summaryrefslogtreecommitdiff
path: root/pyspike/distances.py
blob: 90568632f2559a79d347fc9636bcef7aec224245 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
""" distances.py

Module containing several functions to compute spike distances

Copyright 2014, Mario Mulansky <mario.mulansky@gmx.net>

Distributed under the BSD License
"""

import numpy as np
import threading

from pyspike import PieceWiseConstFunc, PieceWiseLinFunc


############################################################
# isi_profile
############################################################
def isi_profile(spikes1, spikes2):
    """ Computes the isi-distance profile S_isi(t) of the two given spike
    trains. Retruns the profile as a PieceWiseConstFunc object. The S_isi
    values are defined positive S_isi(t)>=0.  The spike trains are expected
    to have auxiliary spikes at the beginning and end of the interval. Use the
    function add_auxiliary_spikes to add those spikes to the spike train.
    Args:
    - spikes1, spikes2: ordered arrays of spike times with auxiliary spikes.
    Returns:
    - PieceWiseConstFunc describing the isi-distance.
    """
    # check for auxiliary spikes - first and last spikes should be identical
    assert spikes1[0] == spikes2[0], \
        "Given spike trains seems not to have auxiliary spikes!"
    assert spikes1[-1] == spikes2[-1], \
        "Given spike trains seems not to have auxiliary spikes!"

    # cython implementation
    from cython_distance import isi_distance_cython

    times, values = isi_distance_cython(spikes1, spikes2)
    return PieceWiseConstFunc(times, values)


############################################################
# isi_distance
############################################################
def isi_distance(spikes1, spikes2):
    """ Computes the isi-distance I of the given spike trains. The
    isi-distance is the integral over the isi distance profile S_isi(t):
     I = \int_^T S_isi(t) dt.
    Args:
    - spikes1, spikes2: ordered arrays of spike times with auxiliary spikes.
    Returns:
    - double value: The isi-distance I.
    """
    return isi_profile(spikes1, spikes2).avrg()


############################################################
# spike_profile
############################################################
def spike_profile(spikes1, spikes2):
    """ Computes the spike-distance profile S_spike(t) of the two given spike
    trains. Returns the profile as a PieceWiseLinFunc object. The S_spike
    values are defined positive S_spike(t)>=0. The spike trains are expected to
    have auxiliary spikes at the beginning and end of the interval. Use the
    function add_auxiliary_spikes to add those spikes to the spike train.
    Args:
    - spikes1, spikes2: ordered arrays of spike times with auxiliary spikes.
    Returns:
    - PieceWiseLinFunc describing the spike-distance.
    """
    # check for auxiliary spikes - first and last spikes should be identical
    assert spikes1[0] == spikes2[0], \
        "Given spike trains seems not to have auxiliary spikes!"
    assert spikes1[-1] == spikes2[-1], \
        "Given spike trains seems not to have auxiliary spikes!"

    # cython implementation
    from cython_distance import spike_distance_cython

    times, y_starts, y_ends = spike_distance_cython(spikes1, spikes2)

    return PieceWiseLinFunc(times, y_starts, y_ends)


############################################################
# spike_distance
############################################################
def spike_distance(spikes1, spikes2):
    """ Computes the spike-distance S of the given spike trains. The
    spike-distance is the integral over the isi distance profile S_spike(t):
     S = \int_^T S_spike(t) dt.
    Args:
    - spikes1, spikes2: ordered arrays of spike times with auxiliary spikes.
    Returns:
    - double value: The spike-distance S.
    """
    return spike_profile(spikes1, spikes2).avrg()


############################################################
# multi_profile
############################################################
def multi_profile(spike_trains, pair_distance_func, indices=None):
    """ Internal implementation detail, don't call this function directly,
    use isi_profile_multi or spike_profile_multi instead.

    Computes the multi-variate distance for a set of spike-trains using the
    pair_dist_func to compute pair-wise distances. That is it computes the
    average distance of all pairs of spike-trains:
    S(t) = 2/((N(N-1)) sum_{<i,j>} S_{i,j},
    where the sum goes over all pairs <i,j>.
    Args:
    - spike_trains: list of spike trains
    - pair_distance_func: function computing the distance of two spike trains
    - indices: list of indices defining which spike trains to use,
    if None all given spike trains are used (default=None)
    Returns:
    - The averaged multi-variate distance of all pairs
    """
    if indices is None:
        indices = np.arange(len(spike_trains))
    indices = np.array(indices)
    # check validity of indices
    assert (indices < len(spike_trains)).all() and (indices >= 0).all(), \
        "Invalid index list."
    # generate a list of possible index pairs
    pairs = [(i, j) for i in indices for j in indices[i+1:]]
    # start with first pair
    (i, j) = pairs[0]
    average_dist = pair_distance_func(spike_trains[i], spike_trains[j])
    for (i, j) in pairs[1:]:
        current_dist = pair_distance_func(spike_trains[i], spike_trains[j])
        average_dist.add(current_dist)       # add to the average
    average_dist.mul_scalar(1.0/len(pairs))  # normalize
    return average_dist


