summaryrefslogtreecommitdiff
path: root/src/Alpha_complex/include/gudhi/Alpha_complex.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Alpha_complex/include/gudhi/Alpha_complex.h')
-rw-r--r--src/Alpha_complex/include/gudhi/Alpha_complex.h364
1 files changed, 364 insertions, 0 deletions
diff --git a/src/Alpha_complex/include/gudhi/Alpha_complex.h b/src/Alpha_complex/include/gudhi/Alpha_complex.h
new file mode 100644
index 00000000..6b47ace7
--- /dev/null
+++ b/src/Alpha_complex/include/gudhi/Alpha_complex.h
@@ -0,0 +1,364 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Vincent Rouvreau
+ *
+ * Copyright (C) 2015 INRIA Saclay (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef ALPHA_COMPLEX_H_
+#define ALPHA_COMPLEX_H_
+
+// to construct a simplex_tree from Delaunay_triangulation
+#include <gudhi/graph_simplicial_complex.h>
+#include <gudhi/Simplex_tree.h>
+
+#include <stdlib.h>
+#include <math.h> // isnan, fmax
+
+#include <CGAL/Delaunay_triangulation.h>
+#include <CGAL/Epick_d.h>
+#include <CGAL/algorithm.h>
+#include <CGAL/assertions.h>
+#include <CGAL/enum.h>
+
+#include <iostream>
+#include <vector>
+#include <string>
+#include <limits> // NaN
+#include <map>
+#include <utility> // std::pair
+
+namespace Gudhi {
+
+namespace alphacomplex {
+
+/**
+ * \brief Alpha complex data structure.
+ *
+ * \details
+ * The data structure can be constructed from a CGAL Delaunay triangulation (for more informations on CGAL Delaunay
+ * triangulation, please refer to the corresponding chapter in page http://doc.cgal.org/latest/Triangulation/) or from
+ * an OFF file (cf. Delaunay_triangulation_off_reader).
+ *
+ * Please refer to \ref alpha_complex for examples.
+ *
+ */
+template<class Kernel>
+class Alpha_complex : public Simplex_tree<> {
+ private:
+ // From Simplex_tree
+ // Type required to insert into a simplex_tree (with or without subfaces).
+ typedef std::vector<Vertex_handle> Vector_vertex;
+
+ // Simplex_result is the type returned from simplex_tree insert function.
+ typedef typename std::pair<Simplex_handle, bool> Simplex_result;
+
+ // Delaunay_triangulation type required to create an alpha-complex.
+ typedef typename CGAL::Delaunay_triangulation<Kernel> Delaunay_triangulation;
+
+ typedef typename Kernel::Compute_squared_radius_d Squared_Radius;
+ typedef typename Kernel::Side_of_bounded_sphere_d Is_Gabriel;
+
+ typedef typename Kernel::Point_d Point_d;
+
+ // Type required to compute squared radius, or side of bounded sphere on a vector of points.
+ typedef typename std::vector<Point_d> Vector_of_CGAL_points;
+
+ // Vertex_iterator type from CGAL.
+ typedef typename Delaunay_triangulation::Vertex_iterator CGAL_vertex_iterator;
+
+ // size_type type from CGAL.
+ typedef typename Delaunay_triangulation::size_type size_type;
+
+ // Double map type to switch from CGAL vertex iterator to simplex tree vertex handle and vice versa.
+ typedef typename std::map< CGAL_vertex_iterator, Vertex_handle > Map_vertex_iterator_to_handle;
+ typedef typename std::map< Vertex_handle, CGAL_vertex_iterator > Map_vertex_handle_to_iterator;
+
+ private:
+ /** \brief Map to switch from CGAL vertex iterator to simplex tree vertex handle.*/
+ Map_vertex_iterator_to_handle vertex_iterator_to_handle_;
+ /** \brief Map to switch from simplex tree vertex handle to CGAL vertex iterator.*/
+ Map_vertex_handle_to_iterator vertex_handle_to_iterator_;
+ /** \brief Pointer on the CGAL Delaunay triangulation.*/
+ Delaunay_triangulation* triangulation_;
+ /** \brief Kernel for triangulation_ functions access.*/
+ Kernel kernel_;
+
+ public:
+ /** \brief Alpha_complex constructor from an OFF file name.
