summaryrefslogtreecommitdiff
path: root/pyspike/cython/python_backend.py
diff options
context:
space:
mode:
Diffstat (limited to 'pyspike/cython/python_backend.py')
-rw-r--r--pyspike/cython/python_backend.py638
1 files changed, 638 insertions, 0 deletions
diff --git a/pyspike/cython/python_backend.py b/pyspike/cython/python_backend.py
new file mode 100644
index 0000000..e75f181
--- /dev/null
+++ b/pyspike/cython/python_backend.py
@@ -0,0 +1,638 @@
+""" python_backend.py
+
+Collection of python functions that can be used instead of the cython
+implementation.
+
+Copyright 2014-2015, Mario Mulansky <mario.mulansky@gmx.net>
+
+Distributed under the BSD License
+
+"""
+
+import numpy as np
+
+
+############################################################
+# isi_distance_python
+############################################################
+def isi_distance_python(s1, s2, t_start, t_end):
+ """ Plain Python implementation of the isi distance.
+ """
+ N1 = len(s1)
+ N2 = len(s2)
+
+ # compute the isi-distance
+ spike_events = np.empty(N1+N2+2)
+ spike_events[0] = t_start
+ # the values have one entry less - the number of intervals between events
+ isi_values = np.empty(len(spike_events) - 1)
+ if s1[0] > t_start:
+ # edge correction
+ nu1 = max(s1[0] - t_start, s1[1] - s1[0]) if N1 > 1 else s1[0]-t_start
+ index1 = -1
+ else:
+ nu1 = s1[1] - s1[0] if N1 > 1 else t_end-s1[0]
+ index1 = 0
+ if s2[0] > t_start:
+ # edge correction
+ nu2 = max(s2[0] - t_start, s2[1] - s2[0]) if N2 > 1 else s2[0]-t_start
+ index2 = -1
+ else:
+ nu2 = s2[1] - s2[0] if N2 > 1 else t_end-s2[0]
+ index2 = 0
+
+ isi_values[0] = abs(nu1 - nu2) / max(nu1, nu2)
+ index = 1
+ while index1+index2 < N1+N2-2:
+ # check which spike is next - from s1 or s2
+ if (index1 < N1-1) and (index2 == N2-1 or s1[index1+1] < s2[index2+1]):
+ index1 += 1
+ spike_events[index] = s1[index1]
+ if index1 < N1-1:
+ nu1 = s1[index1+1]-s1[index1]
+ else:
+ # edge correction
+ nu1 = max(t_end-s1[N1-1], s1[N1-1]-s1[N1-2]) if N1 > 1 \
+ else t_end-s1[N1-1]
+
+ elif (index2 < N2-1) and (index1 == N1-1 or
+ s1[index1+1] > s2[index2+1]):
+ index2 += 1
+ spike_events[index] = s2[index2]
+ if index2 < N2-1:
+ nu2 = s2[index2+1]-s2[index2]
+ else:
+ # edge correction
+ nu2 = max(t_end-s2[N2-1], s2[N2-1]-s2[N2-2]) if N2 > 1 \
+ else t_end-s2[N2-1]
+
+ else: # s1[index1 + 1] == s2[index2 + 1]
+ index1 += 1
+ index2 += 1
+ spike_events[index] = s1[index1]
+ if index1 < N1-1:
+ nu1 = s1[index1+1]-s1[index1]
+ else:
+ # edge correction
+ nu1 = max(t_end-s1[N1-1], s1[N1-1]-s1[N1-2]) if N1 > 1 \
+ else t_end-s1[N1-1]
+ if index2 < N2-1:
+ nu2 = s2[index2+1]-s2[index2]
+ else:
+ # edge correction
+ nu2 = max(t_end-s2[N2-1], s2[N2-1]-s2[N2-2]) if N2 > 1 \
+ else t_end-s2[N2-1]
+ # compute the corresponding isi-distance
+ isi_values[index] = abs(nu1 - nu2) / \
+ max(nu1, nu2)
+ index += 1
+ # the last event is the interval end
+ if spike_events[index-1] == t_end:
+ index -= 1
+ else:
+ spike_events[index] = t_end
+ # use only the data added above
+ # could be less than original length due to equal spike times
+ return spike_events[:index + 1], isi_values[:index]
+
+
+############################################################
+# get_min_dist
+############################################################
+def get_min_dist(spike_time, spike_train, start_index, t_start, t_end):
+ """ Returns the minimal distance |spike_time - spike_train[i]|
+ with i>=start_index.
