summaryrefslogtreecommitdiff
path: root/pyspike/cython/python_backend.py
blob: e75f181046c3e325e4264c564f2c1c837c831072 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
""" python_backend.py

Collection of python functions that can be used instead of the cython
implementation.

Copyright 2014-2015, Mario Mulansky <mario.mulansky@gmx.net>

Distributed under the BSD License

"""

import numpy as np


############################################################
# isi_distance_python
############################################################
def isi_distance_python(s1, s2, t_start, t_end):
    """ Plain Python implementation of the isi distance.
    """
    N1 = len(s1)
    N2 = len(s2)

    # compute the isi-distance
    spike_events = np.empty(N1+N2+2)
    spike_events[0] = t_start
    # the values have one entry less - the number of intervals between events
    isi_values = np.empty(len(spike_events) - 1)
    if s1[0] > t_start:
        # edge correction
        nu1 = max(s1[0] - t_start, s1[1] - s1[0]) if N1 > 1 else s1[0]-t_start
        index1 = -1
    else:
        nu1 = s1[1] - s1[0] if N1 > 1 else t_end-s1[0]
        index1 = 0
    if s2[0] > t_start:
        # edge correction
        nu2 = max(s2[0] - t_start, s2[1] - s2[0]) if N2 > 1 else s2[0]-t_start
        index2 = -1
    else:
        nu2 = s2[1] - s2[0] if N2 > 1 else t_end-s2[0]
        index2 = 0

    isi_values[0] = abs(nu1 - nu2) / max(nu1, nu2)
    index = 1
    while index1+index2 < N1+N2-2:
        # check which spike is next - from s1 or s2
        if (index1 < N1-1) and (index2 == N2-1 or s1[index1+1] < s2[index2+1]):
            index1 += 1
            spike_events[index] = s1[index1]
            if index1 < N1-1:
                nu1 = s1[index1+1]-s1[index1]
            else:
                # edge correction
                nu1 = max(t_end-s1[N1-1], s1[N1-1]-s1[N1-2]) if N1 > 1 \
                    else t_end-s1[N1-1]

        elif (index2 < N2-1) and (index1 == N1-1 or
                                  s1[index1+1] > s2[index2+1]):
            index2 += 1
            spike_events[index] = s2[index2]
            if index2 < N2-1:
                nu2 = s2[index2+1]-s2[index2]
            else:
                # edge correction
                nu2 = max(t_end-s2[N2-1], s2[N2-1]-s2[N2-2]) if N2 > 1 \
                    else t_end-s2[N2-1]

        else:  # s1[index1 + 1] == s2[index2 + 1]
            index1 += 1
            index2 += 1
            spike_events[index] = s1[index1]
            if index1 < N1-1:
                nu1 = s1[index1+1]-s1[index1]
            else:
                # edge correction
                nu1 = max(t_end-s1[N1-1], s1[N1-1]-s1[N1-2]) if N1 > 1 \
                    else t_end-s1[N1-1]
            if index2 < N2-1:
                nu2 = s2[index2+1]-s2[index2]
            else:
                # edge correction
                nu2 = max(t_end-s2[N2-1], s2[N2-1]-s2[N2-2]) if N2 > 1 \
                    else t_end-s2[N2-1]
        # compute the corresponding isi-distance
        isi_values[index] = abs(nu1 - nu2) / \
            max(nu1, nu2)
        index += 1
    # the last event is the interval end
    if spike_events[index-1] == t_end:
        index -= 1
    else:
        spike_events[index] = t_end
    # use only the data added above
    # could be less than original length due to equal spike times
    return spike_events[:index + 1], isi_values[:index]


############################################################
# get_min_dist
############################################################
def get_min_dist(spike_time, spike_train, start_index, t_start, t_end):
    """ Returns the minimal distance |spike_time - spike_train[i]|
    with i>=start_index.
    """
    d = abs(spike_time - t_start)
    if start_index < 0:
        start_index = 0
    while start_index < len(spike_train):
        d_temp = abs(spike_time - spike_train[start_index])
        if d_temp > d:
            return d
        else:
            d = d_temp
        start_index += 1
    # finally, check the distance to end time
    d_temp = abs(t_end - spike_time)
    if d_temp > d:
        return d
    else:
        return d_temp


