summaryrefslogtreecommitdiff
path: root/src/Bottleneck_distance/include
diff options
context:
space:
mode:
Diffstat (limited to 'src/Bottleneck_distance/include')
-rw-r--r--src/Bottleneck_distance/include/gudhi/Bottleneck.h96
-rw-r--r--src/Bottleneck_distance/include/gudhi/CGAL/Kd_tree.h582
-rw-r--r--src/Bottleneck_distance/include/gudhi/CGAL/Kd_tree_node.h586
-rw-r--r--src/Bottleneck_distance/include/gudhi/CGAL/Orthogonal_incremental_neighbor_search.h621
-rw-r--r--src/Bottleneck_distance/include/gudhi/Graph_matching.h179
-rw-r--r--src/Bottleneck_distance/include/gudhi/Internal_point.h70
-rw-r--r--src/Bottleneck_distance/include/gudhi/Neighbors_finder.h169
-rw-r--r--src/Bottleneck_distance/include/gudhi/Persistence_graph.h179
8 files changed, 2482 insertions, 0 deletions
diff --git a/src/Bottleneck_distance/include/gudhi/Bottleneck.h b/src/Bottleneck_distance/include/gudhi/Bottleneck.h
new file mode 100644
index 00000000..42a0d444
--- /dev/null
+++ b/src/Bottleneck_distance/include/gudhi/Bottleneck.h
@@ -0,0 +1,96 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author: Francois Godi
+ *
+ * Copyright (C) 2015 INRIA (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef BOTTLENECK_H_
+#define BOTTLENECK_H_
+
+#include <gudhi/Graph_matching.h>
+#include <cmath>
+
+namespace Gudhi {
+
+namespace persistence_diagram {
+
+double bottleneck_distance_approx(Persistence_graph& g, double e) {
+ double b_lower_bound = 0.;
+ double b_upper_bound = g.diameter_bound();
+ const double alpha = std::pow(g.size(), 1./5.);
+ Graph_matching m(g);
+ Graph_matching biggest_unperfect(g);
+ while (b_upper_bound - b_lower_bound > 2*e) {
+ double step = b_lower_bound + (b_upper_bound - b_lower_bound)/alpha;
+ if(step <= b_lower_bound || step >= b_upper_bound) //Avoid precision problem
+ break;
+ m.set_r(step);
+ while (m.multi_augment()); //compute a maximum matching (in the graph corresponding to the current r)
+ if (m.perfect()) {
+ m = biggest_unperfect;
+ b_upper_bound = step;
+ } else {
+ biggest_unperfect = m;
+ b_lower_bound = step;
+ }
+ }
+ return (b_lower_bound + b_upper_bound)/2.;
+}
+
+double bottleneck_distance_exact(Persistence_graph& g) {
+ std::vector<double> sd = g.sorted_distances();
+ long lower_bound_i = 0;
+ long upper_bound_i = sd.size()-1;
+ const double alpha = std::pow(g.size(), 1./5.);
+ Graph_matching m(g);
+ Graph_matching biggest_unperfect(g);
+ while (lower_bound_i != upper_bound_i) {
+ long step = lower_bound_i + static_cast<long>((upper_bound_i - lower_bound_i - 1)/alpha);
+ m.set_r(sd.at(step));
+ while (m.multi_augment()); //compute a maximum matching (in the graph corresponding to the current r)
+ if (m.perfect()) {
+ m = biggest_unperfect;
+ upper_bound_i = step;
+ } else {
+ biggest_unperfect = m;
+ lower_bound_i = step + 1;
+ }
+ }
+ return sd.at(lower_bound_i);
+}
+
+/** \brief Function to use in order to compute the Bottleneck distance between two persistence diagrams (see concepts).
+ * If the last parameter e is not 0, you get an additive e-approximation, which is a lot faster to compute whatever is e.
+ * Thus, by default, e is a very small positive double, actually the smallest double possible such that the floating-point inaccuracies don't lead to a failure of the algorithm.
+ *
+ * \ingroup bottleneck_distance
+ */
+template<typename Persistence_diagram1, typename Persistence_diagram2>
+double bottleneck_distance(const Persistence_diagram1 &diag1, const Persistence_diagram2 &diag2, double e=std::numeric_limits<double>::min()) {
+ Persistence_graph g(diag1, diag2, e);
+ if(g.bottleneck_alive() == std::numeric_limits<double>::infinity())
+ return std::numeric_limits<double>::infinity();
+ return std::max(g.bottleneck_alive(), e == 0. ? bottleneck_distance_exact(g) : bottleneck_distance_approx(g, e));
+}
+
+} // namespace persistence_diagram
+
+} // namespace Gudhi
+
+#endif // BOTTLENECK_H_
diff --git a/src/Bottleneck_distance/include/gudhi/CGAL/Kd_tree.h b/src/Bottleneck_distance/include/gudhi/CGAL/Kd_tree.h
new file mode 100644
index 00000000..f085b0da
--- /dev/null
+++ b/src/Bottleneck_distance/include/gudhi/CGAL/Kd_tree.h
@@ -0,0 +1,582 @@
+// Copyright (c) 2002,2011,2014 Utrecht University (The Netherlands), Max-Planck-Institute Saarbruecken (Germany).
+// All rights reserved.
+//
+// This file is part of CGAL (www.cgal.org).
+// You can redistribute it and/or modify it under the terms of the GNU
+// General Public License as published by the Free Software Foundation,
+// either version 3 of the License, or (at your option) any later version.
+//
+// Licensees holding a valid commercial license may use this file in
+// accordance with the commercial license agreement provided with the software.
+//
+// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
+// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
+//
+// $URL$
+// $Id$
+//
+// Author(s) : Hans Tangelder (<hanst@cs.uu.nl>),
+// : Waqar Khan <wkhan@mpi-inf.mpg.de>
+
+#ifndef CGAL_KD_TREE_H
+#define CGAL_KD_TREE_H
+
+#include "Kd_tree_node.h"
+
+#include <CGAL/basic.h>
+#include <CGAL/assertions.h>
+#include <vector>
+
+#include <CGAL/algorithm.h>
+#include <CGAL/internal/Get_dimension_tag.h>
+#include <CGAL/Search_traits.h>
+
+
+#include <deque>
+#include <boost/container/deque.hpp>
+#include <boost/optional.hpp>
+
+#ifdef CGAL_HAS_THREADS
+#include <CGAL/mutex.h>
+#endif
+
+namespace CGAL {
+
+//template <class SearchTraits, class Splitter_=Median_of_rectangle<SearchTraits>, class UseExtendedNode = Tag_true >
+template <class SearchTraits, class Splitter_=Sliding_midpoint<SearchTraits>, class UseExtendedNode = Tag_true >
+class Kd_tree {
+
+public:
+ typedef SearchTraits Traits;
+ typedef Splitter_ Splitter;
+ typedef typename SearchTraits::Point_d Point_d;
+ typedef typename Splitter::Container Point_container;
+
+ typedef typename SearchTraits::FT FT;
+ typedef Kd_tree_node<SearchTraits, Splitter, UseExtendedNode > Node;
+ typedef Kd_tree_leaf_node<SearchTraits, Splitter, UseExtendedNode > Leaf_node;
+ typedef Kd_tree_internal_node<SearchTraits, Splitter, UseExtendedNode > Internal_node;
+ typedef Kd_tree<SearchTraits, Splitter> Tree;
+ typedef Kd_tree<SearchTraits, Splitter,UseExtendedNode> Self;
+
+ typedef Node* Node_handle;
+ typedef const Node* Node_const_handle;
+ typedef Leaf_node* Leaf_node_handle;
+ typedef const Leaf_node* Leaf_node_const_handle;
+ typedef Internal_node* Internal_node_handle;
+ typedef const Internal_node* Internal_node_const_handle;
+ typedef typename std::vector<const Point_d*>::const_iterator Point_d_iterator;
+ typedef typename std::vector<const Point_d*>::const_iterator Point_d_const_iterator;
+ typedef typename Splitter::Separator Separator;
+ typedef typename std::vector<Point_d>::const_iterator iterator;
+ typedef typename std::vector<Point_d>::const_iterator const_iterator;
+
+ typedef typename std::vector<Point_d>::size_type size_type;
+
+ typedef typename internal::Get_dimension_tag<SearchTraits>::Dimension D;
+
+private:
+ SearchTraits traits_;
+ Splitter split;
+
+
+ // wokaround for https://svn.boost.org/trac/boost/ticket/9332
+#if (_MSC_VER == 1800) && (BOOST_VERSION == 105500)
+ std::deque<Internal_node> internal_nodes;
+ std::deque<Leaf_node> leaf_nodes;
+#else
+ boost::container::deque<Internal_node> internal_nodes;
+ boost::container::deque<Leaf_node> leaf_nodes;
+#endif
+
+ Node_handle tree_root;
+
+ Kd_tree_rectangle<FT,D>* bbox;
+ std::vector<Point_d> pts;
+
+ // Instead of storing the points in arrays in the Kd_tree_node
+ // we put all the data in a vector in the Kd_tree.
+ // and we only store an iterator range in the Kd_tree_node.
+ //
+ std::vector<const Point_d*> data;
+
+
+ #ifdef CGAL_HAS_THREADS
+ mutable CGAL_MUTEX building_mutex;//mutex used to protect const calls inducing build()
+ #endif
+ bool built_;
+ bool removed_;
+
+ // protected copy constructor
+ Kd_tree(const Tree& tree)
+ : traits_(tree.traits_),built_(tree.built_)
+ {};
+
+
+ // Instead of the recursive construction of the tree in the class Kd_tree_node
+ // we do this in the tree class. The advantage is that we then can optimize
+ // the allocation of the nodes.
+
+ // The leaf node
+ Node_handle
+ create_leaf_node(Point_container& c)
+ {
+ Leaf_node node(true , static_cast<unsigned int>(c.size()));
+ std::ptrdiff_t tmp = c.begin() - data.begin();
+ node.data = pts.begin() + tmp;
+
+ leaf_nodes.push_back(node);
+ Leaf_node_handle nh = &leaf_nodes.back();
+
+
+ return nh;
+ }
+
+
+ // The internal node
+
+ Node_handle
+ create_internal_node(Point_container& c, const Tag_true&)
+ {
+ return create_internal_node_use_extension(c);
+ }
+
+ Node_handle
+ create_internal_node(Point_container& c, const Tag_false&)
+ {
+ return create_internal_node(c);
+ }
+
+
+
+ // TODO: Similiar to the leaf_init function above, a part of the code should be
+ // moved to a the class Kd_tree_node.
