summaryrefslogtreecommitdiff
path: root/pyspike
diff options
context:
space:
mode:
authorMario Mulansky <mario.mulansky@gmx.net>2014-10-01 17:15:57 +0200
committerMario Mulansky <mario.mulansky@gmx.net>2014-10-01 17:15:57 +0200
commitb2f1047fb874374527719f34c09bfd0ace2a51dc (patch)
tree2be137bc9241fc1e71c8e16901f7dee0763d9c6b /pyspike
parent47c9bfc45db078d9a134a7b2b10dcf0cc6556641 (diff)
moved python function to python backend
Diffstat (limited to 'pyspike')
-rw-r--r--pyspike/python_backend.py304
1 files changed, 304 insertions, 0 deletions
diff --git a/pyspike/python_backend.py b/pyspike/python_backend.py
new file mode 100644
index 0000000..9134149
--- /dev/null
+++ b/pyspike/python_backend.py
@@ -0,0 +1,304 @@
+""" python_backend.py
+
+Collection of python functions that can be used instead of the cython
+implementation.
+
+Copyright 2014, Mario Mulanksy <mario.mulansky@gmx.net>
+
+"""
+
+import numpy as np
+
+from pyspike import PieceWiseConstFunc, PieceWiseLinFunc
+
+
+############################################################
+# isi_distance_python
+############################################################
+def isi_distance_python(s1, s2):
+ """ Plain Python implementation of the isi distance.
+ """
+ # compute the interspike interval
+ nu1 = s1[1:]-s1[:-1]
+ nu2 = s2[1:]-s2[:-1]
+
+ # compute the isi-distance
+ spike_events = np.empty(len(nu1)+len(nu2))
+ spike_events[0] = s1[0]
+ # the values have one entry less - the number of intervals between events
+ isi_values = np.empty(len(spike_events)-1)
+ # add the distance of the first events
+ # isi_values[0] = nu1[0]/nu2[0] - 1.0 if nu1[0] <= nu2[0] \
+ # else 1.0 - nu2[0]/nu1[0]
+ isi_values[0] = (nu1[0]-nu2[0])/max(nu1[0],nu2[0])
+ index1 = 0
+ index2 = 0
+ index = 1
+ while True:
+ # check which spike is next - from s1 or s2
+ if s1[index1+1] < s2[index2+1]:
+ index1 += 1
+ # break condition relies on existence of spikes at T_end
+ if index1 >= len(nu1):
+ break
+ spike_events[index] = s1[index1]
+ elif s1[index1+1] > s2[index2+1]:
+ index2 += 1
+ if index2 >= len(nu2):
+ break
+ spike_events[index] = s2[index2]
+ else: # s1[index1+1] == s2[index2+1]
+ index1 += 1
+ index2 += 1
+ if (index1 >= len(nu1)) or (index2 >= len(nu2)):
+ break
+ spike_events[index] = s1[index1]
+ # compute the corresponding isi-distance
+ isi_values[index] = (nu1[index1]-nu2[index2]) / \
+ max(nu1[index1], nu2[index2])
+ index += 1
+ # the last event is the interval end
+ spike_events[index] = s1[-1]
+ # use only the data added above
+ # could be less than original length due to equal spike times
+ return PieceWiseConstFunc(spike_events[:index+1], isi_values[:index])
+
+
+############################################################
+# get_min_dist
+############################################################
+def get_min_dist(spike_time, spike_train, start_index=0):
+ """ Returns the minimal distance |spike_time - spike_train[i]|
+ with i>=start_index.
+ """
+ d = abs(spike_time - spike_train[start_index])
+ start_index += 1
+ while start_index < len(spike_train):
+ d_temp = abs(spike_time - spike_train[start_index])
+ if d_temp > d:
+ break
+ else:
+ d = d_temp
+ start_index += 1
+ return d
+
+
+############################################################
+# spike_distance_python
+############################################################
+def spike_distance_python(spikes1, spikes2):
+ """ Computes the instantaneous spike-distance S_spike (t) of the two given
+ spike trains. The spike trains are expected to have auxiliary spikes at the
+ beginning and end of the interval. Use the function add_auxiliary_spikes to
+ add those spikes to the spike train.
+ Args:
+ - spikes1, spikes2: ordered arrays of spike times with auxiliary spikes.
+ Returns:
+ - PieceWiseLinFunc describing the spike-distance.
+ """
+ # check for auxiliary spikes - first and last spikes should be identical
+ assert spikes1[0]==spikes2[0], \
+ "Given spike trains seems not to have auxiliary spikes!"
+ assert spikes1[-1]==spikes2[-1], \
+ "Given spike trains seems not to have auxiliary spikes!"
