summaryrefslogtreecommitdiff
path: root/pyspike/distances.py
blob: 10b1d3ceb39b3e816067022216b260b1cfc5b6f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
""" distances.py

Module containing several functions to compute spike distances

Copyright 2014, Mario Mulansky <mario.mulansky@gmx.net>
"""

import numpy as np

from pyspike import PieceWiseConstFunc, PieceWiseLinFunc

def add_auxiliary_spikes( spike_train, T_end , T_start=0.0):
    """ Adds spikes at the beginning (T_start) and end (T_end) of the 
    observation interval.
    Args:
    - spike_train: ordered array of spike times
    - T_end: end time of the observation interval
    - T_start: start time of the observation interval (default 0.0)
    Returns:
    - spike train with additional spikes at T_start and T_end.
    """
    assert spike_train[0] >= T_start, \
           "Spike train has events before the given start time"
    assert spike_train[-1] <= T_end, \
           "Spike train has events after the given end time"
    if spike_train[0] != T_start:
        spike_train = np.insert(spike_train, 0, T_start)
    if spike_train[-1] != T_end:
        spike_train = np.append(spike_train, T_end)
    return spike_train

def isi_distance(spikes1, spikes2):
    """ Computes the instantaneous isi-distance S_isi (t) of the two given 
    spike trains. The spike trains are expected to have auxiliary spikes at the
    beginning and end of the interval. Use the function add_auxiliary_spikes to
    add those spikes to the spike train.
    Args:
    - spikes1, spikes2: ordered arrays of spike times with auxiliary spikes.
    Returns:
    - PieceWiseConstFunc describing the isi-distance.
    """
    # check for auxiliary spikes - first and last spikes should be identical
    assert spikes1[0]==spikes2[0], \
        "Given spike trains seems not to have auxiliary spikes!"
    assert spikes1[-1]==spikes2[-1], \
        "Given spike trains seems not to have auxiliary spikes!"

    # shorter names
    s1 = spikes1
    s2 = spikes2

    # compute the interspike interval
    nu1 = s1[1:]-s1[:-1]
    nu2 = s2[1:]-s2[:-1]
    
    # compute the isi-distance
    spike_events = np.empty(len(nu1)+len(nu2))
    spike_events[0] = s1[0]
    # the values have one entry less - the number of intervals between events
    isi_values = np.empty(len(spike_events)-1)
    # add the distance of the first events
    # isi_values[0] = nu1[0]/nu2[0] - 1.0 if nu1[0] <= nu2[0] \
    #                 else 1.0 - nu2[0]/nu1[0]
    isi_values[0] = (nu1[0]-nu2[0])/max(nu1[0],nu2[0])
    index1 = 0
    index2 = 0
    index = 1
    while True:
        # check which spike is next - from s1 or s2
        if s1[index1+1] < s2[index2+1]:
            index1 += 1
            # break condition relies on existence of spikes at T_end
            if index1 >= len(nu1):
                break
            spike_events[index] = s1[index1]
        elif s1[index1+1] > s2[index2+1]:
            index2 += 1
            if index2 >= len(nu2):
                break
            spike_events[index] = s2[index2]
        else: # s1[index1+1] == s2[index2+1]
            index1 += 1
            index2 += 1
            if (index1 >= len(nu1)) or (index2 >= len(nu2)):
                break
            spike_events[index] = s1[index1]
        # compute the corresponding isi-distance
        isi_values[index] = (nu1[index1]-nu2[index2]) / \
                            max(nu1[index1], nu2[index2])
        index += 1
    # the last event is the interval end
    spike_events[index] = s1[-1]
    # use only the data added above 
    # could be less than original length due to equal spike times
    return PieceWiseConstFunc(spike_events[:index+1], isi_values[:index])


def get_min_dist(spike_time, spike_train, start_index=0):
    """ Returns the minimal distance |spike_time - spike_train[i]| 
    with i>=start_index.
    """
    d = abs(spike_time - spike_train[start_index])
    start_index += 1
    while start_index < len(spike_train):
        d_temp = abs(spike_time - spike_train[start_index])
        if d_temp > d:
            break
        else:
            d = d_temp
        start_index += 1
    return d