+ * Uses the Delaunay_triangulation_off_reader to construct the Delaunay triangulation required to initialize
+ * the Alpha_complex.
+ *
+ * @param[in] off_file_name OFF file [path and] name.
+ */
+ Alpha_complex(const std::string& off_file_name,
+ Filtration_value max_alpha_square = std::numeric_limits<Filtration_value>::infinity())
+ : triangulation_(nullptr) {
+ Gudhi::Delaunay_triangulation_off_reader<Delaunay_triangulation> off_reader(off_file_name);
+ if (!off_reader.is_valid()) {
+ std::cerr << "Alpha_complex - Unable to read file " << off_file_name << std::endl;
+ exit(-1); // ----- >>
+ }
+ triangulation_ = off_reader.get_complex();
+ set_filtration(max_alpha_square);
+ init();
+ }
+
+ /** \brief Alpha_complex constructor from a Delaunay triangulation.
+ *
+ * @param[in] triangulation_ptr Pointer on a Delaunay triangulation.
+ */
+ Alpha_complex(Delaunay_triangulation* triangulation_ptr,
+ Filtration_value max_alpha_square = std::numeric_limits<Filtration_value>::infinity())
+ : triangulation_(triangulation_ptr) {
+ set_filtration(max_alpha_square);
+ init();
+ }
+
+ /** \brief Alpha_complex constructor from a list of points.
+ * Uses the Delaunay_triangulation_off_reader to construct the Delaunay triangulation required to initialize
+ * the Alpha_complex.
+ *
+ * @param[in] dimension Dimension of points to be inserted.
+ * @param[in] points Range of points to triangulate. Points must be in Kernel::Point_d
+ *
+ * The type InputPointRange must be a range for which std::begin and
+ * std::end return input iterators on a Kernel::Point_d.
+ */
+ template<typename InputPointRange >
+ Alpha_complex(int dimension, const InputPointRange& points,
+ Filtration_value max_alpha_square = std::numeric_limits<Filtration_value>::infinity())
+ : triangulation_(nullptr) {
+ triangulation_ = new Delaunay_triangulation(dimension);
+ auto first = std::begin(points);
+ auto last = std::end(points);
+
+ size_type inserted = triangulation_->insert(first, last);
+ if (inserted != (last -first)) {
+ std::cerr << "Alpha_complex - insertion failed " << inserted << " != " << (last -first) << std::endl;
+ exit(-1); // ----- >>
+ }
+ set_filtration(max_alpha_square);
+ init();
+ }
+
+ /** \brief Alpha_complex destructor from a Delaunay triangulation.
+ *
+ * @warning Deletes the Delaunay triangulation.
+ */
+ ~Alpha_complex() {
+ delete triangulation_;
+ }
+
+ /** \brief get_point returns the point corresponding to the vertex given as parameter.
+ *
+ * @param[in] vertex Vertex handle of the point to retrieve.
+ * @return The founded point.
+ * @warning Exception std::out_of_range is thrown in case vertex is not in the map vertex_handle_to_iterator_.
+ */
+ Point_d get_point(Vertex_handle vertex) const {
+ auto found_it = vertex_handle_to_iterator_.find(vertex);
+ if (found_it != vertex_handle_to_iterator_.end()) {
+ return found_it->second->point();
+ } else {
+ throw std::out_of_range("Vertex out of vector range");
+ }
+ }
+
+ private:
+ /** \brief Initialize the Alpha_complex from the Delaunay triangulation.
+ *
+ * @warning Delaunay triangulation must be already constructed with at least one vertex and dimension must be more
+ * than 0.
+ *
+ * Initialization can be launched once.