+ # shorter variables
+ t1 = spikes1
+ t2 = spikes2
+
+ spike_events = np.empty(len(t1)+len(t2)-2)
+ spike_events[0] = t1[0]
+ y_starts = np.empty(len(spike_events)-1)
+ y_ends = np.empty(len(spike_events)-1)
+
+ index1 = 0
+ index2 = 0
+ index = 1
+ dt_p1 = 0.0
+ dt_f1 = get_min_dist(t1[1], t2, 0)
+ dt_p2 = 0.0
+ dt_f2 = get_min_dist(t2[1], t1, 0)
+ isi1 = max(t1[1]-t1[0], t1[2]-t1[1])
+ isi2 = max(t2[1]-t2[0], t2[2]-t2[1])
+ s1 = dt_f1*(t1[1]-t1[0])/isi1
+ s2 = dt_f2*(t2[1]-t2[0])/isi2
+ y_starts[0] = (s1*isi2 + s2*isi1) / ((isi1+isi2)**2/2)
+ while True:
+ # print(index, index1, index2)
+ if t1[index1+1] < t2[index2+1]:
+ index1 += 1
+ # break condition relies on existence of spikes at T_end
+ if index1+1 >= len(t1):
+ break
+ spike_events[index] = t1[index1]
+ # first calculate the previous interval end value
+ dt_p1 = dt_f1 # the previous time now was the following time before
+ s1 = dt_p1
+ s2 = (dt_p2*(t2[index2+1]-t1[index1]) + dt_f2*(t1[index1]-t2[index2])) / isi2
+ y_ends[index-1] = (s1*isi2 + s2*isi1) / ((isi1+isi2)**2/2)
+ # now the next interval start value
+ dt_f1 = get_min_dist(t1[index1+1], t2, index2)
+ isi1 = t1[index1+1]-t1[index1]
+ # s2 is the same as above, thus we can compute y2 immediately
+ y_starts[index] = (s1*isi2 + s2*isi1) / ((isi1+isi2)**2/2)
+ elif t1[index1+1] > t2[index2+1]:
+ index2 += 1
+ if index2+1 >= len(t2):
+ break
+ spike_events[index] = t2[index2]
+ # first calculate the previous interval end value
+ dt_p2 = dt_f2 # the previous time now was the following time before
+ s1 = (dt_p1*(t1[index1+1]-t2[index2]) + dt_f1*(t2[index2]-t1[index1])) / isi1
+ s2 = dt_p2
+ y_ends[index-1] = (s1*isi2 + s2*isi1) / ((isi1+isi2)**2/2)
+ # now the next interval start value
+ dt_f2 = get_min_dist(t2[index2+1], t1, index1)
+ #s2 = dt_f2
+ isi2 = t2[index2+1]-t2[index2]
+ # s2 is the same as above, thus we can compute y2 immediately
+ y_starts[index] = (s1*isi2 + s2*isi1) / ((isi1+isi2)**2/2)
+ else: # t1[index1+1] == t2[index2+1] - generate only one event
+ index1 += 1
+ index2 += 1
+ if (index1+1 >= len(t1)) or (index2+1 >= len(t2)):
+ break
+ assert dt_f2 == 0.0
+ assert dt_f1 == 0.0
+ spike_events[index] = t1[index1]
+ y_ends[index-1] = 0.0
+ y_starts[index] = 0.0
+ dt_p1 = 0.0
+ dt_p2 = 0.0
+ dt_f1 = get_min_dist(t1[index1+1], t2, index2)
+ dt_f2 = get_min_dist(t2[index2+1], t1, index1)
+ isi1 = t1[index1+1]-t1[index1]
+ isi2 = t2[index2+1]-t2[index2]
+ index += 1
+ # the last event is the interval end
+ spike_events[index] = t1[-1]
+ # the ending value of the last interval
+ isi1 = max(t1[-1]-t1[-2], t1[-2]-t1[-3])
+ isi2 = max(t2[-1]-t2[-2], t2[-2]-t2[-3])
+ s1 = dt_p1*(t1[-1]-t1[-2])/isi1
+ s2 = dt_p2*(t2[-1]-t2[-2])/isi2
+ y_ends[index-1] = (s1*isi2 + s2*isi1) / ((isi1+isi2)**2/2)
+ # use only the data added above
+ # could be less than original length due to equal spike times
+ return PieceWiseLinFunc(spike_events[:index+1],
+ y_starts[:index], y_ends[:index])
+
+
+############################################################
+# add_piece_wise_const_python
+############################################################
+def add_piece_wise_const_python(x1, y1, x2, y2):
+ x_new = np.empty(len(x1) + len(x2))
+ y_new = np.empty(len(x_new)-1)
+ x_new[0] = x1[0]
+ y_new[0] = y1[0] + y2[0]
+ index1 = 0
+ index2 = 0
+ index = 0
+ while (index1+1 < len(y1)) and (index2+1 < len(y2)):
+ index += 1
+ # print(index1+1, x1[index1+1], y1[index1+1], x_new[index])
+ if x1[index1+1] < x2[index2+1]:
+ index1 += 1
+ x_new[index] = x1[index1]
+ elif x1[index1+1] > x2[index2+1]:
+ index2 += 1
+ x_new[index] = x2[index2]
