summaryrefslogtreecommitdiff
path: root/pyspike/cython_distance.pyx
diff options
context:
space:
mode:
authorMario Mulansky <mario.mulansky@gmx.net>2014-10-01 18:21:36 +0200
committerMario Mulansky <mario.mulansky@gmx.net>2014-10-01 18:21:36 +0200
commit99730806c22f79089d4cdaf2a1ce713712ad557b (patch)
treecd729662a7bc383bbd59bba616006dda6be2ecbc /pyspike/cython_distance.pyx
parentb2f1047fb874374527719f34c09bfd0ace2a51dc (diff)
added multithreaded version of multi_distance (slow)
Diffstat (limited to 'pyspike/cython_distance.pyx')
-rw-r--r--pyspike/cython_distance.pyx215
1 files changed, 110 insertions, 105 deletions
diff --git a/pyspike/cython_distance.pyx b/pyspike/cython_distance.pyx
index 6edcc01..23ffc37 100644
--- a/pyspike/cython_distance.pyx
+++ b/pyspike/cython_distance.pyx
@@ -54,38 +54,41 @@ def isi_distance_cython(double[:] s1,
spike_events[0] = s1[0]
# the values have one entry less - the number of intervals between events
isi_values = np.empty(N1+N2-1)
- isi_values[0] = (nu1-nu2)/max(nu1,nu2)
- index1 = 0
- index2 = 0
- index = 1
- while True:
- # check which spike is next - from s1 or s2
- if s1[index1+1] < s2[index2+1]:
- index1 += 1
- # break condition relies on existence of spikes at T_end
- if index1 >= N1:
- break
- spike_events[index] = s1[index1]
- nu1 = s1[index1+1]-s1[index1]
- elif s1[index1+1] > s2[index2+1]:
- index2 += 1
- if index2 >= N2:
- break
- spike_events[index] = s2[index2]
- nu2 = s2[index2+1]-s2[index2]
- else: # s1[index1+1] == s2[index2+1]
- index1 += 1
- index2 += 1
- if (index1 >= N1) or (index2 >= N2):
- break
- spike_events[index] = s1[index1]
- nu1 = s1[index1+1]-s1[index1]
- nu2 = s2[index2+1]-s2[index2]
- # compute the corresponding isi-distance
- isi_values[index] = (nu1 - nu2) / max(nu1, nu2)
- index += 1
- # the last event is the interval end
- spike_events[index] = s1[N1]
+
+ with nogil: # release the interpreter to allow multithreading
+ isi_values[0] = (nu1-nu2)/max(nu1,nu2)
+ index1 = 0
+ index2 = 0
+ index = 1
+ while True:
+ # check which spike is next - from s1 or s2
+ if s1[index1+1] < s2[index2+1]:
+ index1 += 1
+ # break condition relies on existence of spikes at T_end
+ if index1 >= N1:
+ break
+ spike_events[index] = s1[index1]
+ nu1 = s1[index1+1]-s1[index1]
+ elif s1[index1+1] > s2[index2+1]:
+ index2 += 1
+ if index2 >= N2:
+ break
+ spike_events[index] = s2[index2]
+ nu2 = s2[index2+1]-s2[index2]
+ else: # s1[index1+1] == s2[index2+1]
+ index1 += 1
+ index2 += 1
+ if (index1 >= N1) or (index2 >= N2):
+ break
+ spike_events[index] = s1[index1]
+ nu1 = s1[index1+1]-s1[index1]
+ nu2 = s2[index2+1]-s2[index2]
+ # compute the corresponding isi-distance
+ isi_values[index] = (nu1 - nu2) / max(nu1, nu2)
+ index += 1
+ # the last event is the interval end
+ spike_events[index] = s1[N1]
+ # end nogil
return spike_events[:index+1], isi_values[:index]
@@ -98,7 +101,7 @@ cdef inline double get_min_dist_cython(double spike_time,
# use memory view to ensure inlining
# np.ndarray[DTYPE_t,ndim=1] spike_train,
int N,
- int start_index=0):
+ int start_index=0) nogil:
""" Returns the minimal distance |spike_time - spike_train[i]|
with i>=start_index.
