summaryrefslogtreecommitdiff
path: root/test/test_distance.py
blob: ba19f5e1eead2c5079ce374b409f47aba2001583 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
""" test_distance.py

Tests the isi- and spike-distance computation

Copyright 2014, Mario Mulansky <mario.mulansky@gmx.net>

Distributed under the BSD License

"""

from __future__ import print_function
import numpy as np
from copy import copy
from numpy.testing import assert_equal, assert_almost_equal, \
    assert_array_almost_equal

import pyspike as spk


def test_isi():
    # generate two spike trains:
    t1 = np.array([0.2, 0.4, 0.6, 0.7])
    t2 = np.array([0.3, 0.45, 0.8, 0.9, 0.95])

    # pen&paper calculation of the isi distance
    expected_times = [0.0, 0.2, 0.3, 0.4, 0.45, 0.6, 0.7, 0.8, 0.9, 0.95, 1.0]
    expected_isi = [0.1/0.3, 0.1/0.3, 0.05/0.2, 0.05/0.2, 0.15/0.35,
                    0.25/0.35, 0.05/0.35, 0.2/0.3, 0.25/0.3, 0.25/0.3]
    expected_times = np.array(expected_times)
    expected_isi = np.array(expected_isi)

    expected_isi_val = sum((expected_times[1:] - expected_times[:-1]) *
                           expected_isi)/(expected_times[-1]-expected_times[0])

    t1 = spk.add_auxiliary_spikes(t1, 1.0)
    t2 = spk.add_auxiliary_spikes(t2, 1.0)
    f = spk.isi_profile(t1, t2)

    # print("ISI: ", f.y)

    assert_equal(f.x, expected_times)
    assert_array_almost_equal(f.y, expected_isi, decimal=15)
    assert_equal(f.avrg(), expected_isi_val)
    assert_equal(spk.isi_distance(t1, t2), expected_isi_val)

    # check with some equal spike times
    t1 = np.array([0.2, 0.4, 0.6])
    t2 = np.array([0.1, 0.4, 0.5, 0.6])

    expected_times = [0.0, 0.1, 0.2, 0.4, 0.5, 0.6, 1.0]
    expected_isi = [0.1/0.2, 0.1/0.3, 0.1/0.3, 0.1/0.2, 0.1/0.2, 0.0/0.5]
    expected_times = np.array(expected_times)
    expected_isi = np.array(expected_isi)

    expected_isi_val = sum((expected_times[1:] - expected_times[:-1]) *
                           expected_isi)/(expected_times[-1]-expected_times[0])

    t1 = spk.add_auxiliary_spikes(t1, 1.0)
    t2 = spk.add_auxiliary_spikes(t2, 1.0)
    f = spk.isi_profile(t1, t2)

    assert_equal(f.x, expected_times)
    assert_array_almost_equal(f.y, expected_isi, decimal=15)
    assert_equal(f.avrg(), expected_isi_val)
    assert_equal(spk.isi_distance(t1, t2), expected_isi_val)


def test_spike():
    # generate two spike trains:
    t1 = np.array([0.2, 0.4, 0.6, 0.7])
    t2 = np.array([0.3, 0.45, 0.8, 0.9, 0.95])

    # pen&paper calculation of the spike distance
    expected_times = [0.0, 0.2, 0.3, 0.4, 0.45, 0.6, 0.7, 0.8, 0.9, 0.95, 1.0]
    s1 = np.array([0.1, 0.1, (0.1*0.1+0.05*0.1)/0.2, 0.05, (0.05*0.15 * 2)/0.2,
                   0.15, 0.1, 0.1*0.2/0.3, 0.1**2/0.3, 0.1*0.05/0.3, 0.1])
    s2 = np.array([0.1, 0.1*0.2/0.3, 0.1, (0.1*0.05 * 2)/.15, 0.05,
                   (0.05*0.2+0.1*0.15)/0.35, (0.05*0.1+0.1*0.25)/0.35,
                   0.1, 0.1, 0.05, 0.05])
    isi1 = np.array([0.2, 0.2, 0.2, 0.2, 0.2, 0.1, 0.3, 0.3, 0.3, 0.3])
    isi2 = np.array([0.3, 0.3, 0.15, 0.15, 0.35, 0.35, 0.35, 0.1, 0.05, 0.05])
    expected_y1 = (s1[:-1]*isi2+s2[:-1]*isi1) / (0.5*(isi1+isi2)**2)
    expected_y2 = (s1[1:]*isi2+s2[1:]*isi1) / (0.5*(isi1+isi2)**2)

