summaryrefslogtreecommitdiff
path: root/pyspike/DiscreteFunc.py
blob: caad29029837f449c9a3572edad09ea9e6a7b714 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# Class representing discrete functions.
# Copyright 2014-2015, Mario Mulansky <mario.mulansky@gmx.net>
# Distributed under the BSD License

from __future__ import absolute_import, print_function

import numpy as np
import collections
import pyspike


##############################################################
# DiscreteFunc
##############################################################
class DiscreteFunc(object):
    """ A class representing values defined on a discrete set of points.
    """

    def __init__(self, x, y, multiplicity):
        """ Constructs the discrete function.

        :param x: array of length N defining the points at which the values are
                  defined.
        :param y: array of length N degining the values at the points x.
        :param multiplicity: array of length N defining the multiplicity of the
                             values.
        """
        # convert parameters to arrays, also ensures copying
        self.x = np.array(x)
        self.y = np.array(y)
        self.mp = np.array(multiplicity)

    def copy(self):
        """ Returns a copy of itself

        :rtype: :class:`DiscreteFunc`
        """
        return DiscreteFunc(self.x, self.y, self.mp)

    def almost_equal(self, other, decimal=14):
        """ Checks if the function is equal to another function up to `decimal`
        precision.

        :param other: another :class:`DiscreteFunc`
        :returns: True if the two functions are equal up to `decimal` decimals,
                  False otherwise
        :rtype: bool
        """
        eps = 10.0**(-decimal)
        return np.allclose(self.x, other.x, atol=eps, rtol=0.0) and \
            np.allclose(self.y, other.y, atol=eps, rtol=0.0) and \
            np.allclose(self.mp, other.mp, atol=eps, rtol=0.0)

    def get_plottable_data(self, averaging_window_size=0):
        """ Returns two arrays containing x- and y-coordinates for plotting
        the interval sequence. The optional parameter `averaging_window_size`
        determines the size of an averaging window to smoothen the profile. If
        this value is 0, no averaging is performed.

        :param averaging_window_size: size of the averaging window, default=0.
        :returns: (x_plot, y_plot) containing plottable data
        :rtype: pair of np.array

        Example::

            x, y = f.get_plottable_data()
            plt.plot(x, y, '-o', label="Discrete function")
        """

        if averaging_window_size > 0:
            # for the averaged profile we have to take the multiplicity into
            # account. values with higher multiplicity should be consider as if
            # they appeared several times. Hence we can not know how many
            # entries we have to consider to the left and right. Rather, we
            # will iterate until some wanted multiplicity is reached.

            # the first value in self.mp contains the number of averaged
            # profiles without any possible extra multiplicities
            # (by implementation)
            expected_mp = (averaging_window_size+1) * int(self.mp[0])
            y_plot = np.zeros_like(self.y)
            # compute the values in a loop, could be done in cython if required
            for i in range(len(y_plot)):

                if self.mp[i] >= expected_mp:
                    # the current value contains already all the wanted
                    # multiplicity
                    y_plot[i] = self.y[i]/self.mp[i]
                    continue

                # first look to the right
                y = self.y[i]
                mp_r = self.mp[i]
                j = i+1
                while j < len(y_plot):
                    if mp_r+self.mp[j] < expected_mp:
                        # if we still dont reach the required multiplicity
                        # we take the whole value
                        y += self.y[j]
                        mp_r += self.mp[j]
                    else:
                        # otherwise, just some fraction
                        y += self.y[j] * (expected_mp - mp_r)/self.mp[j]
                        mp_r += (expected_mp - mp_r)
                        break
                    j += 1

                # same story to the left
                mp_l = self.mp[i]
                j = i-1
                while j >= 0:
                    if mp_l+self.mp[j] < expected_mp:
                        y += self.y[j]
                        mp_l += self.mp[j]
                    else:
                        y += self.y[j] * (expected_mp - mp_l)/self.mp[j]
                        mp_l += (expected_mp - mp_l)
                        break
                    j -= 1
                y_plot[i] = y/(mp_l+mp_r-self.mp[i])
            return 1.0*self.x, y_plot

        else:  # k = 0

            return 1.0*self.x, 1.0*self.y/self.mp

    def integral(self, interval=None):
        """ Returns the integral over the given interval. For the discrete
        function, this amounts to two values: the sum over all values and the
        sum over all multiplicities.