"""
@@ -136,78 +139,80 @@ def spike_distance_cython(double[:] t1,
y_starts = np.empty(len(spike_events)-1)
y_ends = np.empty(len(spike_events)-1)
- index1 = 0
- index2 = 0
- index = 1
- dt_p1 = 0.0
- dt_f1 = get_min_dist_cython(t1[1], t2, N2, 0)
- dt_p2 = 0.0
- dt_f2 = get_min_dist_cython(t2[1], t1, N1, 0)
- isi1 = max(t1[1]-t1[0], t1[2]-t1[1])
- isi2 = max(t2[1]-t2[0], t2[2]-t2[1])
- s1 = dt_f1*(t1[1]-t1[0])/isi1
- s2 = dt_f2*(t2[1]-t2[0])/isi2
- y_starts[0] = (s1*isi2 + s2*isi1) / ((isi1+isi2)**2/2)
- while True:
- # print(index, index1, index2)
- if t1[index1+1] < t2[index2+1]:
- index1 += 1
- # break condition relies on existence of spikes at T_end
- if index1+1 >= N1:
- break
- spike_events[index] = t1[index1]
- # first calculate the previous interval end value
- dt_p1 = dt_f1 # the previous time now was the following time before
- s1 = dt_p1
- s2 = (dt_p2*(t2[index2+1]-t1[index1]) +
- dt_f2*(t1[index1]-t2[index2])) / isi2
- y_ends[index-1] = (s1*isi2 + s2*isi1)/(0.5*(isi1+isi2)*(isi1+isi2))
- # now the next interval start value
- dt_f1 = get_min_dist_cython(t1[index1+1], t2, N2, index2)
- isi1 = t1[index1+1]-t1[index1]
- # s2 is the same as above, thus we can compute y2 immediately
- y_starts[index] = (s1*isi2 + s2*isi1)/(0.5*(isi1+isi2)*(isi1+isi2))
- elif t1[index1+1] > t2[index2+1]:
- index2 += 1
- if index2+1 >= N2:
- break
- spike_events[index] = t2[index2]
- # first calculate the previous interval end value
- dt_p2 = dt_f2 # the previous time now was the following time before
- s1 = (dt_p1*(t1[index1+1]-t2[index2]) +
- dt_f1*(t2[index2]-t1[index1])) / isi1
- s2 = dt_p2
- y_ends[index-1] = (s1*isi2 + s2*isi1) / (0.5*(isi1+isi2)*(isi1+isi2))
- # now the next interval start value
- dt_f2 = get_min_dist_cython(t2[index2+1], t1, N1, index1)
- #s2 = dt_f2
- isi2 = t2[index2+1]-t2[index2]
- # s2 is the same as above, thus we can compute y2 immediately
- y_starts[index] = (s1*isi2 + s2*isi1)/(0.5*(isi1+isi2)*(isi1+isi2))
- else: # t1[index1+1] == t2[index2+1] - generate only one event
- index1 += 1
- index2 += 1
- if (index1+1 >= N1) or (index2+1 >= N2):
- break
- spike_events[index] = t1[index1]
- y_ends[index-1] = 0.0
- y_starts[index] = 0.0
- dt_p1 = 0.0
- dt_p2 = 0.0
- dt_f1 = get_min_dist_cython(t1[index1+1], t2, N2, index2)
- dt_f2 = get_min_dist_cython(t2[index2+1], t1, N1, index1)
- isi1 = t1[index1+1]-t1[index1]
- isi2 = t2[index2+1]-t2[index2]
- index += 1
- # the last event is the interval end
- spike_events[index] = t1[N1-1]
- # the ending value of the last interval
- isi1 = max(t1[N1-1]-t1[N1-2], t1[N1-2]-t1[N1-3])
- isi2 = max(t2[N2-1]-t2[N2-2], t2[N2-2]-t2[N2-3])
- s1 = dt_p1*(t1[N1-1]-t1[N1-2])/isi1
- s2 = dt_p2*(t2[N2-1]-t2[N2-2])/isi2
- y_ends[index-1] = (s1*isi2 + s2*isi1) / (0.5*(isi1+isi2)*(isi1+isi2))
+ with nogil: # release the interpreter to allow multithreading