+ // It is not proper yet, but the goal was to see if there is
+ // a potential performance gain through the Compact_container
+ Node_handle
+ create_internal_node_use_extension(Point_container& c)
+ {
+ Internal_node node(false);
+ internal_nodes.push_back(node);
+ Internal_node_handle nh = &internal_nodes.back();
+
+ Separator sep;
+ Point_container c_low(c.dimension(),traits_);
+ split(sep, c, c_low);
+ nh->set_separator(sep);
+
+ int cd = nh->cutting_dimension();
+ if(!c_low.empty()){
+ nh->lower_low_val = c_low.tight_bounding_box().min_coord(cd);
+ nh->lower_high_val = c_low.tight_bounding_box().max_coord(cd);
+ }
+ else{
+ nh->lower_low_val = nh->cutting_value();
+ nh->lower_high_val = nh->cutting_value();
+ }
+ if(!c.empty()){
+ nh->upper_low_val = c.tight_bounding_box().min_coord(cd);
+ nh->upper_high_val = c.tight_bounding_box().max_coord(cd);
+ }
+ else{
+ nh->upper_low_val = nh->cutting_value();
+ nh->upper_high_val = nh->cutting_value();
+ }
+
+ CGAL_assertion(nh->cutting_value() >= nh->lower_low_val);
+ CGAL_assertion(nh->cutting_value() <= nh->upper_high_val);
+
+ if (c_low.size() > split.bucket_size()){
+ nh->lower_ch = create_internal_node_use_extension(c_low);
+ }else{
+ nh->lower_ch = create_leaf_node(c_low);
+ }
+ if (c.size() > split.bucket_size()){
+ nh->upper_ch = create_internal_node_use_extension(c);
+ }else{
+ nh->upper_ch = create_leaf_node(c);
+ }
+
+
+
+
+ return nh;
+ }
+
+
+ // Note also that I duplicated the code to get rid if the if's for
+ // the boolean use_extension which was constant over the construction
+ Node_handle
+ create_internal_node(Point_container& c)
+ {
+ Internal_node node(false);
+ internal_nodes.push_back(node);
+ Internal_node_handle nh = &internal_nodes.back();
+ Separator sep;
+
+ Point_container c_low(c.dimension(),traits_);
+ split(sep, c, c_low);
+ nh->set_separator(sep);
+
+ if (c_low.size() > split.bucket_size()){
+ nh->lower_ch = create_internal_node(c_low);
+ }else{
+ nh->lower_ch = create_leaf_node(c_low);
+ }
+ if (c.size() > split.bucket_size()){
+ nh->upper_ch = create_internal_node(c);
+ }else{
+ nh->upper_ch = create_leaf_node(c);
+ }
+
+
+
+ return nh;
+ }
+
+
+
+public:
+
+ Kd_tree(Splitter s = Splitter(),const SearchTraits traits=SearchTraits())
+ : traits_(traits),split(s), built_(false), removed_(false)
+ {}
+
+ template <class InputIterator>
+ Kd_tree(InputIterator first, InputIterator beyond,
+ Splitter s = Splitter(),const SearchTraits traits=SearchTraits())
+ : traits_(traits),split(s), built_(false), removed_(false)
+ {
+ pts.insert(pts.end(), first, beyond);
+ }
+
+ bool empty() const {
+ return pts.empty();
+ }
+
+ void
+ build()
+ {
+ // This function is not ready to be called when a tree already exists, one
+ // must call invalidate_built() first.
+ CGAL_assertion(!is_built());
+ CGAL_assertion(!removed_);
+ const Point_d& p = *pts.begin();
+ typename SearchTraits::Construct_cartesian_const_iterator_d ccci=traits_.construct_cartesian_const_iterator_d_object();
+ int dim = static_cast<int>(std::distance(ccci(p), ccci(p,0)));
+
+ data.reserve(pts.size());
+ for(unsigned int i = 0; i < pts.size(); i++){
+ data.push_back(&pts[i]);
+ }
+ Point_container c(dim, data.begin(), data.end(),traits_);
+ bbox = new Kd_tree_rectangle<FT,D>(c.bounding_box());
+ if (c.size() <= split.bucket_size()){
+ tree_root = create_leaf_node(c);
+ }else {
+ tree_root = create_internal_node(c, UseExtendedNode());
+ }
+
+ //Reorder vector for spatial locality
+ std::vector<Point_d> ptstmp;
+ ptstmp.resize(pts.size());
+ for (std::size_t i = 0; i < pts.size(); ++i){
+ ptstmp[i] = *data[i];
+ }
+ for(std::size_t i = 0; i < leaf_nodes.size(); ++i){
+ std::ptrdiff_t tmp = leaf_nodes[i].begin() - pts.begin();
+ leaf_nodes[i].data = ptstmp.begin() + tmp;
+ }
+ pts.swap(ptstmp);
+
+ data.clear();
+
+ built_ = true;
+ }
+
+private:
+ //any call to this function is for the moment not threadsafe
+ void const_build() const {
+ #ifdef CGAL_HAS_THREADS
+ //this ensure that build() will be called once
+ CGAL_SCOPED_LOCK(building_mutex);
+ if(!is_built())
+ #endif
+ const_cast<Self*>(this)->build(); //THIS IS NOT THREADSAFE
+ }
+public:
+
+ bool is_built() const
+ {
+ return built_;
+ }
+
+ void invalidate_built()
+ {
+ if(removed_){
+ // Walk the tree to collect the remaining points.
+ // Writing directly to pts would likely work, but better be safe.
+ std::vector<Point_d> ptstmp;
+ //ptstmp.resize(root()->num_items());
+ root()->tree_items(std::back_inserter(ptstmp));
+ pts.swap(ptstmp);
+ removed_=false;
+ CGAL_assertion(is_built()); // the rest of the cleanup must happen
+ }
+ if(is_built()){
+ internal_nodes.clear();
+ leaf_nodes.clear();
+ data.clear();
+ delete bbox;
+ built_ = false;
+ }
+ }
+
+ void clear()
+ {
+ invalidate_built();
+ pts.clear();
+ removed_ = false;
+ }
+
+ void
+ insert(const Point_d& p)
+ {
+ invalidate_built();
+ pts.push_back(p);
+ }
+
+ template <class InputIterator>
+ void
+ insert(InputIterator first, InputIterator beyond)
+ {
+ invalidate_built();
+ pts.insert(pts.end(),first, beyond);
+ }
+
+private:
+ struct Equal_by_coordinates {
+ SearchTraits const* traits;
+ Point_d const* pp;
+ bool operator()(Point_d const&q) const {
+ typename SearchTraits::Construct_cartesian_const_iterator_d ccci=traits->construct_cartesian_const_iterator_d_object();
+ return std::equal(ccci(*pp), ccci(*pp,0), ccci(q));
+ }
+ };
+ Equal_by_coordinates equal_by_coordinates(Point_d const&p){
+ Equal_by_coordinates ret = { &traits(), &p };
+ return ret;
+ }
+
+public:
+ void
+ remove(const Point_d& p)
+ {
+ remove(p, equal_by_coordinates(p));
+ }
+
+ template<class Equal>
+ void
+ remove(const Point_d& p, Equal const& equal_to_p)
+ {
+#if 0
+ // This code could have quadratic runtime.
+ if (!is_built()) {
+ std::vector<Point_d>::iterator pi = std::find(pts.begin(), pts.end(), p);
+ // Precondition: the point must be there.
+ CGAL_assertion (pi != pts.end());
+ pts.erase(pi);
+ return;
+ }
+#endif
+ bool success = remove_(p, 0, false, 0, false, root(), equal_to_p);
+ CGAL_assertion(success);
+
+ // Do not set the flag is the tree has been cleared.
+ if(is_built())
+ removed_ |= success;
+ }
+private:
+ template<class Equal>
+ bool remove_(const Point_d& p,
+ Internal_node_handle grandparent, bool parent_islower,
+ Internal_node_handle parent, bool islower,
+ Node_handle node, Equal const& equal_to_p) {
+ // Recurse to locate the point
+ if (!node->is_leaf()) {
+ Internal_node_handle newparent = static_cast<Internal_node_handle>(node);
+ // FIXME: This should be if(x<y) remove low; else remove up;
+ if (traits().construct_cartesian_const_iterator_d_object()(p)[newparent->cutting_dimension()] <= newparent->cutting_value()) {
+ if (remove_(p, parent, islower, newparent, true, newparent->lower(), equal_to_p))
+ return true;
+ }
+ //if (traits().construct_cartesian_const_iterator_d_object()(p)[newparent->cutting_dimension()] >= newparent->cutting_value())
+ return remove_(p, parent, islower, newparent, false, newparent->upper(), equal_to_p);
+
+ CGAL_assertion(false); // Point was not found
+ }
+
+ // Actual removal
+ Leaf_node_handle lnode = static_cast<Leaf_node_handle>(node);
+ if (lnode->size() > 1) {
+ iterator pi = std::find_if(lnode->begin(), lnode->end(), equal_to_p);
+ // FIXME: we should ensure this never happens
+ if (pi == lnode->end()) return false;
+ iterator lasti = lnode->end() - 1;
+ if (pi != lasti) {
+ // Hack to get a non-const iterator
+ std::iter_swap(pts.begin()+(pi-pts.begin()), pts.begin()+(lasti-pts.begin()));
+ }
+ lnode->drop_last_point();
+ } else if (!equal_to_p(*lnode->begin())) {
+ // FIXME: we should ensure this never happens
+ return false;
+ } else if (grandparent) {
+ Node_handle brother = islower ? parent->upper() : parent->lower();
+ if (parent_islower)
+ grandparent->set_lower(brother);
+ else
+ grandparent->set_upper(brother);
+ } else if (parent) {
+ tree_root = islower ? parent->upper() : parent->lower();
+ } else {
+ clear();
+ }
+ return true;
+ }
+
+public:
+ //For efficiency; reserve the size of the points vectors in advance (if the number of points is already known).
+ void reserve(size_t size)
+ {
+ pts.reserve(size);
+ }
+
+ //Get the capacity of the underlying points vector.