    expected_times = np.array(expected_times)
    expected_y1 = np.array(expected_y1)
    expected_y2 = np.array(expected_y2)
    expected_spike_val = sum((expected_times[1:] - expected_times[:-1]) *
                             (expected_y1+expected_y2)/2)
    expected_spike_val /= (expected_times[-1]-expected_times[0])

    t1 = spk.add_auxiliary_spikes(t1, 1.0)
    t2 = spk.add_auxiliary_spikes(t2, 1.0)
    f = spk.spike_profile(t1, t2)

    assert_equal(f.x, expected_times)
    assert_array_almost_equal(f.y1, expected_y1, decimal=15)
    assert_array_almost_equal(f.y2, expected_y2, decimal=15)
    assert_equal(f.avrg(), expected_spike_val)
    assert_equal(spk.spike_distance(t1, t2), expected_spike_val)

    # check with some equal spike times
    t1 = np.array([0.2, 0.4, 0.6])
    t2 = np.array([0.1, 0.4, 0.5, 0.6])

    expected_times = [0.0, 0.1, 0.2, 0.4, 0.5, 0.6, 1.0]
    s1 = np.array([0.1, 0.1*0.1/0.2, 0.1, 0.0, 0.0, 0.0, 0.0])
    s2 = np.array([0.1*0.1/0.3, 0.1, 0.1*0.2/0.3, 0.0, 0.1, 0.0, 0.0])
    isi1 = np.array([0.2, 0.2, 0.2, 0.2, 0.2, 0.4])
    isi2 = np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.4])
    expected_y1 = (s1[:-1]*isi2+s2[:-1]*isi1) / (0.5*(isi1+isi2)**2)
    expected_y2 = (s1[1:]*isi2+s2[1:]*isi1) / (0.5*(isi1+isi2)**2)

    expected_times = np.array(expected_times)
    expected_y1 = np.array(expected_y1)
    expected_y2 = np.array(expected_y2)
    expected_spike_val = sum((expected_times[1:] - expected_times[:-1]) *
                             (expected_y1+expected_y2)/2)
    expected_spike_val /= (expected_times[-1]-expected_times[0])

    t1 = spk.add_auxiliary_spikes(t1, 1.0)
    t2 = spk.add_auxiliary_spikes(t2, 1.0)
    f = spk.spike_profile(t1, t2)

    assert_equal(f.x, expected_times)
    assert_array_almost_equal(f.y1, expected_y1, decimal=14)
    assert_array_almost_equal(f.y2, expected_y2, decimal=14)
    assert_almost_equal(f.avrg(), expected_spike_val, decimal=16)
    assert_almost_equal(spk.spike_distance(t1, t2), expected_spike_val,
                        decimal=16)


def test_spike_sync():
    spikes1 = np.array([1.0, 2.0, 3.0])
    spikes2 = np.array([2.1])
    spikes1 = spk.add_auxiliary_spikes(spikes1, 4.0)
    spikes2 = spk.add_auxiliary_spikes(spikes2, 4.0)
    assert_almost_equal(spk.spike_sync(spikes1, spikes2),
                        0.5, decimal=16)