############################################################
# spike_distance_python
############################################################
def spike_distance_python(spikes1, spikes2, t_start, t_end):
    """ Computes the instantaneous spike-distance S_spike (t) of the two given
    spike trains. The spike trains are expected to have auxiliary spikes at the
    beginning and end of the interval. Use the function add_auxiliary_spikes to
    add those spikes to the spike train.
    Args:
    - spikes1, spikes2: ordered arrays of spike times with auxiliary spikes.
    - t_start, t_end: edges of the spike train
    Returns:
    - PieceWiseLinFunc describing the spike-distance.
    """

    # shorter variables
    t1 = spikes1
    t2 = spikes2

    N1 = len(t1)
    N2 = len(t2)

    spike_events = np.empty(N1+N2+2)

    y_starts = np.empty(len(spike_events)-1)
    y_ends = np.empty(len(spike_events)-1)

    t_aux1 = np.zeros(2)
    t_aux2 = np.zeros(2)
    t_aux1[0] = min(t_start, t1[0]-(t1[1]-t1[0])) if N1 > 1 else t_start
    t_aux1[1] = max(t_end, t1[N1-1]+(t1[N1-1]-t1[N1-2])) if N1 > 1 else t_end
    t_aux2[0] = min(t_start, t2[0]-(t2[1]-t2[0])) if N2 > 1 else t_start
    t_aux2[1] = max(t_end, t2[N2-1]+(t2[N2-1]-t2[N2-2])) if N2 > 1 else t_end
    t_p1 = t_start if (t1[0] == t_start) else t_aux1[0]
    t_p2 = t_start if (t2[0] == t_start) else t_aux2[0]

    # print "t_aux1", t_aux1, ", t_aux2:", t_aux2

    spike_events[0] = t_start
    if t1[0] > t_start:
        t_f1 = t1[0]
        dt_f1 = get_min_dist(t_f1, t2, 0, t_aux2[0], t_aux2[1])
        dt_p1 = dt_f1
        isi1 = max(t_f1-t_start, t1[1]-t1[0]) if N1 > 1 else t_f1-t_start
        # s1 = dt_p1*(t_f1-t_start)/isi1
        s1 = dt_p1
        index1 = -1
    else:
        # dt_p1 = t_start-t_p2
        t_f1 = t1[1] if N1 > 1 else t_end
        dt_p1 = get_min_dist(t_p1, t2, 0, t_aux2[0], t_aux2[1])
        dt_f1 = get_min_dist(t_f1, t2, 0, t_aux2[0], t_aux2[1])
        isi1 = t_f1-t1[0]
        s1 = dt_p1
        index1 = 0
    if t2[0] > t_start:
        # dt_p1 = t2[0]-t_start
        t_f2 = t2[0]
        dt_f2 = get_min_dist(t_f2, t1, 0, t_aux1[0], t_aux1[1])
        dt_p2 = dt_f2
        isi2 = max(t_f2-t_start, t2[1]-t2[0]) if N2 > 1 else t_f2-t_start
        # s2 = dt_p2*(t_f2-t_start)/isi2
        s2 = dt_p2
        index2 = -1
    else:
        t_f2 = t2[1] if N2 > 1 else t_end
        dt_p2 = get_min_dist(t_p2, t1, 0, t_aux1[0], t_aux1[1])
        dt_f2 = get_min_dist(t_f2, t1, 0, t_aux1[0], t_aux1[1])
        isi2 = t_f2-t2[0]
        s2 = dt_p2
        index2 = 0