+ """
+ d = abs(spike_time - t_start)
+ if start_index < 0:
+ start_index = 0
+ while start_index < len(spike_train):
+ d_temp = abs(spike_time - spike_train[start_index])
+ if d_temp > d:
+ return d
+ else:
+ d = d_temp
+ start_index += 1
+ # finally, check the distance to end time
+ d_temp = abs(t_end - spike_time)
+ if d_temp > d:
+ return d
+ else:
+ return d_temp
+
+
+############################################################
+# spike_distance_python
+############################################################
+def spike_distance_python(spikes1, spikes2, t_start, t_end):
+ """ Computes the instantaneous spike-distance S_spike (t) of the two given
+ spike trains. The spike trains are expected to have auxiliary spikes at the
+ beginning and end of the interval. Use the function add_auxiliary_spikes to
+ add those spikes to the spike train.
+ Args:
+ - spikes1, spikes2: ordered arrays of spike times with auxiliary spikes.
+ - t_start, t_end: edges of the spike train
+ Returns:
+ - PieceWiseLinFunc describing the spike-distance.
+ """
+
+ # shorter variables
+ t1 = spikes1
+ t2 = spikes2
+
+ N1 = len(t1)
+ N2 = len(t2)
+
+ spike_events = np.empty(N1+N2+2)
+
+ y_starts = np.empty(len(spike_events)-1)
+ y_ends = np.empty(len(spike_events)-1)
+
+ t_aux1 = np.zeros(2)
+ t_aux2 = np.zeros(2)
+ t_aux1[0] = min(t_start, t1[0]-(t1[1]-t1[0])) if N1 > 1 else t_start
+ t_aux1[1] = max(t_end, t1[N1-1]+(t1[N1-1]-t1[N1-2])) if N1 > 1 else t_end
+ t_aux2[0] = min(t_start, t2[0]-(t2[1]-t2[0])) if N2 > 1 else t_start
+ t_aux2[1] = max(t_end, t2[N2-1]+(t2[N2-1]-t2[N2-2])) if N2 > 1 else t_end
+ t_p1 = t_start if (t1[0] == t_start) else t_aux1[0]
+ t_p2 = t_start if (t2[0] == t_start) else t_aux2[0]
+
+ # print "t_aux1", t_aux1, ", t_aux2:", t_aux2
+
+ spike_events[0] = t_start
+ if t1[0] > t_start:
+ t_f1 = t1[0]
+ dt_f1 = get_min_dist(t_f1, t2, 0, t_aux2[0], t_aux2[1])
+ dt_p1 = dt_f1
+ isi1 = max(t_f1-t_start, t1[1]-t1[0]) if N1 > 1 else t_f1-t_start
+ # s1 = dt_p1*(t_f1-t_start)/isi1
+ s1 = dt_p1
+ index1 = -1
+ else:
+ # dt_p1 = t_start-t_p2
+ t_f1 = t1[1] if N1 > 1 else t_end
+ dt_p1 = get_min_dist(t_p1, t2, 0, t_aux2[0], t_aux2[1])
+ dt_f1 = get_min_dist(t_f1, t2, 0, t_aux2[0], t_aux2[1])
+ isi1 = t_f1-t1[0]
+ s1 = dt_p1
+ index1 = 0
+ if t2[0] > t_start:
+ # dt_p1 = t2[0]-t_start
+ t_f2 = t2[0]
+ dt_f2 = get_min_dist(t_f2, t1, 0, t_aux1[0], t_aux1[1])
+ dt_p2 = dt_f2
+ isi2 = max(t_f2-t_start, t2[1]-t2[0]) if N2 > 1 else t_f2-t_start
+ # s2 = dt_p2*(t_f2-t_start)/isi2
+ s2 = dt_p2
+ index2 = -1
+ else:
+ t_f2 = t2[1] if N2 > 1 else t_end
+ dt_p2 = get_min_dist(t_p2, t1, 0, t_aux1[0], t_aux1[1])
+ dt_f2 = get_min_dist(t_f2, t1, 0, t_aux1[0], t_aux1[1])
+ isi2 = t_f2-t2[0]
+ s2 = dt_p2
+ index2 = 0