+ */
+ void init() {
+ if (triangulation_ == nullptr) {
+ std::cerr << "Alpha_complex init - Cannot init from a NULL triangulation" << std::endl;
+ return; // ----- >>
+ }
+ if (triangulation_->number_of_vertices() < 1) {
+ std::cerr << "Alpha_complex init - Cannot init from a triangulation without vertices" << std::endl;
+ return; // ----- >>
+ }
+ if (triangulation_->maximal_dimension() < 1) {
+ std::cerr << "Alpha_complex init - Cannot init from a zero-dimension triangulation" << std::endl;
+ return; // ----- >>
+ }
+ if (num_vertices() > 0) {
+ std::cerr << "Alpha_complex init - Cannot init twice" << std::endl;
+ return; // ----- >>
+ }
+
+ set_dimension(triangulation_->maximal_dimension());
+
+ // --------------------------------------------------------------------------------------------
+ // double map to retrieve simplex tree vertex handles from CGAL vertex iterator and vice versa
+ // Start to insert at handle = 0 - default integer value
+ Vertex_handle vertex_handle = Vertex_handle();
+ // Loop on triangulation vertices list
+ for (CGAL_vertex_iterator vit = triangulation_->vertices_begin(); vit != triangulation_->vertices_end(); ++vit) {
+ if (!triangulation_->is_infinite(*vit)) {
+#ifdef DEBUG_TRACES
+ std::cout << "Vertex insertion - " << vertex_handle << " -> " << vit->point() << std::endl;
+#endif // DEBUG_TRACES
+ vertex_iterator_to_handle_.emplace(vit, vertex_handle);
+ vertex_handle_to_iterator_.emplace(vertex_handle, vit);
+ vertex_handle++;
+ }
+ }
+ // --------------------------------------------------------------------------------------------
+
+ // --------------------------------------------------------------------------------------------
+ // Simplex_tree construction from loop on triangulation finite full cells list
+ for (auto cit = triangulation_->finite_full_cells_begin(); cit != triangulation_->finite_full_cells_end(); ++cit) {
+ Vector_vertex vertexVector;
+#ifdef DEBUG_TRACES
+ std::cout << "Simplex_tree insertion ";
+#endif // DEBUG_TRACES
+ for (auto vit = cit->vertices_begin(); vit != cit->vertices_end(); ++vit) {
+ if (*vit != nullptr) {
+#ifdef DEBUG_TRACES
+ std::cout << " " << vertex_iterator_to_handle_[*vit];
+#endif // DEBUG_TRACES
+ // Vector of vertex construction for simplex_tree structure
+ vertexVector.push_back(vertex_iterator_to_handle_[*vit]);
+ }
+ }
+#ifdef DEBUG_TRACES
+ std::cout << std::endl;
+#endif // DEBUG_TRACES
+ // Insert each simplex and its subfaces in the simplex tree - filtration is NaN
+ Simplex_result insert_result = insert_simplex_and_subfaces(vertexVector,
+ std::numeric_limits<double>::quiet_NaN());
+ }
+ // --------------------------------------------------------------------------------------------
+
+ // --------------------------------------------------------------------------------------------
+ // ### For i : d -> 0
+ for (int decr_dim = dimension(); decr_dim >= 0; decr_dim--) {
+ // ### Foreach Sigma of dim i
+ for (auto f_simplex : skeleton_simplex_range(decr_dim)) {
+ int f_simplex_dim = dimension(f_simplex);
+ if (decr_dim == f_simplex_dim) {
+ Vector_of_CGAL_points pointVector;
+#ifdef DEBUG_TRACES
+ std::cout << "Sigma of dim " << decr_dim << " is";
+#endif // DEBUG_TRACES
+ for (auto vertex : simplex_vertex_range(f_simplex)) {
+ pointVector.push_back(get_point(vertex));
+#ifdef DEBUG_TRACES
+ std::cout << " " << vertex;
+#endif // DEBUG_TRACES
+ }
+#ifdef DEBUG_TRACES
+ std::cout << std::endl;
+#endif // DEBUG_TRACES