    y_starts[0] = (s1*isi2 + s2*isi1) / (0.5*(isi1+isi2)**2)
    index = 1

    while index1+index2 < N1+N2-2:
        # print(index, index1, index2)
        if (index1 < N1-1) and (t_f1 < t_f2 or index2 == N2-1):
            index1 += 1
            # first calculate the previous interval end value
            s1 = dt_f1*(t_f1-t_p1) / isi1
            # the previous time now was the following time before:
            dt_p1 = dt_f1
            t_p1 = t_f1    # t_p1 contains the current time point
            # get the next time
            if index1 < N1-1:
                t_f1 = t1[index1+1]
            else:
                t_f1 = t_aux1[1]
            spike_events[index] = t_p1
            s2 = (dt_p2*(t_f2-t_p1) + dt_f2*(t_p1-t_p2)) / isi2
            y_ends[index-1] = (s1*isi2 + s2*isi1) / (0.5*(isi1+isi2)**2)
            # now the next interval start value
            if index1 < N1-1:
                dt_f1 = get_min_dist(t_f1, t2, index2, t_aux2[0], t_aux2[1])
                isi1 = t_f1-t_p1
                s1 = dt_p1
            else:
                dt_f1 = dt_p1
                isi1 = max(t_end-t1[N1-1], t1[N1-1]-t1[N1-2]) if N1 > 1 \
                    else t_end-t1[N1-1]
                # s1 needs adjustment due to change of isi1
                # s1 = dt_p1*(t_end-t1[N1-1])/isi1
                # Eero's correction: no adjustment
                s1 = dt_p1
            # s2 is the same as above, thus we can compute y2 immediately
            y_starts[index] = (s1*isi2 + s2*isi1) / (0.5*(isi1+isi2)**2)
        elif (index2 < N2-1) and (t_f1 > t_f2 or index1 == N1-1):
            index2 += 1
            # first calculate the previous interval end value
            s2 = dt_f2*(t_f2-t_p2) / isi2
            # the previous time now was the following time before:
            dt_p2 = dt_f2
            t_p2 = t_f2    # t_p1 contains the current time point
            # get the next time
            if index2 < N2-1:
                t_f2 = t2[index2+1]
            else:
                t_f2 = t_aux2[1]
            spike_events[index] = t_p2
            s1 = (dt_p1*(t_f1-t_p2) + dt_f1*(t_p2-t_p1)) / isi1
            y_ends[index-1] = (s1*isi2 + s2*isi1) / (0.5*(isi1+isi2)**2)
            # now the next interval start value
            if index2 < N2-1:
                dt_f2 = get_min_dist(t_f2, t1, index1, t_aux1[0], t_aux1[1])
                isi2 = t_f2-t_p2
                s2 = dt_p2
            else:
                dt_f2 = dt_p2
                isi2 = max(t_end-t2[N2-1], t2[N2-1]-t2[N2-2]) if N2 > 1 \
                    else t_end-t2[N2-1]
                # s2 needs adjustment due to change of isi2
                # s2 = dt_p2*(t_end-t2[N2-1])/isi2
                # Eero's adjustment: no correction
                s2 = dt_p2
            # s2 is the same as above, thus we can compute y2 immediately
            y_starts[index] = (s1*isi2 + s2*isi1) / (0.5*(isi1+isi2)**2)
        else:  # t_f1 == t_f2 - generate only one event
            index1 += 1
            index2 += 1
            t_p1 = t_f1
            t_p2 = t_f2
            dt_p1 = 0.0
            dt_p2 = 0.0
            spike_events[index] = t_f1
            y_ends[index-1] = 0.0
            y_starts[index] = 0.0
            if index1 < N1-1:
                t_f1 = t1[index1+1]
                dt_f1 = get_min_dist(t_f1, t2, index2, t_aux2[0], t_aux2[1])
                isi1 = t_f1 - t_p1
            else:
                t_f1 = t_aux1[1]
                dt_f1 = dt_p1
                isi1 = max(t_end-t1[N1-1], t1[N1-1]-t1[N1-2]) if N1 > 1 \
                    else t_end-t1[N1-1]
            if index2 < N2-1:
                t_f2 = t2[index2+1]
                dt_f2 = get_min_dist(t_f2, t1, index1, t_aux1[0], t_aux1[1])
                isi2 = t_f2 - t_p2
            else:
                t_f2 = t_aux2[1]
                dt_f2 = dt_p2
                isi2 = max(t_end-t2[N2-1], t2[N2-1]-t2[N2-2]) if N2 > 1 \
                    else t_end-t2[N2-1]
        index += 1

    # the last event is the interval end
    if spike_events[index-1] == t_end:
        index -= 1
    else:
        spike_events[index] = t_end
        s1 = dt_f1  # *(t_end-t1[N1-1])/isi1
        s2 = dt_f2  # *(t_end-t2[N2-1])/isi2
        y_ends[index-1] = (s1*isi2 + s2*isi1) / (0.5*(isi1+isi2)**2)

    # use only the data added above
    # could be less than original length due to equal spike times
    return spike_events[:index+1], y_starts[:index], y_ends[:index]