+ size_t capacity()
+ {
+ return pts.capacity();
+ }
+
+
+ template <class OutputIterator, class FuzzyQueryItem>
+ OutputIterator
+ search(OutputIterator it, const FuzzyQueryItem& q) const
+ {
+ if(! pts.empty()){
+
+ if(! is_built()){
+ const_build();
+ }
+ Kd_tree_rectangle<FT,D> b(*bbox);
+ return tree_root->search(it,q,b);
+ }
+ return it;
+ }
+
+
+ template <class FuzzyQueryItem>
+ boost::optional<Point_d>
+ search_any_point(const FuzzyQueryItem& q) const
+ {
+ if(! pts.empty()){
+
+ if(! is_built()){
+ const_build();
+ }
+ Kd_tree_rectangle<FT,D> b(*bbox);
+ return tree_root->search_any_point(q,b);
+ }
+ return boost::none;
+ }
+
+
+ ~Kd_tree() {
+ if(is_built()){
+ delete bbox;
+ }
+ }
+
+
+ const SearchTraits&
+ traits() const
+ {
+ return traits_;
+ }
+
+ Node_const_handle
+ root() const
+ {
+ if(! is_built()){
+ const_build();
+ }
+ return tree_root;
+ }
+
+ Node_handle
+ root()
+ {
+ if(! is_built()){
+ build();
+ }
+ return tree_root;
+ }
+
+ void
+ print() const
+ {
+ if(! is_built()){
+ const_build();
+ }
+ root()->print();
+ }
+
+ const Kd_tree_rectangle<FT,D>&
+ bounding_box() const
+ {
+ if(! is_built()){
+ const_build();
+ }
+ return *bbox;
+ }
+
+ const_iterator
+ begin() const
+ {
+ return pts.begin();
+ }
+
+ const_iterator
+ end() const
+ {
+ return pts.end();
+ }
+
+ size_type
+ size() const
+ {
+ return pts.size();
+ }
+
+ // Print statistics of the tree.
+ std::ostream&
+ statistics(std::ostream& s) const
+ {
+ if(! is_built()){
+ const_build();
+ }
+ s << "Tree statistics:" << std::endl;
+ s << "Number of items stored: "
+ << root()->num_items() << std::endl;
+ s << "Number of nodes: "
+ << root()->num_nodes() << std::endl;
+ s << " Tree depth: " << root()->depth() << std::endl;
+ return s;
+ }
+
+
+};
+
+} // namespace CGAL
+
+#endif // CGAL_KD_TREE_H
diff --git a/src/Bottleneck_distance/include/gudhi/CGAL/Kd_tree_node.h b/src/Bottleneck_distance/include/gudhi/CGAL/Kd_tree_node.h
new file mode 100644
index 00000000..909ee260
--- /dev/null
+++ b/src/Bottleneck_distance/include/gudhi/CGAL/Kd_tree_node.h
@@ -0,0 +1,586 @@
+// Copyright (c) 2002,2011 Utrecht University (The Netherlands).
+// All rights reserved.
+//
+// This file is part of CGAL (www.cgal.org).
+// You can redistribute it and/or modify it under the terms of the GNU
+// General Public License as published by the Free Software Foundation,
+// either version 3 of the License, or (at your option) any later version.
+//
+// Licensees holding a valid commercial license may use this file in
+// accordance with the commercial license agreement provided with the software.
+//
+// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
+// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
+//
+// $URL$
+// $Id$
+//
+//
+// Authors : Hans Tangelder (<hanst@cs.uu.nl>)
+
+#ifndef CGAL_KD_TREE_NODE_H
+#define CGAL_KD_TREE_NODE_H
+
+#include "CGAL/Splitters.h"
+
+#include <CGAL/Compact_container.h>
+#include <boost/cstdint.hpp>
+
+namespace CGAL {
+
+ template <class SearchTraits, class Splitter, class UseExtendedNode>
+ class Kd_tree;
+
+ template < class TreeTraits, class Splitter, class UseExtendedNode >
+ class Kd_tree_node {
+
+ friend class Kd_tree<TreeTraits,Splitter,UseExtendedNode>;
+
+ typedef typename Kd_tree<TreeTraits,Splitter,UseExtendedNode>::Node_handle Node_handle;
+ typedef typename Kd_tree<TreeTraits,Splitter,UseExtendedNode>::Node_const_handle Node_const_handle;
+ typedef typename Kd_tree<TreeTraits,Splitter,UseExtendedNode>::Internal_node_handle Internal_node_handle;
+ typedef typename Kd_tree<TreeTraits,Splitter,UseExtendedNode>::Internal_node_const_handle Internal_node_const_handle;
+ typedef typename Kd_tree<TreeTraits,Splitter,UseExtendedNode>::Leaf_node_handle Leaf_node_handle;
+ typedef typename Kd_tree<TreeTraits,Splitter,UseExtendedNode>::Leaf_node_const_handle Leaf_node_const_handle;
+ typedef typename TreeTraits::Point_d Point_d;
+
+ typedef typename TreeTraits::FT FT;
+ typedef typename Kd_tree<TreeTraits,Splitter,UseExtendedNode>::Separator Separator;
+ typedef typename Kd_tree<TreeTraits,Splitter,UseExtendedNode>::Point_d_iterator Point_d_iterator;
+ typedef typename Kd_tree<TreeTraits,Splitter,UseExtendedNode>::iterator iterator;
+ typedef typename Kd_tree<TreeTraits,Splitter,UseExtendedNode>::D D;
+
+ bool leaf;
+
+ public :
+ Kd_tree_node(bool leaf_)
+ :leaf(leaf_){}
+
+ bool is_leaf() const{
+ return leaf;
+ }
+
+ std::size_t
+ num_items() const
+ {
+ if (is_leaf()){
+ Leaf_node_const_handle node =
+ static_cast<Leaf_node_const_handle>(this);
+ return node->size();
+ }
+ else {
+ Internal_node_const_handle node =
+ static_cast<Internal_node_const_handle>(this);
+ return node->lower()->num_items() + node->upper()->num_items();
+ }
+ }
+
+ std::size_t
+ num_nodes() const
+ {
+ if (is_leaf()) return 1;
+ else {
+ Internal_node_const_handle node =
+ static_cast<Internal_node_const_handle>(this);
+ return node->lower()->num_nodes() + node->upper()->num_nodes();
+ }
+ }
+
+ int
+ depth(const int current_max_depth) const
+ {
+ if (is_leaf()){
+ return current_max_depth;
+ }
+ else {
+ Internal_node_const_handle node =
+ static_cast<Internal_node_const_handle>(this);
+ return
+ (std::max)( node->lower()->depth(current_max_depth + 1),
+ node->upper()->depth(current_max_depth + 1));
+ }
+ }
+
+ int
+ depth() const
+ {
+ return depth(1);
+ }
+
+ template <class OutputIterator>
+ OutputIterator
+ tree_items(OutputIterator it) const {
+ if (is_leaf()) {
+ Leaf_node_const_handle node =
+ static_cast<Leaf_node_const_handle>(this);
+ if (node->size()>0)
+ for (iterator i=node->begin(); i != node->end(); i++)
+ {*it=*i; ++it;}
+ }
+ else {
+ Internal_node_const_handle node =
+ static_cast<Internal_node_const_handle>(this);
+ it=node->lower()->tree_items(it);
+ it=node->upper()->tree_items(it);
+ }
+ return it;
+ }
+
+
+ boost::optional<Point_d>
+ any_tree_item() const {
+ boost::optional<Point_d> result = boost::none;
+ if (is_leaf()) {
+ Leaf_node_const_handle node =
+ static_cast<Leaf_node_const_handle>(this);
+ if (node->size()>0){
+ return boost::make_optional(*(node->begin()));
+ }
+ }
+ else {
+ Internal_node_const_handle node =
+ static_cast<Internal_node_const_handle>(this);
+ result = node->lower()->any_tree_item();
+ if(! result){
+ result = node->upper()->any_tree_item();
+ }
+ }
+ return result;
+ }
+
+
+ void
+ indent(int d) const
+ {
+ for(int i = 0; i < d; i++){
+ std::cout << " ";
+ }
+ }
+
+
+ void
+ print(int d = 0) const
+ {
+ if (is_leaf()) {
+ Leaf_node_const_handle node =
+ static_cast<Leaf_node_const_handle>(this);
+ indent(d);
+ std::cout << "leaf" << std::endl;
+ if (node->size()>0)
+ for (iterator i=node->begin(); i != node->end(); i++)
+ {indent(d);std::cout << *i << std::endl;}
+ }
+ else {
+ Internal_node_const_handle node =
+ static_cast<Internal_node_const_handle>(this);
+ indent(d);
+ std::cout << "lower tree" << std::endl;
+ node->lower()->print(d+1);
+ indent(d);
+ std::cout << "separator: dim = " << node->cutting_dimension() << " val = " << node->cutting_value() << std::endl;
+ indent(d);
+ std::cout << "upper tree" << std::endl;
+ node->upper()->print(d+1);
+ }
+ }
+
+
+ template <class OutputIterator, class FuzzyQueryItem>
+ OutputIterator
+ search(OutputIterator it, const FuzzyQueryItem& q,
+ Kd_tree_rectangle<FT,D>& b) const
+ {
+ if (is_leaf()) {
+ Leaf_node_const_handle node =
+ static_cast<Leaf_node_const_handle>(this);
+ if (node->size()>0)
+ for (iterator i=node->begin(); i != node->end(); i++)
+ if (q.contains(*i))
+ {*it++=*i;}
+ }
+ else {
+ Internal_node_const_handle node =
+ static_cast<Internal_node_const_handle>(this);
+ // after splitting b denotes the lower part of b