+
+ y_starts[0] = (s1*isi2 + s2*isi1) / (0.5*(isi1+isi2)**2)
+ index = 1
+
+ while index1+index2 < N1+N2-2:
+ # print(index, index1, index2)
+ if (index1 < N1-1) and (t_f1 < t_f2 or index2 == N2-1):
+ index1 += 1
+ # first calculate the previous interval end value
+ s1 = dt_f1*(t_f1-t_p1) / isi1
+ # the previous time now was the following time before:
+ dt_p1 = dt_f1
+ t_p1 = t_f1 # t_p1 contains the current time point
+ # get the next time
+ if index1 < N1-1:
+ t_f1 = t1[index1+1]
+ else:
+ t_f1 = t_aux1[1]
+ spike_events[index] = t_p1
+ s2 = (dt_p2*(t_f2-t_p1) + dt_f2*(t_p1-t_p2)) / isi2
+ y_ends[index-1] = (s1*isi2 + s2*isi1) / (0.5*(isi1+isi2)**2)
+ # now the next interval start value
+ if index1 < N1-1:
+ dt_f1 = get_min_dist(t_f1, t2, index2, t_aux2[0], t_aux2[1])
+ isi1 = t_f1-t_p1
+ s1 = dt_p1
+ else:
+ dt_f1 = dt_p1
+ isi1 = max(t_end-t1[N1-1], t1[N1-1]-t1[N1-2]) if N1 > 1 \
+ else t_end-t1[N1-1]
+ # s1 needs adjustment due to change of isi1
+ # s1 = dt_p1*(t_end-t1[N1-1])/isi1
+ # Eero's correction: no adjustment
+ s1 = dt_p1
+ # s2 is the same as above, thus we can compute y2 immediately
+ y_starts[index] = (s1*isi2 + s2*isi1) / (0.5*(isi1+isi2)**2)
+ elif (index2 < N2-1) and (t_f1 > t_f2 or index1 == N1-1):
+ index2 += 1
+ # first calculate the previous interval end value
+ s2 = dt_f2*(t_f2-t_p2) / isi2
+ # the previous time now was the following time before:
+ dt_p2 = dt_f2
+ t_p2 = t_f2 # t_p1 contains the current time point
+ # get the next time
+ if index2 < N2-1:
+ t_f2 = t2[index2+1]
+ else:
+ t_f2 = t_aux2[1]
+ spike_events[index] = t_p2
+ s1 = (dt_p1*(t_f1-t_p2) + dt_f1*(t_p2-t_p1)) / isi1
+ y_ends[index-1] = (s1*isi2 + s2*isi1) / (0.5*(isi1+isi2)**2)
+ # now the next interval start value
+ if index2 < N2-1:
+ dt_f2 = get_min_dist(t_f2, t1, index1, t_aux1[0], t_aux1[1])
+ isi2 = t_f2-t_p2
+ s2 = dt_p2
+ else:
+ dt_f2 = dt_p2
+ isi2 = max(t_end-t2[N2-1], t2[N2-1]-t2[N2-2]) if N2 > 1 \
+ else t_end-t2[N2-1]
+ # s2 needs adjustment due to change of isi2
+ # s2 = dt_p2*(t_end-t2[N2-1])/isi2
+ # Eero's adjustment: no correction
+ s2 = dt_p2
+ # s2 is the same as above, thus we can compute y2 immediately
+ y_starts[index] = (s1*isi2 + s2*isi1) / (0.5*(isi1+isi2)**2)
+ else: # t_f1 == t_f2 - generate only one event
+ index1 += 1
+ index2 += 1
+ t_p1 = t_f1
+ t_p2 = t_f2
+ dt_p1 = 0.0
+ dt_p2 = 0.0
+ spike_events[index] = t_f1
+ y_ends[index-1] = 0.0
+ y_starts[index] = 0.0
+ if index1 < N1-1:
+ t_f1 = t1[index1+1]
+ dt_f1 = get_min_dist(t_f1, t2, index2, t_aux2[0], t_aux2[1])
+ isi1 = t_f1 - t_p1
+ else:
+ t_f1 = t_aux1[1]
+ dt_f1 = dt_p1
+ isi1 = max(t_end-t1[N1-1], t1[N1-1]-t1[N1-2]) if N1 > 1 \
+ else t_end-t1[N1-1]
+ if index2 < N2-1:
+ t_f2 = t2[index2+1]