+ // ### If filt(Sigma) is NaN : filt(Sigma) = alpha(Sigma)
+ if (isnan(filtration(f_simplex))) {
+ Filtration_value alpha_complex_filtration = 0.0;
+ // No need to compute squared_radius on a single point - alpha is 0.0
+ if (f_simplex_dim > 0) {
+ // squared_radius function initialization
+ Squared_Radius squared_radius = kernel_.compute_squared_radius_d_object();
+
+ alpha_complex_filtration = squared_radius(pointVector.begin(), pointVector.end());
+ }
+ assign_filtration(f_simplex, alpha_complex_filtration);
+#ifdef DEBUG_TRACES
+ std::cout << "filt(Sigma) is NaN : filt(Sigma) =" << filtration(f_simplex) << std::endl;
+#endif // DEBUG_TRACES
+ }
+ propagate_alpha_filtration(f_simplex, decr_dim);
+ }
+ }
+ }
+ // --------------------------------------------------------------------------------------------
+ }
+
+ template<typename Simplex_handle>
+ void propagate_alpha_filtration(Simplex_handle f_simplex, int decr_dim) {
+ // ### Foreach Tau face of Sigma
+ for (auto f_boundary : boundary_simplex_range(f_simplex)) {
+#ifdef DEBUG_TRACES
+ std::cout << " | --------------------------------------------------\n";
+ std::cout << " | Tau ";
+ for (auto vertex : simplex_vertex_range(f_boundary)) {
+ std::cout << vertex << " ";
+ }
+ std::cout << "is a face of Sigma\n";
+ std::cout << " | isnan(filtration(Tau)=" << isnan(filtration(f_boundary)) << std::endl;
+#endif // DEBUG_TRACES
+ // ### If filt(Tau) is not NaN
+ if (!isnan(filtration(f_boundary))) {
+ // ### filt(Tau) = fmin(filt(Tau), filt(Sigma))
+ Filtration_value alpha_complex_filtration = fmin(filtration(f_boundary), filtration(f_simplex));
+ assign_filtration(f_boundary, alpha_complex_filtration);
+#ifdef DEBUG_TRACES
+ std::cout << " | filt(Tau) = fmin(filt(Tau), filt(Sigma)) = " << filtration(f_boundary) << std::endl;
+#endif // DEBUG_TRACES
+ // ### Else
+ } else {
+ // No need to compute is_gabriel for dimension <= 2
+ // i.e. : Sigma = (3,1) => Tau = 1
+ if (decr_dim > 1) {
+ // insert the Tau points in a vector for is_gabriel function
+ Vector_of_CGAL_points pointVector;
+ Vertex_handle vertexForGabriel = Vertex_handle();
+ for (auto vertex : simplex_vertex_range(f_boundary)) {
+ pointVector.push_back(get_point(vertex));
+ }
+ // Retrieve the Sigma point that is not part of Tau - parameter for is_gabriel function
+ Point_d point_for_gabriel;
+ for (auto vertex : simplex_vertex_range(f_simplex)) {
+ point_for_gabriel = get_point(vertex);
+ if (std::find(pointVector.begin(), pointVector.end(), point_for_gabriel) == pointVector.end()) {
+ // vertex is not found in Tau
+ vertexForGabriel = vertex;
+ // No need to continue loop
+ break;
+ }
+ }
+ // is_gabriel function initialization
+ Is_Gabriel is_gabriel = kernel_.side_of_bounded_sphere_d_object();
+ bool is_gab = is_gabriel(pointVector.begin(), pointVector.end(), point_for_gabriel)
+ != CGAL::ON_BOUNDED_SIDE;
+#ifdef DEBUG_TRACES
+ std::cout << " | Tau is_gabriel(Sigma)=" << is_gab << " - vertexForGabriel=" << vertexForGabriel << std::endl;
+#endif // DEBUG_TRACES
+ // ### If Tau is not Gabriel of Sigma
+ if (false == is_gab) {
+ // ### filt(Tau) = filt(Sigma)
+ Filtration_value alpha_complex_filtration = filtration(f_simplex);
+ assign_filtration(f_boundary, alpha_complex_filtration);
+#ifdef DEBUG_TRACES
+ std::cout << " | filt(Tau) = filt(Sigma) = " << filtration(f_boundary) << std::endl;
+#endif // DEBUG_TRACES
+ }
+ }
+ }
+ }
+ }
+};
+
+} // namespace alphacomplex
+
+} // namespace Gudhi
+
+#endif // ALPHA_COMPLEX_H_