+ Kd_tree_rectangle<FT,D> b_upper(b);
+ b.split(b_upper, node->cutting_dimension(),
+ node->cutting_value());
+
+ if (q.outer_range_contains(b))
+ it=node->lower()->tree_items(it);
+ else
+ if (q.inner_range_intersects(b))
+ it=node->lower()->search(it,q,b);
+ if (q.outer_range_contains(b_upper))
+ it=node->upper()->tree_items(it);
+ else
+ if (q.inner_range_intersects(b_upper))
+ it=node->upper()->search(it,q,b_upper);
+ };
+ return it;
+ }
+
+
+ template <class FuzzyQueryItem>
+ boost::optional<Point_d>
+ search_any_point(const FuzzyQueryItem& q,
+ Kd_tree_rectangle<FT,D>& b) const
+ {
+ boost::optional<Point_d> result = boost::none;
+ if (is_leaf()) {
+ Leaf_node_const_handle node =
+ static_cast<Leaf_node_const_handle>(this);
+ if (node->size()>0)
+ for (iterator i=node->begin(); i != node->end(); i++)
+ if (q.contains(*i))
+ { result = *i; break; }
+ }
+ else {
+ Internal_node_const_handle node =
+ static_cast<Internal_node_const_handle>(this);
+ // after splitting b denotes the lower part of b
+ Kd_tree_rectangle<FT,D> b_upper(b);
+ b.split(b_upper, node->cutting_dimension(),
+ node->cutting_value());
+
+ if (q.outer_range_contains(b)){
+ result = node->lower()->any_tree_item();
+ }else{
+ if (q.inner_range_intersects(b)){
+ result = node->lower()->search_any_point(q,b);
+ }
+ }
+ if(result){
+ return result;
+ }
+ if (q.outer_range_contains(b_upper)){
+ result = node->upper()->any_tree_item();
+ }else{
+ if (q.inner_range_intersects(b_upper))
+ result = node->upper()->search_any_point(q,b_upper);
+ }
+ }
+ return result;
+ }
+
+ };
+
+
+ template < class TreeTraits, class Splitter, class UseExtendedNode >
+ class Kd_tree_leaf_node : public Kd_tree_node< TreeTraits, Splitter, UseExtendedNode >{
+
+ friend class Kd_tree<TreeTraits,Splitter,UseExtendedNode>;
+
+ typedef typename Kd_tree<TreeTraits,Splitter,UseExtendedNode>::iterator iterator;
+ typedef Kd_tree_node< TreeTraits, Splitter, UseExtendedNode> Base;
+ typedef typename TreeTraits::Point_d Point_d;
+
+ private:
+
+ // private variables for leaf nodes
+ boost::int32_t n; // denotes number of items in a leaf node
+ iterator data; // iterator to data in leaf node
+
+
+ public:
+
+ // default constructor
+ Kd_tree_leaf_node()
+ {}
+
+ Kd_tree_leaf_node(bool leaf_ )
+ : Base(leaf_)
+ {}
+
+ Kd_tree_leaf_node(bool leaf_,unsigned int n_ )
+ : Base(leaf_), n(n_)
+ {}
+
+ // members for all nodes
+
+ // members for leaf nodes only
+ inline
+ unsigned int
+ size() const
+ {
+ return n;
+ }
+
+ inline
+ iterator
+ begin() const
+ {
+ return data;
+ }
+
+ inline
+ iterator
+ end() const
+ {
+ return data + n;
+ }
+
+ inline
+ void
+ drop_last_point()
+ {
+ --n;
+ }
+
+ }; //leaf node
+
+
+
+ template < class TreeTraits, class Splitter, class UseExtendedNode>
+ class Kd_tree_internal_node : public Kd_tree_node< TreeTraits, Splitter, UseExtendedNode >{
+
+ friend class Kd_tree<TreeTraits,Splitter,UseExtendedNode>;
+
+ typedef Kd_tree_node< TreeTraits, Splitter, UseExtendedNode> Base;
+ typedef typename Kd_tree<TreeTraits,Splitter,UseExtendedNode>::Node_handle Node_handle;
+ typedef typename Kd_tree<TreeTraits,Splitter,UseExtendedNode>::Node_const_handle Node_const_handle;
+
+ typedef typename TreeTraits::FT FT;
+ typedef typename Kd_tree<TreeTraits,Splitter,UseExtendedNode>::Separator Separator;
+
+ private:
+
+ // private variables for internal nodes
+ boost::int32_t cut_dim;
+ FT cut_val;
+ Node_handle lower_ch, upper_ch;
+
+
+ // private variables for extended internal nodes
+ FT upper_low_val;
+ FT upper_high_val;
+ FT lower_low_val;
+ FT lower_high_val;
+
+
+ public:
+
+ // default constructor
+ Kd_tree_internal_node()
+ {}
+
+ Kd_tree_internal_node(bool leaf_)
+ : Base(leaf_)
+ {}
+
+
+ // members for internal node and extended internal node
+
+ inline
+ Node_const_handle
+ lower() const
+ {
+ return lower_ch;
+ }
+
+ inline
+ Node_const_handle
+ upper() const
+ {
+ return upper_ch;
+ }
+
+ inline
+ Node_handle
+ lower()
+ {
+ return lower_ch;
+ }
+
+ inline
+ Node_handle
+ upper()
+ {
+ return upper_ch;
+ }
+
+ inline
+ void
+ set_lower(Node_handle nh)
+ {
+ lower_ch = nh;
+ }
+
+ inline
+ void
+ set_upper(Node_handle nh)
+ {
+ upper_ch = nh;
+ }
+
+ // inline Separator& separator() {return sep; }
+ // use instead
+ inline
+ void set_separator(Separator& sep){
+ cut_dim = sep.cutting_dimension();
+ cut_val = sep.cutting_value();
+ }
+
+ inline
+ FT
+ cutting_value() const
+ {
+ return cut_val;
+ }
+
+ inline
+ int
+ cutting_dimension() const
+ {
+ return cut_dim;
+ }
+
+ // members for extended internal node only
+ inline
+ FT
+ upper_low_value() const
+ {
+ return upper_low_val;
+ }
+
+ inline
+ FT
+ upper_high_value() const
+ {
+ return upper_high_val;
+ }
+
+ inline
+ FT
+ lower_low_value() const
+ {
+ return lower_low_val;
+ }
+
+ inline
+ FT
+ lower_high_value() const
+ {
+ return lower_high_val;
+ }
+
+ /*Separator&
+ separator()
+ {
+ return Separator(cutting_dimension,cutting_value);
+ }*/
+
+
+ };//internal node
+
+ template < class TreeTraits, class Splitter>
+ class Kd_tree_internal_node<TreeTraits,Splitter,Tag_false> : public Kd_tree_node< TreeTraits, Splitter, Tag_false >{
+
+ friend class Kd_tree<TreeTraits,Splitter,Tag_false>;
+
+ typedef Kd_tree_node< TreeTraits, Splitter, Tag_false> Base;
+ typedef typename Kd_tree<TreeTraits,Splitter,Tag_false>::Node_handle Node_handle;
+ typedef typename Kd_tree<TreeTraits,Splitter,Tag_false>::Node_const_handle Node_const_handle;
+
+ typedef typename TreeTraits::FT FT;
+ typedef typename Kd_tree<TreeTraits,Splitter,Tag_false>::Separator Separator;
+
+ private:
+
+ // private variables for internal nodes
+ boost::uint8_t cut_dim;
+ FT cut_val;
+
+ Node_handle lower_ch, upper_ch;
+
+ public:
+
+ // default constructor
+ Kd_tree_internal_node()
+ {}
+
+ Kd_tree_internal_node(bool leaf_)
+ : Base(leaf_)
+ {}
+
+
+ // members for internal node and extended internal node
+
+ inline
+ Node_const_handle
+ lower() const
+ {
+ return lower_ch;
+ }
+
+ inline
+ Node_const_handle
+ upper() const
+ {
+ return upper_ch;
+ }
+
+ inline
+ Node_handle
+ lower()
+ {
+ return lower_ch;
+ }
+
+ inline
+ Node_handle
+ upper()
+ {
+ return upper_ch;
+ }
+
+ inline
+ void
+ set_lower(Node_handle nh)
+ {
+ lower_ch = nh;
+ }
+
+ inline
+ void
+ set_upper(Node_handle nh)
+ {
+ upper_ch = nh;
+ }
+
+ // inline Separator& separator() {return sep; }
+ // use instead
+
+ inline
+ void set_separator(Separator& sep){
+ cut_dim = sep.cutting_dimension();
+ cut_val = sep.cutting_value();
+ }
+
+ inline
+ FT
+ cutting_value() const
+ {
+ return cut_val;
+ }
+
+ inline
+ int
+ cutting_dimension() const
+ {
+ return cut_dim;
+ }
+
+ /* Separator&
+ separator()
+ {
+ return Separator(cutting_dimension,cutting_value);
+ }*/
+
+
+ };//internal node
+
+
+
+} // namespace CGAL
+#endif // CGAL_KDTREE_NODE_H
diff --git a/src/Bottleneck_distance/include/gudhi/CGAL/Orthogonal_incremental_neighbor_search.h b/src/Bottleneck_distance/include/gudhi/CGAL/Orthogonal_incremental_neighbor_search.h
new file mode 100644
index 00000000..dbe707ed
--- /dev/null
+++ b/src/Bottleneck_distance/include/gudhi/CGAL/Orthogonal_incremental_neighbor_search.h
@@ -0,0 +1,621 @@
+// Copyright (c) 2002,2011 Utrecht University (The Netherlands).
+// All rights reserved.
+//
+// This file is part of CGAL (www.cgal.org).
+// You can redistribute it and/or modify it under the terms of the GNU
+// General Public License as published by the Free Software Foundation,
+// either version 3 of the License, or (at your option) any later version.
+//
+// Licensees holding a valid commercial license may use this file in
+// accordance with the commercial license agreement provided with the software.