    # test with some small max_tau, spike_sync should be 0
    assert_almost_equal(spk.spike_sync(spikes1, spikes2, max_tau=0.05),
                        0.0, decimal=16)

    spikes2 = np.array([3.1])
    spikes2 = spk.add_auxiliary_spikes(spikes2, 4.0)
    assert_almost_equal(spk.spike_sync(spikes1, spikes2),
                        0.5, decimal=16)

    spikes2 = np.array([1.1])
    spikes2 = spk.add_auxiliary_spikes(spikes2, 4.0)
    assert_almost_equal(spk.spike_sync(spikes1, spikes2),
                        0.5, decimal=16)

    spikes2 = np.array([0.9])
    spikes2 = spk.add_auxiliary_spikes(spikes2, 4.0)
    assert_almost_equal(spk.spike_sync(spikes1, spikes2),
                        0.5, decimal=16)


def check_multi_profile(profile_func, profile_func_multi):
    # generate spike trains:
    t1 = spk.add_auxiliary_spikes(np.array([0.2, 0.4, 0.6, 0.7]), 1.0)
    t2 = spk.add_auxiliary_spikes(np.array([0.3, 0.45, 0.8, 0.9, 0.95]), 1.0)
    t3 = spk.add_auxiliary_spikes(np.array([0.2, 0.4, 0.6]), 1.0)
    t4 = spk.add_auxiliary_spikes(np.array([0.1, 0.4, 0.5, 0.6]), 1.0)
    spike_trains = [t1, t2, t3, t4]

    f12 = profile_func(t1, t2)
    f13 = profile_func(t1, t3)
    f14 = profile_func(t1, t4)
    f23 = profile_func(t2, t3)
    f24 = profile_func(t2, t4)
    f34 = profile_func(t3, t4)

    f_multi = profile_func_multi(spike_trains, [0, 1])
    assert f_multi.almost_equal(f12, decimal=14)

    f_multi1 = profile_func_multi(spike_trains, [1, 2, 3])
    f_multi2 = profile_func_multi(spike_trains[1:])
    assert f_multi1.almost_equal(f_multi2, decimal=14)

    f = copy(f12)
    f.add(f13)
    f.add(f23)
    f.mul_scalar(1.0/3)
    f_multi = profile_func_multi(spike_trains, [0, 1, 2])
    assert f_multi.almost_equal(f, decimal=14)

    f.mul_scalar(3)  # revert above normalization
    f.add(f14)
    f.add(f24)
    f.add(f34)
    f.mul_scalar(1.0/6)
    f_multi = profile_func_multi(spike_trains)
    assert f_multi.almost_equal(f, decimal=14)


def test_multi_isi():
    check_multi_profile(spk.isi_profile, spk.isi_profile_multi)


def test_multi_spike():
    check_multi_profile(spk.spike_profile, spk.spike_profile_multi)


def test_multi_spike_sync():
    # some basic multivariate check
    spikes1 = np.array([100, 300, 400, 405, 410, 500, 700, 800,
                        805, 810, 815, 900], dtype=float)
    spikes2 = np.array([100, 200, 205, 210, 295, 350, 400, 510,
                        600, 605, 700, 910], dtype=float)
    spikes3 = np.array([100, 180, 198, 295, 412, 420, 510, 640,
                        695, 795, 820, 920], dtype=float)
    spikes1 = spk.add_auxiliary_spikes(spikes1, 1000)
    spikes2 = spk.add_auxiliary_spikes(spikes2, 1000)
    spikes3 = spk.add_auxiliary_spikes(spikes3, 1000)
    assert_almost_equal(spk.spike_sync(spikes1, spikes2),
                        0.5, decimal=15)
    assert_almost_equal(spk.spike_sync(spikes1, spikes3),
                        0.5, decimal=15)
    assert_almost_equal(spk.spike_sync(spikes2, spikes3),
                        0.5, decimal=15)

    f = spk.spike_sync_profile_multi([spikes1, spikes2, spikes3])
    # hands on definition of the average multivariate spike synchronization
    # expected = (f1.integral() + f2.integral() + f3.integral()) / \
    #            (np.sum(f1.mp[1:-1])+np.sum(f2.mp[1:-1])+np.sum(f3.mp[1:-1]))
    expected = 0.5
    assert_almost_equal(f.avrg(), expected, decimal=15)
    assert_almost_equal(spk.spike_sync_multi([spikes1, spikes2, spikes3]),
                        expected, decimal=15)