############################################################
# cumulative_sync_python
############################################################
def cumulative_sync_python(spikes1, spikes2):

    def get_tau(spikes1, spikes2, i, j):
        return 0.5*min([spikes1[i]-spikes1[i-1], spikes1[i+1]-spikes1[i],
                        spikes2[j]-spikes2[j-1], spikes2[j+1]-spikes2[j]])
    N1 = len(spikes1)
    N2 = len(spikes2)
    i = 0
    j = 0
    n = 0
    st = np.zeros(N1 + N2 - 2)
    c = np.zeros(N1 + N2 - 3)
    c[0] = 0
    st[0] = 0
    while n < N1 + N2:
        if spikes1[i+1] < spikes2[j+1]:
            i += 1
            n += 1
            tau = get_tau(spikes1, spikes2, i, j)
            st[n] = spikes1[i]
            if spikes1[i]-spikes2[j] > tau:
                c[n] = c[n-1]
            else:
                c[n] = c[n-1]+1
        elif spikes1[i+1] > spikes2[j+1]:
            j += 1
            n += 1
            tau = get_tau(spikes1, spikes2, i, j)
            st[n] = spikes2[j]
            if spikes2[j]-spikes1[i] > tau:
                c[n] = c[n-1]
            else:
                c[n] = c[n-1]+1
        else:   # spikes1[i+1] = spikes2[j+1]
            j += 1
            i += 1
            if i == N1-1 or j == N2-1:
                break
            n += 1
            st[n] = spikes1[i]
            c[n] = c[n-1]
            n += 1
            st[n] = spikes1[i]
            c[n] = c[n-1]+1
    c[0] = 0
    st[0] = spikes1[0]
    st[-1] = spikes1[-1]

    return st, c


def get_tau(spikes1, spikes2, i, j, max_tau, init_tau):
    m = init_tau
    if i < len(spikes1)-1 and i > -1:
        m = min(m, spikes1[i+1]-spikes1[i])
    if j < len(spikes2)-1 and j > -1:
        m = min(m, spikes2[j+1]-spikes2[j])
    if i > 0:
        m = min(m, spikes1[i]-spikes1[i-1])
    if j > 0:
        m = min(m, spikes2[j]-spikes2[j-1])
    m *= 0.5
    if max_tau > 0.0:
        m = min(m, max_tau)
    return m


############################################################
# coincidence_python
############################################################
def coincidence_python(spikes1, spikes2, t_start, t_end, max_tau):

    N1 = len(spikes1)
    N2 = len(spikes2)
    i = -1
    j = -1
    n = 0
    st = np.zeros(N1 + N2 + 2)  # spike times
    c = np.zeros(N1 + N2 + 2)   # coincidences
    mp = np.ones(N1 + N2 + 2)   # multiplicity
    while i + j < N1 + N2 - 2:
        if (i < N1-1) and (j == N2-1 or spikes1[i+1] < spikes2[j+1]):
            i += 1
            n += 1
            tau = get_tau(spikes1, spikes2, i, j, max_tau, t_end-t_start)
            st[n] = spikes1[i]
            if j > -1 and spikes1[i]-spikes2[j] < tau:
                # coincidence between the current spike and the previous spike
                # both get marked with 1
                c[n] = 1
                c[n-1] = 1
        elif (j < N2-1) and (i == N1-1 or spikes1[i+1] > spikes2[j+1]):
            j += 1
            n += 1
            tau = get_tau(spikes1, spikes2, i, j, max_tau, t_end-t_start)
            st[n] = spikes2[j]
            if i > -1 and spikes2[j]-spikes1[i] < tau:
                # coincidence between the current spike and the previous spike
                # both get marked with 1
                c[n] = 1
                c[n-1] = 1
        else:   # spikes1[i+1] = spikes2[j+1]
            # advance in both spike trains
            j += 1
            i += 1
            n += 1
            # add only one event, but with coincidence 2 and multiplicity 2
            st[n] = spikes1[i]
            c[n] = 2
            mp[n] = 2

    st = st[:n+2]
    c = c[:n+2]
    mp = mp[:n+2]

    st[0] = t_start
    st[len(st)-1] = t_end
    if N1 + N2 > 0:
        c[0] = c[1]
        c[len(c)-1] = c[len(c)-2]
        mp[0] = mp[1]
        mp[len(mp)-1] = mp[len(mp)-2]
    else:
        c[0] = 1
        c[1] = 1

    return st, c, mp


############################################################
# coincidence_single_profile_cython
############################################################
def coincidence_single_python(spikes1, spikes2, t_start, t_end, max_tau):