+//
+// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
+// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
+//
+// $URL$
+// $Id$
+//
+//
+// Author(s) : Hans Tangelder (<hanst@cs.uu.nl>)
+
+#ifndef CGAL_ORTHOGONAL_INCREMENTAL_NEIGHBOR_SEARCH
+#define CGAL_ORTHOGONAL_INCREMENTAL_NEIGHBOR_SEARCH
+
+#include "CGAL/Kd_tree.h"
+
+#include <cstring>
+#include <list>
+#include <queue>
+#include <memory>
+#include <CGAL/Euclidean_distance.h>
+#include <CGAL/tuple.h>
+
+namespace CGAL {
+
+ template <class SearchTraits,
+ class Distance_= typename internal::Spatial_searching_default_distance<SearchTraits>::type,
+ class Splitter_ = Sliding_midpoint<SearchTraits>,
+ class Tree_= Kd_tree<SearchTraits, Splitter_, Tag_true> >
+ class Orthogonal_incremental_neighbor_search {
+
+ public:
+ typedef Splitter_ Splitter;
+ typedef Tree_ Tree;
+ typedef Distance_ Distance;
+ typedef typename SearchTraits::Point_d Point_d;
+ typedef typename Distance::Query_item Query_item;
+ typedef typename SearchTraits::FT FT;
+ typedef typename Tree::Point_d_iterator Point_d_iterator;
+ typedef typename Tree::Node_const_handle Node_const_handle;
+
+ typedef std::pair<Point_d,FT> Point_with_transformed_distance;
+ typedef CGAL::cpp11::tuple<Node_const_handle,FT,std::vector<FT> > Node_with_distance;
+ typedef std::vector<Node_with_distance*> Node_with_distance_vector;
+ typedef std::vector<Point_with_transformed_distance*> Point_with_transformed_distance_vector;
+
+ template<class T>
+ struct Object_wrapper
+ {
+ T object;
+ Object_wrapper(const T& t):object(t){}
+ const T& operator* () const { return object; }
+ const T* operator-> () const { return &object; }
+ };
+
+ class Iterator_implementation {
+ SearchTraits traits;
+ public:
+
+ int number_of_neighbours_computed;
+ int number_of_internal_nodes_visited;
+ int number_of_leaf_nodes_visited;
+ int number_of_items_visited;
+
+ private:
+
+ typedef std::vector<FT> Distance_vector;
+
+ Distance_vector dists;
+
+ Distance Orthogonal_distance_instance;
+
+ FT multiplication_factor;
+
+ Query_item query_point;
+
+ FT distance_to_root;
+
+ bool search_nearest_neighbour;
+
+ FT rd;
+
+
+ class Priority_higher {
+ public:
+
+ bool search_nearest;
+
+ Priority_higher(bool search_the_nearest_neighbour)
+ : search_nearest(search_the_nearest_neighbour)
+ {}
+
+ //highest priority is smallest distance
+ bool
+ operator() (Node_with_distance* n1, Node_with_distance* n2) const
+ {
+ return (search_nearest) ? (CGAL::cpp11::get<1>(*n1) > CGAL::cpp11::get<1>(*n2)) : (CGAL::cpp11::get<1>(*n2) > CGAL::cpp11::get<1>(*n1));
+ }
+ };
+
+ class Distance_smaller {
+
+ public:
+
+ bool search_nearest;
+
+ Distance_smaller(bool search_the_nearest_neighbour)
+ : search_nearest(search_the_nearest_neighbour)
+ {}
+
+ //highest priority is smallest distance
+ bool operator() (Point_with_transformed_distance* p1, Point_with_transformed_distance* p2) const
+ {
+ return (search_nearest) ? (p1->second > p2->second) : (p2->second > p1->second);
+ }
+ };
+
+
+ std::priority_queue<Node_with_distance*, Node_with_distance_vector,
+ Priority_higher> PriorityQueue;
+
+ public:
+ std::priority_queue<Point_with_transformed_distance*, Point_with_transformed_distance_vector,
+ Distance_smaller> Item_PriorityQueue;
+
+
+ public:
+
+ int reference_count;
+
+
+
+ // constructor
+ Iterator_implementation(const Tree& tree,const Query_item& q, const Distance& tr,
+ FT Eps=FT(0.0), bool search_nearest=true)
+ : traits(tree.traits()),number_of_neighbours_computed(0), number_of_internal_nodes_visited(0),
+ number_of_leaf_nodes_visited(0), number_of_items_visited(0),
+ Orthogonal_distance_instance(tr), multiplication_factor(Orthogonal_distance_instance.transformed_distance(FT(1.0)+Eps)),
+ query_point(q), search_nearest_neighbour(search_nearest),
+ PriorityQueue(Priority_higher(search_nearest)), Item_PriorityQueue(Distance_smaller(search_nearest)),
+ reference_count(1)
+
+
+ {
+ if (tree.empty()) return;
+
+ typename SearchTraits::Construct_cartesian_const_iterator_d ccci=traits.construct_cartesian_const_iterator_d_object();
+ int dim = static_cast<int>(std::distance(ccci(q), ccci(q,0)));
+
+ dists.resize(dim);
+ for(int i=0 ; i<dim ; ++i){
+ dists[i] = 0;
+ }
+
+ if (search_nearest){
+ distance_to_root=
+ Orthogonal_distance_instance.min_distance_to_rectangle(q, tree.bounding_box(),dists);
+ Node_with_distance *The_Root = new Node_with_distance(tree.root(),
+ distance_to_root, dists);
+ PriorityQueue.push(The_Root);
+
+ // rd is the distance of the top of the priority queue to q
+ rd=CGAL::cpp11::get<1>(*The_Root);
+ Compute_the_next_nearest_neighbour();
+ }
+ else{
+ distance_to_root=
+ Orthogonal_distance_instance.max_distance_to_rectangle(q,
+ tree.bounding_box(), dists);
+ Node_with_distance *The_Root = new Node_with_distance(tree.root(),
+ distance_to_root, dists);
+ PriorityQueue.push(The_Root);
+
+ // rd is the distance of the top of the priority queue to q
+ rd=CGAL::cpp11::get<1>(*The_Root);
+ Compute_the_next_furthest_neighbour();
+ }
+
+
+ }
+
+ // * operator
+ const Point_with_transformed_distance&
+ operator* () const
+ {
+ return *(Item_PriorityQueue.top());
+ }
+
+ // prefix operator
+ Iterator_implementation&
+ operator++()
+ {
+ Delete_the_current_item_top();
+ if(search_nearest_neighbour)
+ Compute_the_next_nearest_neighbour();
+ else
+ Compute_the_next_furthest_neighbour();
+ return *this;
+ }
+
+ // postfix operator
+ Object_wrapper<Point_with_transformed_distance>
+ operator++(int)
+ {
+ Object_wrapper<Point_with_transformed_distance> result( *(Item_PriorityQueue.top()) );
+ ++*this;
+ return result;
+ }
+
+ // Print statistics of the general priority search process.
+ std::ostream&
+ statistics (std::ostream& s) const {
+ s << "Orthogonal priority search statistics:"
+ << std::endl;
+ s << "Number of internal nodes visited:"
+ << number_of_internal_nodes_visited << std::endl;
+ s << "Number of leaf nodes visited:"
+ << number_of_leaf_nodes_visited << std::endl;
+ s << "Number of items visited:"
+ << number_of_items_visited << std::endl;
+ s << "Number of neighbours computed:"
+ << number_of_neighbours_computed << std::endl;
+ return s;
+ }
+
+
+ //destructor
+ ~Iterator_implementation()
+ {
+ while (!PriorityQueue.empty()) {
+ Node_with_distance* The_top=PriorityQueue.top();
+ PriorityQueue.pop();
+ delete The_top;
+ }
+ while (!Item_PriorityQueue.empty()) {
+ Point_with_transformed_distance* The_top=Item_PriorityQueue.top();
+ Item_PriorityQueue.pop();
+ delete The_top;
+ }
+ }
+
+ private:
+
+ void
+ Delete_the_current_item_top()
+ {
+ Point_with_transformed_distance* The_item_top=Item_PriorityQueue.top();
+ Item_PriorityQueue.pop();
+ delete The_item_top;
+ }
+
+ void
+ Compute_the_next_nearest_neighbour()
+ {
+ // compute the next item
+ bool next_neighbour_found=false;
+ if (!(Item_PriorityQueue.empty())) {
+ next_neighbour_found=
+ (multiplication_factor*rd > Item_PriorityQueue.top()->second);
+ }
+ typename SearchTraits::Construct_cartesian_const_iterator_d construct_it=traits.construct_cartesian_const_iterator_d_object();
+ typename SearchTraits::Cartesian_const_iterator_d query_point_it = construct_it(query_point);
+ // otherwise browse the tree further
+ while ((!next_neighbour_found) && (!PriorityQueue.empty())) {
+ Node_with_distance* The_node_top=PriorityQueue.top();
+ Node_const_handle N= CGAL::cpp11::get<0>(*The_node_top);
+ dists = CGAL::cpp11::get<2>(*The_node_top);
+ PriorityQueue.pop();
+ delete The_node_top;
+ FT copy_rd=rd;
+ while (!(N->is_leaf())) { // compute new distance
+ typename Tree::Internal_node_const_handle node =
+ static_cast<typename Tree::Internal_node_const_handle>(N);
+ number_of_internal_nodes_visited++;
+ int new_cut_dim=node->cutting_dimension();
+ FT new_rd,dst = dists[new_cut_dim];
+ FT val = *(query_point_it + new_cut_dim);
+ FT diff1 = val - node->upper_low_value();
+ FT diff2 = val - node->lower_high_value();
+ if (diff1 + diff2 < FT(0.0)) {
+ new_rd=
+ Orthogonal_distance_instance.new_distance(copy_rd,dst,diff1,new_cut_dim);
+
+ CGAL_assertion(new_rd >= copy_rd);
+ dists[new_cut_dim] = diff1;
+ Node_with_distance *Upper_Child =
+ new Node_with_distance(node->upper(), new_rd, dists);
+ PriorityQueue.push(Upper_Child);
+ dists[new_cut_dim] = dst;
+ N=node->lower();
+
+ }
+ else { // compute new distance
+ new_rd=Orthogonal_distance_instance.new_distance(copy_rd,dst,diff2,new_cut_dim);
+ CGAL_assertion(new_rd >= copy_rd);
+ dists[new_cut_dim] = diff2;
+ Node_with_distance *Lower_Child =
+ new Node_with_distance(node->lower(), new_rd, dists);
+ PriorityQueue.push(Lower_Child);
+ dists[new_cut_dim] = dst;
+ N=node->upper();
+ }
+ }
+ // n is a leaf