        :param interval: integration interval given as a pair of floats, or a
                         sequence of pairs in case of multiple intervals, if
                         None the integral over the whole function is computed.
        :type interval: Pair, sequence of pairs, or None.
        :returns: the summed values and the summed multiplicity
        :rtype: pair of float
        """

        value = 0.0
        multiplicity = 0.0

        def get_indices(ival):
            """ Retuns the indeces surrounding the given interval"""
            start_ind = np.searchsorted(self.x, ival[0], side='right')
            end_ind = np.searchsorted(self.x, ival[1], side='left')
            assert start_ind > 0 and end_ind < len(self.x), \
                "Invalid averaging interval"
            return start_ind, end_ind

        if interval is None:
            # no interval given, integrate over the whole spike train
            # don't count the first value, which is zero by definition
            value = 1.0 * np.sum(self.y[1:-1])
            multiplicity = np.sum(self.mp[1:-1])
        else:
            # check if interval is as sequence
            assert isinstance(interval, collections.Sequence), \
                "Invalid value for `interval`. None, Sequence or Tuple \
expected."
            # check if interval is a sequence of intervals
            if not isinstance(interval[0], collections.Sequence):
                # find the indices corresponding to the interval
                start_ind, end_ind = get_indices(interval)
                value = np.sum(self.y[start_ind:end_ind])
                multiplicity = np.sum(self.mp[start_ind:end_ind])
            else:
                for ival in interval:
                    # find the indices corresponding to the interval
                    start_ind, end_ind = get_indices(ival)
                    value += np.sum(self.y[start_ind:end_ind])
                    multiplicity += np.sum(self.mp[start_ind:end_ind])
        return (value, multiplicity)

    def avrg(self, interval=None, normalize=True):
        """ Computes the average of the interval sequence:
        :math:`a = 1/N \\sum f_n` where N is the number of intervals.

        :param interval: averaging interval given as a pair of floats, a
                         sequence of pairs for averaging multiple intervals, or
                         None, if None the average over the whole function is
                         computed.
        :type interval: Pair, sequence of pairs, or None.
        :returns: the average a.
        :rtype: float
        """
        val, mp = self.integral(interval)
        if normalize:
            if mp > 0:
                return val/mp
            else:
                return 1.0
        else:
            return val

    def add(self, f):
        """ Adds another `DiscreteFunc` function to this function.
        Note: only functions defined on the same interval can be summed.

        :param f: :class:`DiscreteFunc` function to be added.
        :rtype: None
        """
        assert self.x[0] == f.x[0], "The functions have different intervals"
        assert self.x[-1] == f.x[-1], "The functions have different intervals"

        # cython version
        try:
            from .cython.cython_add import add_discrete_function_cython as \
                add_discrete_function_impl
        except ImportError:
            if not(pyspike.disable_backend_warning):
                print("Warning: add_discrete_function_cython not found. Make \
sure that PySpike is installed by running\n\
'python setup.py build_ext --inplace'! \
\n Falling back to slow python backend.")
            # use python backend
            from .cython.python_backend import add_discrete_function_python as \
                add_discrete_function_impl

        self.x, self.y, self.mp = \
            add_discrete_function_impl(self.x, self.y, self.mp,
                                       f.x, f.y, f.mp)

    def mul_scalar(self, fac):
        """ Multiplies the function with a scalar value

        :param fac: Value to multiply
        :type fac: double
        :rtype: None
        """
        self.y *= fac


def average_profile(profiles):
    """ Computes the average profile from the given ISI- or SPIKE-profiles.

    :param profiles: list of :class:`PieceWiseConstFunc` or
                     :class:`PieceWiseLinFunc` representing ISI- or
                     SPIKE-profiles to be averaged.
    :returns: the averages profile :math:`<S_{isi}>` or :math:`<S_{spike}>`.
    :rtype: :class:`PieceWiseConstFunc` or :class:`PieceWiseLinFunc`
    """
    assert len(profiles) > 1

    avrg_profile = profiles[0].copy()
    for i in range(1, len(profiles)):
        avrg_profile.add(profiles[i])
    avrg_profile.mul_scalar(1.0/len(profiles))  # normalize

    return avrg_profile