    N1 = len(spikes1)
    N2 = len(spikes2)
    j = -1
    c = np.zeros(N1)   # coincidences
    for i in range(N1):
        while j < N2-1 and spikes2[j+1] < spikes1[i]:
            # move forward until spikes2[j] is the last spike before spikes1[i]
            # note that if spikes2[j] is after spikes1[i] we dont do anything
            j += 1
        tau = get_tau(spikes1, spikes2, i, j, max_tau, t_end-t_start)
        if j > -1 and abs(spikes1[i]-spikes2[j]) < tau:
            # current spike in st1 is coincident
            c[i] = 1
        if j < N2-1 and (j < 0 or spikes2[j] < spikes1[i]):
            # in case spikes2[j] is before spikes1[i] it has to be the first or
            # the one right before (see above), hence we move one forward and
            # also check the next spike
            j += 1
            tau = get_tau(spikes1, spikes2, i, j, max_tau, t_end-t_start)
            if abs(spikes2[j]-spikes1[i]) < tau:
                # current spike in st1 is coincident
                c[i] = 1
    return c


############################################################
# add_piece_wise_const_python
############################################################
def add_piece_wise_const_python(x1, y1, x2, y2):
    x_new = np.empty(len(x1) + len(x2))
    y_new = np.empty(len(x_new)-1)
    x_new[0] = x1[0]
    y_new[0] = y1[0] + y2[0]
    index1 = 0
    index2 = 0
    index = 0
    while (index1+1 < len(y1)) and (index2+1 < len(y2)):
        index += 1
        # print(index1+1, x1[index1+1], y1[index1+1], x_new[index])
        if x1[index1+1] < x2[index2+1]:
            index1 += 1
            x_new[index] = x1[index1]
        elif x1[index1+1] > x2[index2+1]:
            index2 += 1
            x_new[index] = x2[index2]
        else:  # x1[index1+1] == x2[index2+1]:
            index1 += 1
            index2 += 1
            x_new[index] = x1[index1]
        y_new[index] = y1[index1] + y2[index2]
    # one array reached the end -> copy the contents of the other to the end
    if index1+1 < len(y1):
        x_new[index+1:index+1+len(x1)-index1-1] = x1[index1+1:]
        y_new[index+1:index+1+len(y1)-index1-1] = y1[index1+1:] + y2[-1]
        index += len(x1)-index1-2
    elif index2+1 < len(y2):
        x_new[index+1:index+1+len(x2)-index2-1] = x2[index2+1:]
        y_new[index+1:index+1+len(y2)-index2-1] = y2[index2+1:] + y1[-1]
        index += len(x2)-index2-2
    else:  # both arrays reached the end simultaneously
        # only the last x-value missing
        x_new[index+1] = x1[-1]
    # the last value is again the end of the interval
    # x_new[index+1] = x1[-1]
    # only use the data that was actually filled

    return x_new[:index+2], y_new[:index+1]