+ dt_f2 = get_min_dist(t_f2, t1, index1, t_aux1[0], t_aux1[1])
+ isi2 = t_f2 - t_p2
+ else:
+ t_f2 = t_aux2[1]
+ dt_f2 = dt_p2
+ isi2 = max(t_end-t2[N2-1], t2[N2-1]-t2[N2-2]) if N2 > 1 \
+ else t_end-t2[N2-1]
+ index += 1
+
+ # the last event is the interval end
+ if spike_events[index-1] == t_end:
+ index -= 1
+ else:
+ spike_events[index] = t_end
+ s1 = dt_f1 # *(t_end-t1[N1-1])/isi1
+ s2 = dt_f2 # *(t_end-t2[N2-1])/isi2
+ y_ends[index-1] = (s1*isi2 + s2*isi1) / (0.5*(isi1+isi2)**2)
+
+ # use only the data added above
+ # could be less than original length due to equal spike times
+ return spike_events[:index+1], y_starts[:index], y_ends[:index]
+
+
+############################################################
+# cumulative_sync_python
+############################################################
+def cumulative_sync_python(spikes1, spikes2):
+
+ def get_tau(spikes1, spikes2, i, j):
+ return 0.5*min([spikes1[i]-spikes1[i-1], spikes1[i+1]-spikes1[i],
+ spikes2[j]-spikes2[j-1], spikes2[j+1]-spikes2[j]])
+ N1 = len(spikes1)
+ N2 = len(spikes2)
+ i = 0
+ j = 0
+ n = 0
+ st = np.zeros(N1 + N2 - 2)
+ c = np.zeros(N1 + N2 - 3)
+ c[0] = 0
+ st[0] = 0
+ while n < N1 + N2:
+ if spikes1[i+1] < spikes2[j+1]:
+ i += 1
+ n += 1
+ tau = get_tau(spikes1, spikes2, i, j)
+ st[n] = spikes1[i]
+ if spikes1[i]-spikes2[j] > tau:
+ c[n] = c[n-1]
+ else:
+ c[n] = c[n-1]+1
+ elif spikes1[i+1] > spikes2[j+1]:
+ j += 1
+ n += 1
+ tau = get_tau(spikes1, spikes2, i, j)
+ st[n] = spikes2[j]
+ if spikes2[j]-spikes1[i] > tau:
+ c[n] = c[n-1]
+ else:
+ c[n] = c[n-1]+1
+ else: # spikes1[i+1] = spikes2[j+1]
+ j += 1
+ i += 1
+ if i == N1-1 or j == N2-1:
+ break
+ n += 1
+ st[n] = spikes1[i]
+ c[n] = c[n-1]
+ n += 1
+ st[n] = spikes1[i]
+ c[n] = c[n-1]+1
+ c[0] = 0
+ st[0] = spikes1[0]
+ st[-1] = spikes1[-1]
+
+ return st, c
+
+
+def get_tau(spikes1, spikes2, i, j, max_tau, init_tau):
+ m = init_tau
+ if i < len(spikes1)-1 and i > -1:
+ m = min(m, spikes1[i+1]-spikes1[i])
+ if j < len(spikes2)-1 and j > -1:
+ m = min(m, spikes2[j+1]-spikes2[j])
+ if i > 0:
+ m = min(m, spikes1[i]-spikes1[i-1])
+ if j > 0:
+ m = min(m, spikes2[j]-spikes2[j-1])
+ m *= 0.5
+ if max_tau > 0.0:
+ m = min(m, max_tau)
+ return m
+
+
+############################################################
+# coincidence_python
+############################################################
+def coincidence_python(spikes1, spikes2, t_start, t_end, max_tau):
+
+ N1 = len(spikes1)
+ N2 = len(spikes2)
+ i = -1
+ j = -1
+ n = 0
+ st = np.zeros(N1 + N2 + 2) # spike times
+ c = np.zeros(N1 + N2 + 2) # coincidences
+ mp = np.ones(N1 + N2 + 2) # multiplicity
+ while i + j < N1 + N2 - 2:
+ if (i < N1-1) and (j == N2-1 or spikes1[i+1] < spikes2[j+1]):
+ i += 1
+ n += 1