+ typename Tree::Leaf_node_const_handle node =
+ static_cast<typename Tree::Leaf_node_const_handle>(N);
+ number_of_leaf_nodes_visited++;
+ if (node->size() > 0) {
+ for (typename Tree::iterator it=node->begin(); it != node->end(); it++) {
+ number_of_items_visited++;
+ FT distance_to_query_point=
+ Orthogonal_distance_instance.transformed_distance(query_point,*it);
+ Point_with_transformed_distance *NN_Candidate=
+ new Point_with_transformed_distance(*it,distance_to_query_point);
+ Item_PriorityQueue.push(NN_Candidate);
+ }
+ // old top of PriorityQueue has been processed,
+ // hence update rd
+
+ if (!(PriorityQueue.empty())) {
+ rd = CGAL::cpp11::get<1>(*PriorityQueue.top());
+ next_neighbour_found =
+ (multiplication_factor*rd >
+ Item_PriorityQueue.top()->second);
+ }
+ else // priority queue empty => last neighbour found
+ {
+ next_neighbour_found=true;
+ }
+
+ number_of_neighbours_computed++;
+ }
+ } // next_neighbour_found or priority queue is empty
+ // in the latter case also the item priority quee is empty
+ }
+
+
+ void
+ Compute_the_next_furthest_neighbour()
+ {
+ // compute the next item
+ bool next_neighbour_found=false;
+ if (!(Item_PriorityQueue.empty())) {
+ next_neighbour_found=
+ (rd < multiplication_factor*Item_PriorityQueue.top()->second);
+ }
+ typename SearchTraits::Construct_cartesian_const_iterator_d construct_it=traits.construct_cartesian_const_iterator_d_object();
+ typename SearchTraits::Cartesian_const_iterator_d query_point_it = construct_it(query_point);
+ // otherwise browse the tree further
+ while ((!next_neighbour_found) && (!PriorityQueue.empty())) {
+ Node_with_distance* The_node_top=PriorityQueue.top();
+ Node_const_handle N= CGAL::cpp11::get<0>(*The_node_top);
+ dists = CGAL::cpp11::get<2>(*The_node_top);
+ PriorityQueue.pop();
+ delete The_node_top;
+ FT copy_rd=rd;
+ while (!(N->is_leaf())) { // compute new distance
+ typename Tree::Internal_node_const_handle node =
+ static_cast<typename Tree::Internal_node_const_handle>(N);
+ number_of_internal_nodes_visited++;
+ int new_cut_dim=node->cutting_dimension();
+ FT new_rd,dst = dists[new_cut_dim];
+ FT val = *(query_point_it + new_cut_dim);
+ FT diff1 = val - node->upper_low_value();
+ FT diff2 = val - node->lower_high_value();
+ if (diff1 + diff2 < FT(0.0)) {
+ diff1 = val - node->upper_high_value();
+ new_rd=
+ Orthogonal_distance_instance.new_distance(copy_rd,dst,diff1,new_cut_dim);
+ Node_with_distance *Lower_Child =
+ new Node_with_distance(node->lower(), copy_rd, dists);
+ PriorityQueue.push(Lower_Child);
+ N=node->upper();
+ dists[new_cut_dim] = diff1;
+ copy_rd=new_rd;
+
+ }
+ else { // compute new distance
+ diff2 = val - node->lower_low_value();
+ new_rd=Orthogonal_distance_instance.new_distance(copy_rd,dst,diff2,new_cut_dim);
+ Node_with_distance *Upper_Child =
+ new Node_with_distance(node->upper(), copy_rd, dists);
+ PriorityQueue.push(Upper_Child);
+ N=node->lower();
+ dists[new_cut_dim] = diff2;
+ copy_rd=new_rd;
+ }
+ }
+ // n is a leaf
+ typename Tree::Leaf_node_const_handle node =
+ static_cast<typename Tree::Leaf_node_const_handle>(N);
+ number_of_leaf_nodes_visited++;
+ if (node->size() > 0) {
+ for (typename Tree::iterator it=node->begin(); it != node->end(); it++) {
+ number_of_items_visited++;
+ FT distance_to_query_point=
+ Orthogonal_distance_instance.transformed_distance(query_point,*it);
+ Point_with_transformed_distance *NN_Candidate=
+ new Point_with_transformed_distance(*it,distance_to_query_point);
+ Item_PriorityQueue.push(NN_Candidate);
+ }
+ // old top of PriorityQueue has been processed,
+ // hence update rd
+
+ if (!(PriorityQueue.empty())) {
+ rd = CGAL::cpp11::get<1>(*PriorityQueue.top());
+ next_neighbour_found =
+ (multiplication_factor*rd <
+ Item_PriorityQueue.top()->second);
+ }
+ else // priority queue empty => last neighbour found
+ {
+ next_neighbour_found=true;
+ }
+
+ number_of_neighbours_computed++;
+ }
+ } // next_neighbour_found or priority queue is empty
+ // in the latter case also the item priority quee is empty
+ }
+ }; // class Iterator_implementaion
+
+
+
+
+
+
+
+
+
+ public:
+ class iterator;
+ typedef iterator const_iterator;
+
+ // constructor
+ Orthogonal_incremental_neighbor_search(const Tree& tree,
+ const Query_item& q, FT Eps = FT(0.0),
+ bool search_nearest=true, const Distance& tr=Distance())
+ : m_tree(tree),m_query(q),m_dist(tr),m_Eps(Eps),m_search_nearest(search_nearest)
+ {}
+
+ iterator
+ begin() const
+ {
+ return iterator(m_tree,m_query,m_dist,m_Eps,m_search_nearest);
+ }
+
+ iterator
+ end() const
+ {
+ return iterator();
+ }
+
+ std::ostream&
+ statistics(std::ostream& s)
+ {
+ begin()->statistics(s);
+ return s;
+ }
+
+
+
+
+ class iterator {
+
+ public:
+
+ typedef std::input_iterator_tag iterator_category;
+ typedef Point_with_transformed_distance value_type;
+ typedef Point_with_transformed_distance* pointer;
+ typedef const Point_with_transformed_distance& reference;
+ typedef std::size_t size_type;
+ typedef std::ptrdiff_t difference_type;
+ typedef int distance_type;
+
+ //class Iterator_implementation;
+ Iterator_implementation *Ptr_implementation;
+
+
+ public:
+
+ // default constructor
+ iterator()
+ : Ptr_implementation(0)
+ {}
+
+ int
+ the_number_of_items_visited()
+ {
+ return Ptr_implementation->number_of_items_visited;
+ }
+
+ // constructor
+ iterator(const Tree& tree,const Query_item& q, const Distance& tr=Distance(), FT eps=FT(0.0),
+ bool search_nearest=true)
+ : Ptr_implementation(new Iterator_implementation(tree, q, tr, eps, search_nearest))
+ {}
+
+ // copy constructor
+ iterator(const iterator& Iter)
+ {
+ Ptr_implementation = Iter.Ptr_implementation;
+ if (Ptr_implementation != 0) Ptr_implementation->reference_count++;
+ }
+
+ iterator& operator=(const iterator& Iter)
+ {
+ if (Ptr_implementation != Iter.Ptr_implementation){
+ if (Ptr_implementation != 0 && --(Ptr_implementation->reference_count)==0) {
+ delete Ptr_implementation;
+ }
+ Ptr_implementation = Iter.Ptr_implementation;
+ if (Ptr_implementation != 0) Ptr_implementation->reference_count++;
+ }
+ return *this;
+ }
+
+
+ const Point_with_transformed_distance&
+ operator* () const
+ {
+ return *(*Ptr_implementation);
+ }
+
+ // -> operator
+ const Point_with_transformed_distance*
+ operator-> () const
+ {
+ return &*(*Ptr_implementation);
+ }
+
+ // prefix operator
+ iterator&
+ operator++()
+ {
+ ++(*Ptr_implementation);
+ return *this;
+ }
+
+ // postfix operator
+ Object_wrapper<Point_with_transformed_distance>
+ operator++(int)
+ {
+ return (*Ptr_implementation)++;
+ }
+
+
+ bool
+ operator==(const iterator& It) const
+ {
+ if (
+ ((Ptr_implementation == 0) ||
+ Ptr_implementation->Item_PriorityQueue.empty()) &&
+ ((It.Ptr_implementation == 0) ||
+ It.Ptr_implementation->Item_PriorityQueue.empty())
+ )
+ return true;
+ // else
+ return (Ptr_implementation == It.Ptr_implementation);
+ }
+
+ bool
+ operator!=(const iterator& It) const
+ {
+ return !(*this == It);
+ }
+
+ std::ostream&
+ statistics (std::ostream& s)
+ {
+ Ptr_implementation->statistics(s);
+ return s;
+ }
+
+ ~iterator()
+ {
+ if (Ptr_implementation != 0) {
+ Ptr_implementation->reference_count--;
+ if (Ptr_implementation->reference_count==0) {
+ delete Ptr_implementation;
+ Ptr_implementation = 0;
+ }
+ }
+ }
+
+
+ }; // class iterator
+
+ //data members
+ const Tree& m_tree;
+ Query_item m_query;
+ Distance m_dist;
+ FT m_Eps;
+ bool m_search_nearest;
+ }; // class
+
+ template <class Traits, class Query_item, class Distance>
+ void swap (typename Orthogonal_incremental_neighbor_search<Traits,
+ Query_item, Distance>::iterator& x,
+ typename Orthogonal_incremental_neighbor_search<Traits,
+ Query_item, Distance>::iterator& y)
+ {
+ typename Orthogonal_incremental_neighbor_search<Traits,
+ Query_item, Distance>::iterator::Iterator_implementation
+ *tmp = x.Ptr_implementation;
+ x.Ptr_implementation = y.Ptr_implementation;
+ y.Ptr_implementation = tmp;
+ }
+
+} // namespace CGAL
+
+#endif // CGAL_ORTHOGONAL_INCREMENTAL_NEIGHBOR_SEARCH_H
diff --git a/src/Bottleneck_distance/include/gudhi/Graph_matching.h b/src/Bottleneck_distance/include/gudhi/Graph_matching.h
new file mode 100644
index 00000000..e9f455d7
--- /dev/null
+++ b/src/Bottleneck_distance/include/gudhi/Graph_matching.h
@@ -0,0 +1,179 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author: Francois Godi
+ *
+ * Copyright (C) 2015 INRIA (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef GRAPH_MATCHING_H_
+#define GRAPH_MATCHING_H_
+
+#include <gudhi/Neighbors_finder.h>
+
+namespace Gudhi {
+
+namespace persistence_diagram {
+
+/** \internal \brief Structure representing a graph matching. The graph is a Persistence_diagrams_graph.