############################################################
# add_piece_lin_const_python
############################################################
def add_piece_wise_lin_python(x1, y11, y12, x2, y21, y22):
    x_new = np.empty(len(x1) + len(x2))
    y1_new = np.empty(len(x_new)-1)
    y2_new = np.empty_like(y1_new)
    x_new[0] = x1[0]
    y1_new[0] = y11[0] + y21[0]
    index1 = 0  # index for self
    index2 = 0  # index for f
    index = 0   # index for new
    while (index1+1 < len(y11)) and (index2+1 < len(y21)):
        # print(index1+1, x1[index1+1], self.y[index1+1], x_new[index])
        if x1[index1+1] < x2[index2+1]:
            # first compute the end value of the previous interval
            # linear interpolation of the interval
            y = y21[index2] + (y22[index2]-y21[index2]) * \
                (x1[index1+1]-x2[index2]) / (x2[index2+1]-x2[index2])
            y2_new[index] = y12[index1] + y
            index1 += 1
            index += 1
            x_new[index] = x1[index1]
            # and the starting value for the next interval
            y1_new[index] = y11[index1] + y
        elif x1[index1+1] > x2[index2+1]:
            # first compute the end value of the previous interval
            # linear interpolation of the interval
            y = y11[index1] + (y12[index1]-y11[index1]) * \
                (x2[index2+1]-x1[index1]) / \
                (x1[index1+1]-x1[index1])
            y2_new[index] = y22[index2] + y
            index2 += 1
            index += 1
            x_new[index] = x2[index2]
            # and the starting value for the next interval
            y1_new[index] = y21[index2] + y
        else:  # x1[index1+1] == x2[index2+1]:
            y2_new[index] = y12[index1] + y22[index2]
            index1 += 1
            index2 += 1
            index += 1
            x_new[index] = x1[index1]
            y1_new[index] = y11[index1] + y21[index2]
    # one array reached the end -> copy the contents of the other to the end
    if index1+1 < len(y11):
        # compute the linear interpolations values
        y = y21[index2] + (y22[index2]-y21[index2]) * \
            (x1[index1+1:-1]-x2[index2]) / (x2[index2+1]-x2[index2])
        x_new[index+1:index+1+len(x1)-index1-1] = x1[index1+1:]
        y1_new[index+1:index+1+len(y11)-index1-1] = y11[index1+1:]+y
        y2_new[index:index+len(y12)-index1-1] = y12[index1:-1] + y
        index += len(x1)-index1-2
    elif index2+1 < len(y21):
        # compute the linear interpolations values
        y = y11[index1] + (y12[index1]-y11[index1]) * \
            (x2[index2+1:-1]-x1[index1]) / \
            (x1[index1+1]-x1[index1])
        x_new[index+1:index+1+len(x2)-index2-1] = x2[index2+1:]
        y1_new[index+1:index+1+len(y21)-index2-1] = y21[index2+1:] + y
        y2_new[index:index+len(y22)-index2-1] = y22[index2:-1] + y
        index += len(x2)-index2-2
    else:  # both arrays reached the end simultaneously
        # only the last x-value missing
        x_new[index+1] = x1[-1]
    # finally, the end value for the last interval
    y2_new[index] = y12[-1]+y22[-1]
    # only use the data that was actually filled
    return x_new[:index+2], y1_new[:index+1], y2_new[:index+1]


############################################################
# add_discrete_function_python
############################################################
def add_discrete_function_python(x1, y1, mp1, x2, y2, mp2):

    x_new = np.empty(len(x1) + len(x2))
    y_new = np.empty_like(x_new)
    mp_new = np.empty_like(x_new)
    x_new[0] = x1[0]
    index1 = 0
    index2 = 0
    index = 0
    N1 = len(x1)-1
    N2 = len(x2)-1
    while (index1+1 < N1) and (index2+1 < N2):
        if x1[index1+1] < x2[index2+1]:
            index1 += 1
            index += 1
            x_new[index] = x1[index1]
            y_new[index] = y1[index1]
            mp_new[index] = mp1[index1]
        elif x1[index1+1] > x2[index2+1]:
            index2 += 1
            index += 1
            x_new[index] = x2[index2]
            y_new[index] = y2[index2]
            mp_new[index] = mp2[index2]
        else:  # x1[index1+1] == x2[index2+1]
            index1 += 1
            index2 += 1
            index += 1
            x_new[index] = x1[index1]
            y_new[index] = y1[index1] + y2[index2]
            mp_new[index] = mp1[index1] + mp2[index2]
    # one array reached the end -> copy the contents of the other to the end
    if index1+1 < N1:
        x_new[index+1:index+1+N1-index1] = x1[index1+1:]
        y_new[index+1:index+1+N1-index1] = y1[index1+1:]
        mp_new[index+1:index+1+N1-index1] = mp1[index1+1:]
        index += N1-index1
    elif index2+1 < N2:
        x_new[index+1:index+1+N2-index2] = x2[index2+1:]
        y_new[index+1:index+1+N2-index2] = y2[index2+1:]
        mp_new[index+1:index+1+N2-index2] = mp2[index2+1:]
        index += N2-index2
    else:  # both arrays reached the end simultaneously
        x_new[index+1] = x1[-1]
        y_new[index+1] = y1[-1] + y2[-1]
        mp_new[index+1] = mp1[-1] + mp2[-1]
        index += 1

    y_new[0] = y_new[1]
    mp_new[0] = mp_new[1]

    # the last value is again the end of the interval
    # only use the data that was actually filled
    return x_new[:index+1], y_new[:index+1], mp_new[:index+1]