+ index1 = 0
+ index2 = 0
+ index = 1
+ dt_p1 = 0.0
+ dt_f1 = get_min_dist_cython(t1[1], t2, N2, 0)
+ dt_p2 = 0.0
+ dt_f2 = get_min_dist_cython(t2[1], t1, N1, 0)
+ isi1 = max(t1[1]-t1[0], t1[2]-t1[1])
+ isi2 = max(t2[1]-t2[0], t2[2]-t2[1])
+ s1 = dt_f1*(t1[1]-t1[0])/isi1
+ s2 = dt_f2*(t2[1]-t2[0])/isi2
+ y_starts[0] = (s1*isi2 + s2*isi1) / ((isi1+isi2)**2/2)
+ while True:
+ # print(index, index1, index2)
+ if t1[index1+1] < t2[index2+1]:
+ index1 += 1
+ # break condition relies on existence of spikes at T_end
+ if index1+1 >= N1:
+ break
+ spike_events[index] = t1[index1]
+ # first calculate the previous interval end value
+ dt_p1 = dt_f1 # the previous time now was the following time before
+ s1 = dt_p1
+ s2 = (dt_p2*(t2[index2+1]-t1[index1]) +
+ dt_f2*(t1[index1]-t2[index2])) / isi2
+ y_ends[index-1] = (s1*isi2 + s2*isi1)/(0.5*(isi1+isi2)*(isi1+isi2))
+ # now the next interval start value
+ dt_f1 = get_min_dist_cython(t1[index1+1], t2, N2, index2)
+ isi1 = t1[index1+1]-t1[index1]
+ # s2 is the same as above, thus we can compute y2 immediately
+ y_starts[index] = (s1*isi2 + s2*isi1)/(0.5*(isi1+isi2)*(isi1+isi2))
+ elif t1[index1+1] > t2[index2+1]:
+ index2 += 1
+ if index2+1 >= N2:
+ break
+ spike_events[index] = t2[index2]
+ # first calculate the previous interval end value
+ dt_p2 = dt_f2 # the previous time now was the following time before
+ s1 = (dt_p1*(t1[index1+1]-t2[index2]) +
+ dt_f1*(t2[index2]-t1[index1])) / isi1
+ s2 = dt_p2
+ y_ends[index-1] = (s1*isi2 + s2*isi1) / (0.5*(isi1+isi2)*(isi1+isi2))
+ # now the next interval start value
+ dt_f2 = get_min_dist_cython(t2[index2+1], t1, N1, index1)
+ #s2 = dt_f2
+ isi2 = t2[index2+1]-t2[index2]
+ # s2 is the same as above, thus we can compute y2 immediately
+ y_starts[index] = (s1*isi2 + s2*isi1)/(0.5*(isi1+isi2)*(isi1+isi2))
+ else: # t1[index1+1] == t2[index2+1] - generate only one event
+ index1 += 1
+ index2 += 1
+ if (index1+1 >= N1) or (index2+1 >= N2):
+ break
+ spike_events[index] = t1[index1]
+ y_ends[index-1] = 0.0
+ y_starts[index] = 0.0
+ dt_p1 = 0.0
+ dt_p2 = 0.0
+ dt_f1 = get_min_dist_cython(t1[index1+1], t2, N2, index2)
+ dt_f2 = get_min_dist_cython(t2[index2+1], t1, N1, index1)
+ isi1 = t1[index1+1]-t1[index1]
+ isi2 = t2[index2+1]-t2[index2]
+ index += 1
+ # the last event is the interval end
+ spike_events[index] = t1[N1-1]
+ # the ending value of the last interval
+ isi1 = max(t1[N1-1]-t1[N1-2], t1[N1-2]-t1[N1-3])
+ isi2 = max(t2[N2-1]-t2[N2-2], t2[N2-2]-t2[N2-3])
+ s1 = dt_p1*(t1[N1-1]-t1[N1-2])/isi1
+ s2 = dt_p2*(t2[N2-1]-t2[N2-2])/isi2
+ y_ends[index-1] = (s1*isi2 + s2*isi1) / (0.5*(isi1+isi2)*(isi1+isi2))
+ # end nogil
+
# use only the data added above
# could be less than original length due to equal spike times
-
return spike_events[:index+1], y_starts[:index], y_ends[:index]