+ tau = get_tau(spikes1, spikes2, i, j, max_tau, t_end-t_start)
+ st[n] = spikes1[i]
+ if j > -1 and spikes1[i]-spikes2[j] < tau:
+ # coincidence between the current spike and the previous spike
+ # both get marked with 1
+ c[n] = 1
+ c[n-1] = 1
+ elif (j < N2-1) and (i == N1-1 or spikes1[i+1] > spikes2[j+1]):
+ j += 1
+ n += 1
+ tau = get_tau(spikes1, spikes2, i, j, max_tau, t_end-t_start)
+ st[n] = spikes2[j]
+ if i > -1 and spikes2[j]-spikes1[i] < tau:
+ # coincidence between the current spike and the previous spike
+ # both get marked with 1
+ c[n] = 1
+ c[n-1] = 1
+ else: # spikes1[i+1] = spikes2[j+1]
+ # advance in both spike trains
+ j += 1
+ i += 1
+ n += 1
+ # add only one event, but with coincidence 2 and multiplicity 2
+ st[n] = spikes1[i]
+ c[n] = 2
+ mp[n] = 2
+
+ st = st[:n+2]
+ c = c[:n+2]
+ mp = mp[:n+2]
+
+ st[0] = t_start
+ st[len(st)-1] = t_end
+ if N1 + N2 > 0:
+ c[0] = c[1]
+ c[len(c)-1] = c[len(c)-2]
+ mp[0] = mp[1]
+ mp[len(mp)-1] = mp[len(mp)-2]
+ else:
+ c[0] = 1
+ c[1] = 1
+
+ return st, c, mp
+
+
+############################################################
+# coincidence_single_profile_cython
+############################################################
+def coincidence_single_python(spikes1, spikes2, t_start, t_end, max_tau):
+
+ N1 = len(spikes1)
+ N2 = len(spikes2)
+ j = -1
+ c = np.zeros(N1) # coincidences
+ for i in range(N1):
+ while j < N2-1 and spikes2[j+1] < spikes1[i]:
+ # move forward until spikes2[j] is the last spike before spikes1[i]
+ # note that if spikes2[j] is after spikes1[i] we dont do anything
+ j += 1
+ tau = get_tau(spikes1, spikes2, i, j, max_tau, t_end-t_start)
+ if j > -1 and abs(spikes1[i]-spikes2[j]) < tau:
+ # current spike in st1 is coincident
+ c[i] = 1
+ if j < N2-1 and (j < 0 or spikes2[j] < spikes1[i]):
+ # in case spikes2[j] is before spikes1[i] it has to be the first or
+ # the one right before (see above), hence we move one forward and
+ # also check the next spike
+ j += 1
+ tau = get_tau(spikes1, spikes2, i, j, max_tau, t_end-t_start)
+ if abs(spikes2[j]-spikes1[i]) < tau:
+ # current spike in st1 is coincident
+ c[i] = 1
+ return c
+
+
+############################################################
+# add_piece_wise_const_python
+############################################################
+def add_piece_wise_const_python(x1, y1, x2, y2):
+ x_new = np.empty(len(x1) + len(x2))
+ y_new = np.empty(len(x_new)-1)
+ x_new[0] = x1[0]
+ y_new[0] = y1[0] + y2[0]
+ index1 = 0
+ index2 = 0
+ index = 0
+ while (index1+1 < len(y1)) and (index2+1 < len(y2)):
+ index += 1
+ # print(index1+1, x1[index1+1], y1[index1+1], x_new[index])
+ if x1[index1+1] < x2[index2+1]:
+ index1 += 1
+ x_new[index] = x1[index1]
+ elif x1[index1+1] > x2[index2+1]:
+ index2 += 1
+ x_new[index] = x2[index2]
+ else: # x1[index1+1] == x2[index2+1]:
+ index1 += 1
+ index2 += 1
+ x_new[index] = x1[index1]
+ y_new[index] = y1[index1] + y2[index2]
+ # one array reached the end -> copy the contents of the other to the end
+ if index1+1 < len(y1):
+ x_new[index+1:index+1+len(x1)-index1-1] = x1[index1+1:]
+ y_new[index+1:index+1+len(y1)-index1-1] = y1[index1+1:] + y2[-1]
+ index += len(x1)-index1-2
+ elif index2+1 < len(y2):
+ x_new[index+1:index+1+len(x2)-index2-1] = x2[index2+1:]
+ y_new[index+1:index+1+len(y2)-index2-1] = y2[index2+1:] + y1[-1]
+ index += len(x2)-index2-2
+ else: # both arrays reached the end simultaneously
+ # only the last x-value missing
+ x_new[index+1] = x1[-1]
+ # the last value is again the end of the interval
+ # x_new[index+1] = x1[-1]
+ # only use the data that was actually filled
+
+ return x_new[:index+2], y_new[:index+1]
+
+
+############################################################
+# add_piece_lin_const_python
+############################################################
+def add_piece_wise_lin_python(x1, y11, y12, x2, y21, y22):
+ x_new = np.empty(len(x1) + len(x2))
+ y1_new = np.empty(len(x_new)-1)
+ y2_new = np.empty_like(y1_new)
+ x_new[0] = x1[0]
+ y1_new[0] = y11[0] + y21[0]
+ index1 = 0 # index for self
+ index2 = 0 # index for f
+ index = 0 # index for new
+ while (index1+1 < len(y11)) and (index2+1 < len(y21)):
+ # print(index1+1, x1[index1+1], self.y[index1+1], x_new[index])
+ if x1[index1+1] < x2[index2+1]:
+ # first compute the end value of the previous interval
+ # linear interpolation of the interval
+ y = y21[index2] + (y22[index2]-y21[index2]) * \
+ (x1[index1+1]-x2[index2]) / (x2[index2+1]-x2[index2])
+ y2_new[index] = y12[index1] + y
+ index1 += 1
+ index += 1
+ x_new[index] = x1[index1]
+ # and the starting value for the next interval
+ y1_new[index] = y11[index1] + y
+ elif x1[index1+1] > x2[index2+1]:
+ # first compute the end value of the previous interval
+ # linear interpolation of the interval
+ y = y11[index1] + (y12[index1]-y11[index1]) * \
+ (x2[index2+1]-x1[index1]) / \
+ (x1[index1+1]-x1[index1])
+ y2_new[index] = y22[index2] + y
+ index2 += 1
+ index += 1
+ x_new[index] = x2[index2]
+ # and the starting value for the next interval
+ y1_new[index] = y21[index2] + y
+ else: # x1[index1+1] == x2[index2+1]:
+ y2_new[index] = y12[index1] + y22[index2]
+ index1 += 1
+ index2 += 1
+ index += 1
+ x_new[index] = x1[index1]
+ y1_new[index] = y11[index1] + y21[index2]
+ # one array reached the end -> copy the contents of the other to the end
+ if index1+1 < len(y11):
+ # compute the linear interpolations values
+ y = y21[index2] + (y22[index2]-y21[index2]) * \
