-05)
    np.testing.assert_allclose(
        v_final, log["v"], atol=1e-05)

    assert len(loss) == b.shape[1]


def test_unbalanced_barycenter():
    # test generalized sinkhorn for unbalanced OT barycenter
    n = 100
    rng = np.random.RandomState(42)

    x = rng.randn(n, 2)
    A = rng.rand(n, 2)

    # make dists unbalanced
    A = A * np.array([1, 2])[None, :]
    M = ot.dist(x, x)
    epsilon = 1.
    alpha = 1.
    K = np.exp(- M / epsilon)

    q, log = ot.unbalanced.barycenter_unbalanced(A, M, reg=epsilon, alpha=alpha,
                                                 stopThr=1e-10,
                                                 log=True)
    # check fixed point equations
    fi = alpha / (alpha + epsilon)
    v_final = (q[:, None] / K.T.dot(log["u"])) ** fi
    u_final = (A / K.dot(log["v"])) ** fi

    np.testing.assert_allclose(
        u_final, log["u"], atol=1e-05)
    np.testing.assert_allclose(
        v_final, log["v"], atol=1e-05)


def test_implemented_methods():
    IMPLEMENTED_METHODS = ['sinkhorn']
    TO_BE_IMPLEMENTED_METHODS = ['sinkhorn_stabilized',
                                 'sinkhorn_epsilon_scaling']
    NOT_VALID_TOKENS = ['foo']
    # test generalized sinkhorn for unbalanced OT barycenter
    n = 3
    rng = np.random.RandomState(42)

    x = rng.randn(n, 2)
    a = ot.utils.unif(n)

    # make dists unbalanced
    b = ot.utils.unif(n) * 1.5

    M = ot.dist(x, x)
    epsilon = 1.
    alpha = 1.
    for method in IMPLEMENTED_METHODS:
        ot.unbalanced.sinkhorn_unbalanced(a, b, M, epsilon, alpha,
                                          method=method)
        ot.unbalanced.sinkhorn_unbalanced2(a, b, M, epsilon, alpha,
                                           method=method)
    with pytest.warns(UserWarning, match='not implemented'):
        for method in set(TO_BE_IMPLEMENTED_METHODS):
            ot.unbalanced.sinkhorn_unbalanced(a, b, M, epsilon, alpha,
                                              method=method)
            ot.unbalanced.sinkhorn_unbalanced2(a, b, M, epsilon, alpha,
                                               method=method)
    with pytest.raises(ValueError):
        for method in set(NOT_VALID_TOKENS):
            ot.unbalanced.sinkhorn_unbalanced(a, b, M, epsilon, alpha,
                                              method=method)
            ot.unbalanced.sinkhorn_unbalanced2(a, b, M, epsilon, alpha,
                                               method=method)