    # multivariate regression test
    spike_trains = spk.load_spike_trains_from_txt("test/SPIKE_Sync_Test.txt",
                                                  time_interval=(0, 4000))
    f = spk.spike_sync_profile_multi(spike_trains)
    assert_equal(np.sum(f.y[1:-1]), 39932)
    assert_equal(np.sum(f.mp[1:-1]), 85554)


def check_dist_matrix(dist_func, dist_matrix_func):
    # generate spike trains:
    t1 = spk.add_auxiliary_spikes(np.array([0.2, 0.4, 0.6, 0.7]), 1.0)
    t2 = spk.add_auxiliary_spikes(np.array([0.3, 0.45, 0.8, 0.9, 0.95]), 1.0)
    t3 = spk.add_auxiliary_spikes(np.array([0.2, 0.4, 0.6]), 1.0)
    t4 = spk.add_auxiliary_spikes(np.array([0.1, 0.4, 0.5, 0.6]), 1.0)
    spike_trains = [t1, t2, t3, t4]

    f12 = dist_func(t1, t2)
    f13 = dist_func(t1, t3)
    f14 = dist_func(t1, t4)
    f23 = dist_func(t2, t3)
    f24 = dist_func(t2, t4)
    f34 = dist_func(t3, t4)

    f_matrix = dist_matrix_func(spike_trains)
    # check zero diagonal
    for i in xrange(4):
        assert_equal(0.0, f_matrix[i, i])
    for i in xrange(4):
        for j in xrange(i+1, 4):
            assert_equal(f_matrix[i, j], f_matrix[j, i])
    assert_equal(f12, f_matrix[1, 0])
    assert_equal(f13, f_matrix[2, 0])
    assert_equal(f14, f_matrix[3, 0])
    assert_equal(f23, f_matrix[2, 1])
    assert_equal(f24, f_matrix[3, 1])
    assert_equal(f34, f_matrix[3, 2])


def test_isi_matrix():
    check_dist_matrix(spk.isi_distance, spk.isi_distance_matrix)


def test_spike_matrix():
    check_dist_matrix(spk.spike_distance, spk.spike_distance_matrix)


def test_spike_sync_matrix():
    check_dist_matrix(spk.spike_sync, spk.spike_sync_matrix)


def test_regression_spiky():
    spike_trains = spk.load_spike_trains_from_txt("test/PySpike_testdata.txt",
                                                  (0.0, 4000.0))
    isi_profile = spk.isi_profile_multi(spike_trains)
    isi_dist = isi_profile.avrg()
    print(isi_dist)
    # get the full precision from SPIKY
    # assert_equal(isi_dist, 0.1832)

    spike_profile = spk.spike_profile_multi(spike_trains)
    spike_dist = spike_profile.avrg()
    print(spike_dist)
    # get the full precision from SPIKY
    # assert_equal(spike_dist, 0.2445)


def test_multi_variate_subsets():
    spike_trains = spk.load_spike_trains_from_txt("test/PySpike_testdata.txt",
                                                  (0.0, 4000.0))
    sub_set = [1, 3, 5, 7]
    spike_trains_sub_set = [spike_trains[i] for i in sub_set]

    v1 = spk.isi_distance_multi(spike_trains_sub_set)
    v2 = spk.isi_distance_multi(spike_trains, sub_set)
    assert_equal(v1, v2)

    v1 = spk.spike_distance_multi(spike_trains_sub_set)
    v2 = spk.spike_distance_multi(spike_trains, sub_set)
    assert_equal(v1, v2)

    v1 = spk.spike_sync_multi(spike_trains_sub_set)
    v2 = spk.spike_sync_multi(spike_trains, sub_set)
    assert_equal(v1, v2)


if __name__ == "__main__":
    test_isi()
    test_spike()
    test_multi_isi()
    test_multi_spike()