summaryrefslogtreecommitdiff
path: root/pyspike/cython/cython_directionality.pyx
diff options
context:
space:
mode:
Diffstat (limited to 'pyspike/cython/cython_directionality.pyx')
-rw-r--r--pyspike/cython/cython_directionality.pyx262
1 files changed, 262 insertions, 0 deletions
diff --git a/pyspike/cython/cython_directionality.pyx b/pyspike/cython/cython_directionality.pyx
new file mode 100644
index 0000000..ac37690
--- /dev/null
+++ b/pyspike/cython/cython_directionality.pyx
@@ -0,0 +1,262 @@
+#cython: boundscheck=False
+#cython: wraparound=False
+#cython: cdivision=True
+
+"""
+cython_directionality.pyx
+
+cython implementation of the spike delay asymmetry measures
+
+Copyright 2015, Mario Mulansky <mario.mulansky@gmx.net>
+
+Distributed under the BSD License
+
+"""
+
+"""
+To test whether things can be optimized: remove all yellow stuff
+in the html output::
+
+ cython -a cython_directionality.pyx
+
+which gives::
+
+ cython_directionality.html
+
+"""
+
+import numpy as np
+cimport numpy as np
+
+from libc.math cimport fabs
+from libc.math cimport fmax
+from libc.math cimport fmin
+
+# from pyspike.cython.cython_distances cimport get_tau
+
+DTYPE = np.float
+ctypedef np.float_t DTYPE_t
+
+
+############################################################
+# get_tau
+############################################################
+cdef inline double get_tau(double[:] spikes1, double[:] spikes2,
+ int i, int j, double interval, double max_tau):
+ cdef double m = interval # use interval length as initial tau
+ cdef int N1 = spikes1.shape[0]-1 # len(spikes1)-1
+ cdef int N2 = spikes2.shape[0]-1 # len(spikes2)-1
+ if i < N1 and i > -1:
+ m = fmin(m, spikes1[i+1]-spikes1[i])
+ if j < N2 and j > -1:
+ m = fmin(m, spikes2[j+1]-spikes2[j])
+ if i > 0:
+ m = fmin(m, spikes1[i]-spikes1[i-1])
+ if j > 0:
+ m = fmin(m, spikes2[j]-spikes2[j-1])
+ m *= 0.5
+ if max_tau > 0.0:
+ m = fmin(m, max_tau)
+ return m
+
+
+############################################################
+# spike_train_order_profile_cython
+############################################################
+def spike_train_order_profile_cython(double[:] spikes1, double[:] spikes2,
+ double t_start, double t_end,
+ double max_tau):
+
+ cdef int N1 = len(spikes1)
+ cdef int N2 = len(spikes2)
+ cdef int i = -1
+ cdef int j = -1
+ cdef int n = 0
+ cdef double[:] st = np.zeros(N1 + N2 + 2) # spike times
+ cdef double[:] a = np.zeros(N1 + N2 + 2) # asymmetry values
+ cdef double[:] mp = np.ones(N1 + N2 + 2) # multiplicity
+ cdef double interval = t_end - t_start
+ cdef double tau
+ while i + j < N1 + N2 - 2:
+ if (i < N1-1) and (j == N2-1 or spikes1[i+1] < spikes2[j+1]):
+ i += 1
+ n += 1
+ tau = get_tau(spikes1, spikes2, i, j, interval, max_tau)
+ st[n] = spikes1[i]
+ if j > -1 and spikes1[i]-spikes2[j] < tau:
+ # coincidence between the current spike and the previous spike
+ # spike from spike train 1 after spike train 2
+ # both get marked with -1
+ a[n] = -1
+ a[n-1] = -1
+ elif (j < N2-1) and (i == N1-1 or spikes1[i+1] > spikes2[j+1]):
+ j += 1
+ n += 1
+ tau = get_tau(spikes1, spikes2, i, j, interval, max_tau)
+ st[n] = spikes2[j]
+ if i > -1 and spikes2[j]-spikes1[i] < tau:
+ # coincidence between the current spike and the previous spike
+ # spike from spike train 1 before spike train 2
+ # both get marked with 1
+ a[n] = 1
+ a[n-1] = 1
+ else: # spikes1[i+1] = spikes2[j+1]
+ # advance in both spike trains
+ j += 1
+ i += 1
+ n += 1
+ # add only one event with zero asymmetry value and multiplicity 2
+ st[n] = spikes1[i]
+ a[n] = 0
+ mp[n] = 2
+
+ st = st[:n+2]
+ a = a[:n+2]
+ mp = mp[:n+2]
+
+ st[0] = t_start
+ st[len(st)-1] = t_end
+ if N1 + N2 > 0:
+ a[0] = a[1]
+ a[len(a)-1] = a[len(a)-2]
+ mp[0] = mp[1]
+ mp[len(mp)-1] = mp[len(mp)-2]
+ else:
+ a[0] = 1
+ a[1] = 1
+
+ return st, a, mp
+
+
+############################################################
+# spike_train_order_cython
+############################################################
+def spike_train_order_cython(double[:] spikes1, double[:] spikes2,