+ *
+ * \ingroup bottleneck_distance
+ */
+class Graph_matching {
+public:
+ /** \internal \brief Constructor constructing an empty matching. */
+ explicit Graph_matching(Persistence_graph &g);
+ /** \internal \brief Copy operator. */
+ Graph_matching& operator=(const Graph_matching& m);
+ /** \internal \brief Is the matching perfect ? */
+ bool perfect() const;
+ /** \internal \brief Augments the matching with a maximal set of edge-disjoint shortest augmenting paths. */
+ bool multi_augment();
+ /** \internal \brief Sets the maximum length of the edges allowed to be added in the matching, 0 initially. */
+ void set_r(double r);
+
+private:
+ Persistence_graph& g;
+ double r;
+ /** \internal \brief Given a point from V, provides its matched point in U, null_point_index() if there isn't. */
+ std::vector<int> v_to_u;
+ /** \internal \brief All the unmatched points in U. */
+ std::list<int> unmatched_in_u;
+
+ /** \internal \brief Provides a Layered_neighbors_finder dividing the graph in layers. Basically a BFS. */
+ Layered_neighbors_finder layering() const;
+ /** \internal \brief Augments the matching with a simple path no longer than max_depth. Basically a DFS. */
+ bool augment(Layered_neighbors_finder & layered_nf, int u_start_index, int max_depth);
+ /** \internal \brief Update the matching with the simple augmenting path given as parameter. */
+ void update(std::vector<int> & path);
+};
+
+inline Graph_matching::Graph_matching(Persistence_graph& g)
+ : g(g), r(0.), v_to_u(g.size(), null_point_index()), unmatched_in_u() {
+ for (int u_point_index = 0; u_point_index < g.size(); ++u_point_index)
+ unmatched_in_u.emplace_back(u_point_index);
+}
+
+inline Graph_matching& Graph_matching::operator=(const Graph_matching& m) {
+ g = m.g;
+ r = m.r;
+ v_to_u = m.v_to_u;
+ unmatched_in_u = m.unmatched_in_u;
+ return *this;
+}
+
+inline bool Graph_matching::perfect() const {
+ return unmatched_in_u.empty();
+}
+
+inline bool Graph_matching::multi_augment() {
+ if (perfect())
+ return false;
+ Layered_neighbors_finder layered_nf(layering());
+ int max_depth = layered_nf.vlayers_number()*2 - 1;
+ double rn = sqrt(g.size());
+ // verification of a necessary criterion in order to shortcut if possible
+ if (max_depth <0 || (unmatched_in_u.size() > rn && max_depth >= rn))
+ return false;
+ bool successful = false;
+ std::list<int> tries(unmatched_in_u);
+ for (auto it = tries.cbegin(); it != tries.cend(); it++)
+ // 'augment' has side-effects which have to be always executed, don't change order
+ successful = augment(layered_nf, *it, max_depth) || successful;
+ return successful;
+}
+
+inline void Graph_matching::set_r(double r) {
+ this->r = r;
+}
+
+inline bool Graph_matching::augment(Layered_neighbors_finder & layered_nf, int u_start_index, int max_depth) {
+ //V vertices have at most one successor, thus when we backtrack from U we can directly pop_back 2 vertices.
+ std::vector<int> path;
+ path.emplace_back(u_start_index);
+ do {
+ if (static_cast<int>(path.size()) > max_depth) {
+ path.pop_back();
+ path.pop_back();
+ }
+ if (path.empty())
+ return false;
+ path.emplace_back(layered_nf.pull_near(path.back(), static_cast<int>(path.size())/2));
+ while (path.back() == null_point_index()) {
+ path.pop_back();
+ path.pop_back();
+ if (path.empty())
+ return false;
+ path.pop_back();
+ path.emplace_back(layered_nf.pull_near(path.back(), path.size() / 2));
+ }
+ path.emplace_back(v_to_u.at(path.back()));
+ } while (path.back() != null_point_index());
+ //if v_to_u.at(path.back()) has no successor, path.back() is an exposed vertex
+ path.pop_back();
+ update(path);
+ return true;
+}
+
+inline Layered_neighbors_finder Graph_matching::layering() const {
+ std::list<int> u_vertices(unmatched_in_u);
+ std::list<int> v_vertices;
+ Neighbors_finder nf(g, r);
+ for (int v_point_index = 0; v_point_index < g.size(); ++v_point_index)
+ nf.add(v_point_index);
+ Layered_neighbors_finder layered_nf(g, r);
+ for(int layer = 0; !u_vertices.empty(); layer++) {
+ // one layer is one step in the BFS
+ for (auto it1 = u_vertices.cbegin(); it1 != u_vertices.cend(); ++it1) {
+ std::vector<int> u_succ(nf.pull_all_near(*it1));
+ for (auto it2 = u_succ.begin(); it2 != u_succ.end(); ++it2) {
+ layered_nf.add(*it2, layer);
+ v_vertices.emplace_back(*it2);
+ }
+ }
+ // When the above for finishes, we have progress of one half-step (from U to V) in the BFS
+ u_vertices.clear();
+ bool end = false;
+ for (auto it = v_vertices.cbegin(); it != v_vertices.cend(); it++)
+ if (v_to_u.at(*it) == null_point_index())
+ // we stop when a nearest exposed V vertex (from U exposed vertices) has been found
+ end = true;
+ else
+ u_vertices.emplace_back(v_to_u.at(*it));
+ // When the above for finishes, we have progress of one half-step (from V to U) in the BFS
+ if (end)
+ return layered_nf;
+ v_vertices.clear();
+ }
+ return layered_nf;
+}
+
+inline void Graph_matching::update(std::vector<int>& path) {
+ unmatched_in_u.remove(path.front());
+ for (auto it = path.cbegin(); it != path.cend(); ++it) {
+ // Be careful, the iterator is incremented twice each time
+ int tmp = *it;
+ v_to_u[*(++it)] = tmp;
+ }
+}
+
+
+} // namespace persistence_diagram
+
+} // namespace Gudhi
+
+#endif // GRAPH_MATCHING_H_
diff --git a/src/Bottleneck_distance/include/gudhi/Internal_point.h b/src/Bottleneck_distance/include/gudhi/Internal_point.h
new file mode 100644
index 00000000..70342d0c
--- /dev/null
+++ b/src/Bottleneck_distance/include/gudhi/Internal_point.h
@@ -0,0 +1,70 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author: Francois Godi
+ *
+ * Copyright (C) 2015 INRIA (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef INTERNAL_POINT_H_
+#define INTERNAL_POINT_H_
+
+namespace Gudhi {
+
+namespace persistence_diagram {
+
+/** \internal \brief Returns the used index for encoding none of the points */
+int null_point_index();
+
+/** \internal \typedef \brief Internal_point is the internal points representation, indexes used outside. */
+struct Internal_point {
+ double vec[2];
+ int point_index;
+ Internal_point() {}
+ Internal_point(double x, double y, int p_i) { vec[0]=x; vec[1]=y; point_index = p_i; }
+ double x() const { return vec[ 0 ]; }
+ double y() const { return vec[ 1 ]; }
+ double& x() { return vec[ 0 ]; }
+ double& y() { return vec[ 1 ]; }
+ bool operator==(const Internal_point& p) const
+ {
+ return point_index==p.point_index;
+ }
+ bool operator!=(const Internal_point& p) const { return !(*this == p); }
+};
+
+inline int null_point_index() {
+ return -1;
+}
+
+struct Construct_coord_iterator {
+ typedef const double* result_type;
+ const double* operator()(const Internal_point& p) const
+ { return p.vec; }
+ const double* operator()(const Internal_point& p, int) const
+ { return p.vec+2; }
+};
+
+} // namespace persistence_diagram
+
+} // namespace Gudhi
+
+
+
+
+
+#endif // INTERNAL_POINT_H_
diff --git a/src/Bottleneck_distance/include/gudhi/Neighbors_finder.h b/src/Bottleneck_distance/include/gudhi/Neighbors_finder.h
new file mode 100644
index 00000000..792925b7
--- /dev/null
+++ b/src/Bottleneck_distance/include/gudhi/Neighbors_finder.h
@@ -0,0 +1,169 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author: Francois Godi
+ *
+ * Copyright (C) 2015 INRIA (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef NEIGHBORS_FINDER_H_
+#define NEIGHBORS_FINDER_H_
+
+// Inclusion order is important for CGAL patch
+#include "CGAL/Kd_tree_node.h"
+#include "CGAL/Kd_tree.h"
+#include "CGAL/Orthogonal_k_neighbor_search.h"
+
+#include <CGAL/Weighted_Minkowski_distance.h>
+#include <CGAL/Search_traits.h>
+
+#include <gudhi/Persistence_graph.h>
+#include <gudhi/Internal_point.h>
+
+#include <unordered_set>
+
+namespace Gudhi {
+
+namespace persistence_diagram {
+
+/** \internal \brief data structure used to find any point (including projections) in V near to a query point from U
+ * (which can be a projection).
+ *
+ * V points have to be added manually using their index and before the first pull. A neighbor pulled is automatically removed.
+ *
+ * \ingroup bottleneck_distance
+ */
+class Neighbors_finder {
+
+ typedef CGAL::Dimension_tag<2> D;
+ typedef CGAL::Search_traits<double, Internal_point, const double*, Construct_coord_iterator, D> Traits;
+ typedef CGAL::Weighted_Minkowski_distance<Traits> Distance;
+ typedef CGAL::Orthogonal_k_neighbor_search<Traits, Distance> K_neighbor_search;
+ typedef K_neighbor_search::Tree Kd_tree;
+
+public:
+ /** \internal \brief Constructor taking the near distance definition as parameter. */
+ Neighbors_finder(const Persistence_graph& g, double r);
+ /** \internal \brief A point added will be possibly pulled. */
+ void add(int v_point_index);
+ /** \internal \brief Returns and remove a V point near to the U point given as parameter, null_point_index() if there isn't such a point. */
+ int pull_near(int u_point_index);
+ /** \internal \brief Returns and remove all the V points near to the U point given as parameter. */
+ std::vector<int> pull_all_near(int u_point_index);
+
+private:
+ const Persistence_graph& g;
+ const double r;
+ Kd_tree kd_t;
+ std::unordered_set<int> projections_f;
+};
+
+/** \internal \brief data structure used to find any point (including projections) in V near to a query point from U
+ * (which can be a projection) in a layered graph layer given as parmeter.
+ *
+ * V points have to be added manually using their index and before the first pull. A neighbor pulled is automatically removed.