def spike_distance(spikes1, spikes2):
    """ Computes the instantaneous spike-distance S_spike (t) of the two given
    spike trains. The spike trains are expected to have auxiliary spikes at the
    beginning and end of the interval. Use the function add_auxiliary_spikes to
    add those spikes to the spike train.
    Args:
    - spikes1, spikes2: ordered arrays of spike times with auxiliary spikes.
    Returns:
    - PieceWiseLinFunc describing the spike-distance.
    """
    # check for auxiliary spikes - first and last spikes should be identical
    assert spikes1[0]==spikes2[0], \
        "Given spike trains seems not to have auxiliary spikes!"
    assert spikes1[-1]==spikes2[-1], \
        "Given spike trains seems not to have auxiliary spikes!"
    # shorter variables
    t1 = spikes1
    t2 = spikes2

    spike_events = np.empty(len(t1)+len(t2)-2)
    spike_events[0] = t1[0]
    y_starts = np.empty(len(spike_events)-1)
    y_ends = np.empty(len(spike_events)-1)

    index1 = 0
    index2 = 0
    index = 1
    dt_p1 = 0.0
    dt_f1 = get_min_dist(t1[1], t2, 0)
    dt_p2 = 0.0
    dt_f2 = get_min_dist(t2[1], t1, 0)
    isi1 = max(t1[1]-t1[0], t1[2]-t1[1])
    isi2 = max(t2[1]-t2[0], t2[2]-t2[1])
    s1 = dt_f1*(t1[1]-t1[0])/isi1
    s2 = dt_f2*(t2[1]-t2[0])/isi2
    y_starts[0] = (s1*isi2 + s2*isi1) / ((isi1+isi2)**2/2)
    while True:
        # print(index, index1, index2)
        if t1[index1+1] < t2[index2+1]:
            index1 += 1
            # break condition relies on existence of spikes at T_end
            if index1+1 >= len(t1):
                break
            spike_events[index] = t1[index1]
            # first calculate the previous interval end value
            dt_p1 = dt_f1 # the previous time now was the following time before
            s1 = dt_p1
            s2 = (dt_p2*(t2[index2+1]-t1[index1]) + dt_f2*(t1[index1]-t2[index2])) / isi2
            y_ends[index-1] = (s1*isi2 + s2*isi1) / ((isi1+isi2)**2/2)
            # now the next interval start value
            dt_f1 = get_min_dist(t1[index1+1], t2, index2)
            isi1 = t1[index1+1]-t1[index1]
            # s2 is the same as above, thus we can compute y2 immediately
            y_starts[index] = (s1*isi2 + s2*isi1) / ((isi1+isi2)**2/2)
        elif t1[index1+1] > t2[index2+1]:
            index2 += 1
            if index2+1 >= len(t2):
                break
            spike_events[index] = t2[index2]
            # first calculate the previous interval end value
            dt_p2 = dt_f2 # the previous time now was the following time before
            s1 = (dt_p1*(t1[index1+1]-t2[index2]) + dt_f1*(t2[index2]-t1[index1])) / isi1
            s2 = dt_p2
            y_ends[index-1] = (s1*isi2 + s2*isi1) / ((isi1+isi2)**2/2)
            # now the next interval start value
            dt_f2 = get_min_dist(t2[index2+1], t1, index1)
            #s2 = dt_f2
            isi2 = t2[index2+1]-t2[index2]
            # s2 is the same as above, thus we can compute y2 immediately
            y_starts[index] = (s1*isi2 + s2*isi1) / ((isi1+isi2)**2/2)
        else: # t1[index1+1] == t2[index2+1] - generate only one event
            index1 += 1
            index2 += 1
            if (index1+1 >= len(t1)) or (index2+1 >= len(t2)):
                break
            assert dt_f2 == 0.0
            assert dt_f1 == 0.0
            spike_events[index] = t1[index1]
            y_ends[index-1] = 0.0
            y_starts[index] = 0.0
            dt_p1 = 0.0
            dt_p2 = 0.0
            dt_f1 = get_min_dist(t1[index1+1], t2, index2)
            dt_f2 = get_min_dist(t2[index2+1], t1, index1)
            isi1 = t1[index1+1]-t1[index1]
            isi2 = t2[index2+1]-t2[index2]
        index += 1
    # the last event is the interval end
    spike_events[index] = t1[-1]
    # the ending value of the last interval
    isi1 = max(t1[-1]-t1[-2], t1[-2]-t1[-3])
    isi2 = max(t2[-1]-t2[-2], t2[-2]-t2[-3])
    s1 = dt_p1*(t1[-1]-t1[-2])/isi1
    s2 = dt_p2*(t2[-1]-t2[-2])/isi2
    y_ends[index-1] = (s1*isi2 + s2*isi1) / ((isi1+isi2)**2/2)
    # use only the data added above 
    # could be less than original length due to equal spike times
    return PieceWiseLinFunc(spike_events[:index+1], 
                            y_starts[:index], y_ends[:index])