############################################################
# multi_distance_par
############################################################
def multi_distance_par(spike_trains, pair_distance_func, indices=None):
    """ parallel implementation of the multi-distance. Not currently used as
    it does not improve the performance.
    """

    num_threads = 2
    lock = threading.Lock()

    def run(spike_trains, index_pairs, average_dist):
        (i, j) = index_pairs[0]
        # print(i,j)
        this_avrg = pair_distance_func(spike_trains[i], spike_trains[j])
        for (i, j) in index_pairs[1:]:
            # print(i,j)
            current_dist = pair_distance_func(spike_trains[i], spike_trains[j])
            this_avrg.add(current_dist)
        with lock:
            average_dist.add(this_avrg)

    if indices is None:
        indices = np.arange(len(spike_trains))
    indices = np.array(indices)
    # check validity of indices
    assert (indices < len(spike_trains)).all() and (indices >= 0).all(), \
        "Invalid index list."
    # generate a list of possible index pairs
    pairs = [(i, j) for i in indices for j in indices[i+1:]]
    num_pairs = len(pairs)

    # start with first pair
    (i, j) = pairs[0]
    average_dist = pair_distance_func(spike_trains[i], spike_trains[j])
    # remove the one we already computed
    pairs = pairs[1:]
    # distribute the rest into num_threads pieces
    clustered_pairs = [pairs[n::num_threads] for n in xrange(num_threads)]

    threads = []
    for pairs in clustered_pairs:
        t = threading.Thread(target=run, args=(spike_trains, pairs,
                                               average_dist))
        threads.append(t)
        t.start()
    for t in threads:
        t.join()
    average_dist.mul_scalar(1.0/num_pairs)  # normalize
    return average_dist


############################################################
# isi_profile_multi
############################################################
def isi_profile_multi(spike_trains, indices=None):
    """ computes the multi-variate isi distance profile for a set of spike
    trains. That is the average isi-distance of all pairs of spike-trains:
    S_isi(t) = 2/((N(N-1)) sum_{<i,j>} S_{isi}^{i,j},
    where the sum goes over all pairs <i,j>
    Args:
    - spike_trains: list of spike trains
    - indices: list of indices defining which spike trains to use,
    if None all given spike trains are used (default=None)
    Returns:
    - A PieceWiseConstFunc representing the averaged isi distance S_isi(t)
    """
    return multi_profile(spike_trains, isi_profile, indices)


############################################################
# isi_distance_multi
############################################################
def isi_distance_multi(spike_trains, indices=None):
    """ computes the multi-variate isi-distance for a set of spike-trains.
    That is the time average of the multi-variate spike profile:
    S_isi = \int_0^T 2/((N(N-1)) sum_{<i,j>} S_{isi}^{i,j},
    where the sum goes over all pairs <i,j>
    Args:
    - spike_trains: list of spike trains
    - indices: list of indices defining which spike trains to use,
    if None all given spike trains are used (default=None)
    Returns:
    - A double value representing the averaged isi distance S_isi
    """
    return isi_profile_multi(spike_trains, indices).avrg()


############################################################
# spike_profile_multi
############################################################
def spike_profile_multi(spike_trains, indices=None):
    """ Computes the multi-variate spike distance profile for a set of spike
    trains. That is the average spike-distance of all pairs of spike-trains:
    S_spike(t) = 2/((N(N-1)) sum_{<i,j>} S_{spike}^{i, j},
    where the sum goes over all pairs <i,j>
    Args:
    - spike_trains: list of spike trains
    - indices: list of indices defining which spike-trains to use,
    if None all given spike trains are used (default=None)
    Returns:
    - A PieceWiseLinFunc representing the averaged spike distance S(t)
    """
    return multi_profile(spike_trains, spike_profile, indices)


############################################################
# spike_distance_multi
############################################################
def spike_distance_multi(spike_trains, indices=None):
    """ Computes the multi-variate spike distance for a set of spike trains.
    That is the time average of the multi-variate spike profile:
    S_{spike} = \int_0^T 2/((N(N-1)) sum_{<i,j>} S_{spike}^{i, j} dt
    where the sum goes over all pairs <i,j>
    Args:
    - spike_trains: list of spike trains
    - indices: list of indices defining which spike-trains to use,
    if None all given spike trains are used (default=None)
    Returns:
    - A double value representing the averaged spike distance S
    """
    return spike_profile_multi(spike_trains, indices).avrg()


############################################################
# isi_distance_matrix
############################################################
def isi_distance_matrix(spike_trains, indices=None):
    """ Computes the average isi-distance of all pairs of spike-trains.
    Args:
    - spike_trains: list of spike trains
    - indices: list of indices defining which spike-trains to use
    if None all given spike-trains are used (default=None)
    Return:
    - a 2D array of size len(indices)*len(indices) containing the average
    pair-wise isi-distance
    """
    if indices is None:
        indices = np.arange(len(spike_trains))
    indices = np.array(indices)
    # check validity of indices
    assert (indices < len(spike_trains)).all() and (indices >= 0).all(), \
        "Invalid index list."
    # generate a list of possible index pairs
    pairs = [(i, j) for i in indices for j in indices[i+1:]]

    distance_matrix = np.zeros((len(indices), len(indices)))
    for i, j in pairs:
        d = isi_distance(spike_trains[i], spike_trains[j])
        distance_matrix[i, j] = d
        distance_matrix[j, i] = d
    return distance_matrix