+ (x1[index1+1:-1]-x2[index2]) / (x2[index2+1]-x2[index2])
+ x_new[index+1:index+1+len(x1)-index1-1] = x1[index1+1:]
+ y1_new[index+1:index+1+len(y11)-index1-1] = y11[index1+1:]+y
+ y2_new[index:index+len(y12)-index1-1] = y12[index1:-1] + y
+ index += len(x1)-index1-2
+ elif index2+1 < len(y21):
+ # compute the linear interpolations values
+ y = y11[index1] + (y12[index1]-y11[index1]) * \
+ (x2[index2+1:-1]-x1[index1]) / \
+ (x1[index1+1]-x1[index1])
+ x_new[index+1:index+1+len(x2)-index2-1] = x2[index2+1:]
+ y1_new[index+1:index+1+len(y21)-index2-1] = y21[index2+1:] + y
+ y2_new[index:index+len(y22)-index2-1] = y22[index2:-1] + y
+ index += len(x2)-index2-2
+ else: # both arrays reached the end simultaneously
+ # only the last x-value missing
+ x_new[index+1] = x1[-1]
+ # finally, the end value for the last interval
+ y2_new[index] = y12[-1]+y22[-1]
+ # only use the data that was actually filled
+ return x_new[:index+2], y1_new[:index+1], y2_new[:index+1]
+
+
+############################################################
+# add_discrete_function_python
+############################################################
+def add_discrete_function_python(x1, y1, mp1, x2, y2, mp2):
+
+ x_new = np.empty(len(x1) + len(x2))
+ y_new = np.empty_like(x_new)
+ mp_new = np.empty_like(x_new)
+ x_new[0] = x1[0]
+ index1 = 0
+ index2 = 0
+ index = 0
+ N1 = len(x1)-1
+ N2 = len(x2)-1
+ while (index1+1 < N1) and (index2+1 < N2):
+ if x1[index1+1] < x2[index2+1]:
+ index1 += 1
+ index += 1
+ x_new[index] = x1[index1]
+ y_new[index] = y1[index1]
+ mp_new[index] = mp1[index1]
+ elif x1[index1+1] > x2[index2+1]:
+ index2 += 1
+ index += 1
+ x_new[index] = x2[index2]
+ y_new[index] = y2[index2]
+ mp_new[index] = mp2[index2]
+ else: # x1[index1+1] == x2[index2+1]
+ index1 += 1
+ index2 += 1
+ index += 1
+ x_new[index] = x1[index1]
+ y_new[index] = y1[index1] + y2[index2]
+ mp_new[index] = mp1[index1] + mp2[index2]
+ # one array reached the end -> copy the contents of the other to the end
+ if index1+1 < N1:
+ x_new[index+1:index+1+N1-index1] = x1[index1+1:]
+ y_new[index+1:index+1+N1-index1] = y1[index1+1:]
+ mp_new[index+1:index+1+N1-index1] = mp1[index1+1:]
+ index += N1-index1
+ elif index2+1 < N2:
+ x_new[index+1:index+1+N2-index2] = x2[index2+1:]
+ y_new[index+1:index+1+N2-index2] = y2[index2+1:]
+ mp_new[index+1:index+1+N2-index2] = mp2[index2+1:]
+ index += N2-index2
+ else: # both arrays reached the end simultaneously
+ x_new[index+1] = x1[-1]
+ y_new[index+1] = y1[-1] + y2[-1]
+ mp_new[index+1] = mp1[-1] + mp2[-1]
+ index += 1
+
+ y_new[0] = y_new[1]
+ mp_new[0] = mp_new[1]
+
+ # the last value is again the end of the interval
+ # only use the data that was actually filled
+ return x_new[:index+1], y_new[:index+1], mp_new[:index+1]