+ else: # x1[index1+1] == x2[index2+1]:
+ index1 += 1
+ index2 += 1
+ x_new[index] = x1[index1]
+ y_new[index] = y1[index1] + y2[index2]
+ # one array reached the end -> copy the contents of the other to the end
+ if index1+1 < len(y1):
+ x_new[index+1:index+1+len(x1)-index1-1] = x1[index1+1:]
+ y_new[index+1:index+1+len(y1)-index1-1] = y1[index1+1:] + \
+ y2[-1]
+ index += len(x1)-index1-2
+ elif index2+1 < len(y2):
+ x_new[index+1:index+1+len(x2)-index2-1] = x2[index2+1:]
+ y_new[index+1:index+1+len(y2)-index2-1] = y2[index2+1:] + \
+ y1[-1]
+ index += len(x2)-index2-2
+ else: # both arrays reached the end simultaneously
+ # only the last x-value missing
+ x_new[index+1] = x1[-1]
+ # the last value is again the end of the interval
+ # x_new[index+1] = x1[-1]
+ # only use the data that was actually filled
+
+ return x_new[:index+2], y_new[:index+1]
+
+
+############################################################
+# add_piece_lin_const_python
+############################################################
+def add_piece_wise_lin_python(x1, y11, y12, x2, y21, y22):
+ x_new = np.empty(len(x1) + len(x2))
+ y1_new = np.empty(len(x_new)-1)
+ y2_new = np.empty_like(y1_new)
+ x_new[0] = x1[0]
+ y1_new[0] = y11[0] + y21[0]
+ index1 = 0 # index for self
+ index2 = 0 # index for f
+ index = 0 # index for new
+ while (index1+1 < len(y11)) and (index2+1 < len(y21)):
+ # print(index1+1, x1[index1+1], self.y[index1+1], x_new[index])
+ if x1[index1+1] < x2[index2+1]:
+ # first compute the end value of the previous interval
+ # linear interpolation of the interval
+ y = y21[index2] + (y22[index2]-y21[index2]) * \
+ (x1[index1+1]-x2[index2]) / (x2[index2+1]-x2[index2])
+ y2_new[index] = y12[index1] + y
+ index1 += 1
+ index += 1
+ x_new[index] = x1[index1]
+ # and the starting value for the next interval
+ y1_new[index] = y11[index1] + y
+ elif x1[index1+1] > x2[index2+1]:
+ # first compute the end value of the previous interval
+ # linear interpolation of the interval
+ y = y11[index1] + (y12[index1]-y11[index1]) * \
+ (x2[index2+1]-x1[index1]) / \
+ (x1[index1+1]-x1[index1])
+ y2_new[index] = y22[index2] + y
+ index2 += 1
+ index += 1
+ x_new[index] = x2[index2]
+ # and the starting value for the next interval
+ y1_new[index] = y21[index2] + y
+ else: # x1[index1+1] == x2[index2+1]:
+ y2_new[index] = y12[index1] + y22[index2]
+ index1 += 1
+ index2 += 1
+ index += 1
+ x_new[index] = x1[index1]
+ y1_new[index] = y11[index1] + y21[index2]
+ # one array reached the end -> copy the contents of the other to the end
+ if index1+1 < len(y11):
+ # compute the linear interpolations values
+ y = y21[index2] + (y22[index2]-y21[index2]) * \
+ (x1[index1+1:-1]-x2[index2]) / (x2[index2+1]-x2[index2])
+ x_new[index+1:index+1+len(x1)-index1-1] = x1[index1+1:]
+ y1_new[index+1:index+1+len(y11)-index1-1] = y11[index1+1:]+y
+ y2_new[index:index+len(y12)-index1-1] = y12[index1:-1] + y
+ index += len(x1)-index1-2
+ elif index2+1 < len(y21):
+ # compute the linear interpolations values
+ y = y11[index1] + (y12[index1]-y11[index1]) * \
+ (x2[index2+1:-1]-x1[index1]) / \
+ (x1[index1+1]-x1[index1])
+ x_new[index+1:index+1+len(x2)-index2-1] = x2[index2+1:]
+ y1_new[index+1:index+1+len(y21)-index2-1] = y21[index2+1:] + y
+ y2_new[index:index+len(y22)-index2-1] = y22[index2:-1] + y
+ index += len(x2)-index2-2
+ else: # both arrays reached the end simultaneously
+ # only the last x-value missing
+ x_new[index+1] = x1[-1]
+ # finally, the end value for the last interval
+ y2_new[index] = y12[-1]+y22[-1]
+ # only use the data that was actually filled
+ return x_new[:index+2], y1_new[:index+1], y2_new[:index+1]