+ double t_start, double t_end, double max_tau):
+
+ cdef int N1 = len(spikes1)
+ cdef int N2 = len(spikes2)
+ cdef int i = -1
+ cdef int j = -1
+ cdef int d = 0
+ cdef int mp = 0
+ cdef double interval = t_end - t_start
+ cdef double tau
+ while i + j < N1 + N2 - 2:
+ if (i < N1-1) and (j == N2-1 or spikes1[i+1] < spikes2[j+1]):
+ i += 1
+ mp += 1
+ tau = get_tau(spikes1, spikes2, i, j, interval, max_tau)
+ if j > -1 and spikes1[i]-spikes2[j] < tau:
+ # coincidence between the current spike and the previous spike
+ # spike in spike train 2 appeared before spike in spike train 1
+ # mark with -1
+ d -= 2
+ elif (j < N2-1) and (i == N1-1 or spikes1[i+1] > spikes2[j+1]):
+ j += 1
+ mp += 1
+ tau = get_tau(spikes1, spikes2, i, j, interval, max_tau)
+ if i > -1 and spikes2[j]-spikes1[i] < tau:
+ # coincidence between the current spike and the previous spike
+ # spike in spike train 1 appeared before spike in spike train 2
+ # mark with +1
+ d += 2
+ else: # spikes1[i+1] = spikes2[j+1]
+ # advance in both spike trains
+ j += 1
+ i += 1
+ # add only one event with multiplicity 2, but no asymmetry counting
+ mp += 2
+
+ if d == 0 and mp == 0:
+ # empty spike trains -> spike sync = 1 by definition
+ d = 1
+ mp = 1
+
+ return d, mp
+
+
+############################################################
+# spike_directionality_profiles_cython
+############################################################
+def spike_directionality_profiles_cython(double[:] spikes1,
+ double[:] spikes2,
+ double t_start, double t_end,
+ double max_tau):
+
+ cdef int N1 = len(spikes1)
+ cdef int N2 = len(spikes2)
+ cdef int i = -1
+ cdef int j = -1
+ cdef double[:] d1 = np.zeros(N1) # directionality values
+ cdef double[:] d2 = np.zeros(N2) # directionality values
+ cdef double interval = t_end - t_start
+ cdef double tau
+ while i + j < N1 + N2 - 2:
+ if (i < N1-1) and (j == N2-1 or spikes1[i+1] < spikes2[j+1]):
+ i += 1
+ tau = get_tau(spikes1, spikes2, i, j, interval, max_tau)
+ if j > -1 and spikes1[i]-spikes2[j] < tau:
+ # coincidence between the current spike and the previous spike
+ # spike from spike train 1 after spike train 2
+ # leading spike gets +1, following spike -1
+ d1[i] = -1
+ d2[j] = +1
+ elif (j < N2-1) and (i == N1-1 or spikes1[i+1] > spikes2[j+1]):
+ j += 1
+ tau = get_tau(spikes1, spikes2, i, j, interval, max_tau)
+ if i > -1 and spikes2[j]-spikes1[i] < tau:
+ # coincidence between the current spike and the previous spike
+ # spike from spike train 1 before spike train 2
+ # leading spike gets +1, following spike -1
+ d1[i] = +1
+ d2[j] = -1
+ else: # spikes1[i+1] = spikes2[j+1]
+ # advance in both spike trains
+ j += 1
+ i += 1
+ # equal spike times: zero asymmetry value
+ d1[i] = 0
+ d2[j] = 0
+
+ return d1, d2
+
+
+############################################################
+# spike_directionality_cython
+############################################################
+def spike_directionality_cython(double[:] spikes1,
+ double[:] spikes2,
+ double t_start, double t_end,
+ double max_tau):
+
+ cdef int N1 = len(spikes1)
+ cdef int N2 = len(spikes2)
+ cdef int i = -1
+ cdef int j = -1
+ cdef int d = 0 # directionality value
+ cdef double interval = t_end - t_start
+ cdef double tau
+ while i + j < N1 + N2 - 2:
+ if (i < N1-1) and (j == N2-1 or spikes1[i+1] < spikes2[j+1]):
+ i += 1
+ tau = get_tau(spikes1, spikes2, i, j, interval, max_tau)
+ if j > -1 and spikes1[i]-spikes2[j] < tau:
+ # coincidence between the current spike and the previous spike
+ # spike from spike train 1 after spike train 2
+ # leading spike gets +1, following spike -1
+ d -= 1
+ elif (j < N2-1) and (i == N1-1 or spikes1[i+1] > spikes2[j+1]):
+ j += 1
+ tau = get_tau(spikes1, spikes2, i, j, interval, max_tau)
+ if i > -1 and spikes2[j]-spikes1[i] < tau:
+ # coincidence between the current spike and the previous spike
+ # spike from spike train 1 before spike train 2
+ # leading spike gets +1, following spike -1
+ d += 1
+ else: # spikes1[i+1] = spikes2[j+1]
+ # advance in both spike trains
+ j += 1
+ i += 1
+
+ return d