+ *
+ * \ingroup bottleneck_distance
+ */
+class Layered_neighbors_finder {
+public:
+ /** \internal \brief Constructor taking the near distance definition as parameter. */
+ Layered_neighbors_finder(const Persistence_graph& g, double r);
+ /** \internal \brief A point added will be possibly pulled. */
+ void add(int v_point_index, int vlayer);
+ /** \internal \brief Returns and remove a V point near to the U point given as parameter, null_point_index() if there isn't such a point. */
+ int pull_near(int u_point_index, int vlayer);
+ /** \internal \brief Returns the number of layers. */
+ int vlayers_number() const;
+
+private:
+ const Persistence_graph& g;
+ const double r;
+ std::vector<std::unique_ptr<Neighbors_finder>> neighbors_finder;
+};
+
+inline Neighbors_finder::Neighbors_finder(const Persistence_graph& g, double r) :
+ g(g), r(r), kd_t(), projections_f() { }
+
+inline void Neighbors_finder::add(int v_point_index) {
+ if (g.on_the_v_diagonal(v_point_index))
+ projections_f.emplace(v_point_index);
+ else
+ kd_t.insert(g.get_v_point(v_point_index));
+}
+
+inline int Neighbors_finder::pull_near(int u_point_index) {
+ int tmp;
+ int c = g.corresponding_point_in_v(u_point_index);
+ if (g.on_the_u_diagonal(u_point_index) && !projections_f.empty()){
+ //Any pair of projection is at distance 0
+ tmp = *projections_f.cbegin();
+ projections_f.erase(tmp);
+ }
+ else if (projections_f.count(c) && (g.distance(u_point_index, c) <= r)){
+ //Is the query point near to its projection ?
+ tmp = c;
+ projections_f.erase(tmp);
+ }
+ else{
+ //Is the query point near to a V point in the plane ?
+ Internal_point u_point = g.get_u_point(u_point_index);
+ std::array<double, 2> w = { {1., 1.} };
+ K_neighbor_search search(kd_t, u_point, 1, 0., true, Distance(0, 2, w.begin(), w.end()));
+ auto it = search.begin();
+ if(it==search.end() || g.distance(u_point_index, it->first.point_index) > r)
+ return null_point_index();
+ tmp = it->first.point_index;
+ kd_t.remove(g.get_v_point(tmp));
+ }
+ return tmp;
+}
+
+inline std::vector<int> Neighbors_finder::pull_all_near(int u_point_index) {
+ std::vector<int> all_pull;
+ int last_pull = pull_near(u_point_index);
+ while (last_pull != null_point_index()) {
+ all_pull.emplace_back(last_pull);
+ last_pull = pull_near(u_point_index);
+ }
+ return all_pull;
+}
+
+inline Layered_neighbors_finder::Layered_neighbors_finder(const Persistence_graph& g, double r) :
+ g(g), r(r), neighbors_finder() { }
+
+inline void Layered_neighbors_finder::add(int v_point_index, int vlayer) {
+ for (int l = neighbors_finder.size(); l <= vlayer; l++)
+ neighbors_finder.emplace_back(std::unique_ptr<Neighbors_finder>(new Neighbors_finder(g, r)));
+ neighbors_finder.at(vlayer)->add(v_point_index);
+}
+
+inline int Layered_neighbors_finder::pull_near(int u_point_index, int vlayer) {
+ if (static_cast<int> (neighbors_finder.size()) <= vlayer)
+ return null_point_index();
+ return neighbors_finder.at(vlayer)->pull_near(u_point_index);
+}
+
+inline int Layered_neighbors_finder::vlayers_number() const {
+ return static_cast<int>(neighbors_finder.size());
+}
+
+} // namespace persistence_diagram
+
+} // namespace Gudhi
+
+#endif // NEIGHBORS_FINDER_H_
diff --git a/src/Bottleneck_distance/include/gudhi/Persistence_graph.h b/src/Bottleneck_distance/include/gudhi/Persistence_graph.h
new file mode 100644
index 00000000..45a4d586
--- /dev/null
+++ b/src/Bottleneck_distance/include/gudhi/Persistence_graph.h
@@ -0,0 +1,179 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author: Francois Godi
+ *
+ * Copyright (C) 2015 INRIA (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef PERSISTENCE_GRAPH_H_
+#define PERSISTENCE_GRAPH_H_
+
+#include <vector>
+#include <algorithm>
+#include <gudhi/Internal_point.h>
+
+namespace Gudhi {
+
+namespace persistence_diagram {
+
+
+/** \internal \brief Structure representing an euclidean bipartite graph containing
+ * the points from the two persistence diagrams (including the projections).
+ *
+ * \ingroup bottleneck_distance
+ */
+class Persistence_graph {
+public:
+ /** \internal \brief Constructor taking 2 Persistence_Diagrams (concept) as parameters. */
+ template<typename Persistence_diagram1, typename Persistence_diagram2>
+ Persistence_graph(const Persistence_diagram1& diag1, const Persistence_diagram2& diag2, double e);
+ /** \internal \brief Is the given point from U the projection of a point in V ? */
+ bool on_the_u_diagonal(int u_point_index) const;
+ /** \internal \brief Is the given point from V the projection of a point in U ? */
+ bool on_the_v_diagonal(int v_point_index) const;
+ /** \internal \brief Given a point from V, returns the corresponding (projection or projector) point in U. */
+ int corresponding_point_in_u(int v_point_index) const;
+ /** \internal \brief Given a point from U, returns the corresponding (projection or projector) point in V. */
+ int corresponding_point_in_v(int u_point_index) const;
+ /** \internal \brief Given a point from U and a point from V, returns the distance between those points. */
+ double distance(int u_point_index, int v_point_index) const;
+ /** \internal \brief Returns size = |U| = |V|. */
+ int size() const;
+ /** \internal \brief Is there as many infinite points (alive components) in both diagrams ? */
+ double bottleneck_alive() const;
+ /** \internal \brief Returns the O(n^2) sorted distances between the points. */
+ std::vector<double> sorted_distances() const;
+ /** \internal \brief Returns an upper bound for the diameter of the convex hull of all non infinite points */
+ double diameter_bound() const;
+ /** \internal \brief Returns the corresponding internal point */
+ Internal_point get_u_point(int u_point_index) const;
+ /** \internal \brief Returns the corresponding internal point */
+ Internal_point get_v_point(int v_point_index) const;
+
+private:
+ std::vector<Internal_point> u;
+ std::vector<Internal_point> v;
+ double b_alive;
+};
+
+template<typename Persistence_diagram1, typename Persistence_diagram2>
+Persistence_graph::Persistence_graph(const Persistence_diagram1 &diag1,
+ const Persistence_diagram2 &diag2, double e)
+ : u(), v(), b_alive(0.)
+{
+ std::vector<double> u_alive;
+ std::vector<double> v_alive;
+ for (auto it = std::begin(diag1); it != std::end(diag1); ++it){
+ if(std::get<1>(*it) == std::numeric_limits<double>::infinity())
+ u_alive.push_back(std::get<0>(*it));
+ else if (std::get<1>(*it) - std::get<0>(*it) > e)
+ u.push_back(Internal_point(std::get<0>(*it), std::get<1>(*it), u.size()));
+ }
+ for (auto it = std::begin(diag2); it != std::end(diag2); ++it){
+ if(std::get<1>(*it) == std::numeric_limits<double>::infinity())
+ v_alive.push_back(std::get<0>(*it));
+ else if (std::get<1>(*it) - std::get<0>(*it) > e)
+ v.push_back(Internal_point(std::get<0>(*it), std::get<1>(*it), v.size()));
+ }
+ if (u.size() < v.size())
+ swap(u, v);
+ std::sort(u_alive.begin(), u_alive.end());
+ std::sort(v_alive.begin(), v_alive.end());
+ if(u_alive.size() != v_alive.size())
+ b_alive = std::numeric_limits<double>::infinity();
+ else for(auto it_u=u_alive.cbegin(), it_v=v_alive.cbegin(); it_u != u_alive.cend(); ++it_u, ++it_v)
+ b_alive = std::max(b_alive, std::fabs(*it_u - *it_v));
+}
+
+inline bool Persistence_graph::on_the_u_diagonal(int u_point_index) const {
+ return u_point_index >= static_cast<int> (u.size());
+}
+
+inline bool Persistence_graph::on_the_v_diagonal(int v_point_index) const {
+ return v_point_index >= static_cast<int> (v.size());
+}
+
+inline int Persistence_graph::corresponding_point_in_u(int v_point_index) const {
+ return on_the_v_diagonal(v_point_index) ?
+ v_point_index - static_cast<int> (v.size()) : v_point_index + static_cast<int> (u.size());
+}
+
+inline int Persistence_graph::corresponding_point_in_v(int u_point_index) const {
+ return on_the_u_diagonal(u_point_index) ?
+ u_point_index - static_cast<int> (u.size()) : u_point_index + static_cast<int> (v.size());
+}
+
+inline double Persistence_graph::distance(int u_point_index, int v_point_index) const {
+ if (on_the_u_diagonal(u_point_index) && on_the_v_diagonal(v_point_index))
+ return 0.;
+ Internal_point p_u = get_u_point(u_point_index);
+ Internal_point p_v = get_v_point(v_point_index);
+ return std::max(std::fabs(p_u.x() - p_v.x()), std::fabs(p_u.y() - p_v.y()));
+}
+
+inline int Persistence_graph::size() const {
+ return static_cast<int> (u.size() + v.size());
+}
+
+inline double Persistence_graph::bottleneck_alive() const{
+ return b_alive;
+}
+
+inline std::vector<double> Persistence_graph::sorted_distances() const {
+ std::vector<double> distances;
+ distances.push_back(0.); //for empty diagrams
+ for (int u_point_index = 0; u_point_index < size(); ++u_point_index){
+ distances.push_back(distance(u_point_index, corresponding_point_in_v(u_point_index)));
+ for (int v_point_index = 0; v_point_index < size(); ++v_point_index)
+ distances.push_back(distance(u_point_index, v_point_index));
+ }
+ std::sort(distances.begin(), distances.end());
+ return distances;
+}
+
+inline Internal_point Persistence_graph::get_u_point(int u_point_index) const {
+ if (!on_the_u_diagonal(u_point_index))
+ return u.at(u_point_index);
+ Internal_point projector = v.at(corresponding_point_in_v(u_point_index));
+ double m = (projector.x() + projector.y()) / 2.;
+ return Internal_point(m,m,u_point_index);
+}
+
+inline Internal_point Persistence_graph::get_v_point(int v_point_index) const {
+ if (!on_the_v_diagonal(v_point_index))
+ return v.at(v_point_index);
+ Internal_point projector = u.at(corresponding_point_in_u(v_point_index));
+ double m = (projector.x() + projector.y()) / 2.;
+ return Internal_point(m,m,v_point_index);
+}
+
+inline double Persistence_graph::diameter_bound() const {
+ double max = 0.;
+ for(auto it = u.cbegin(); it != u.cend(); it++)
+ max = std::max(max, it->y());
+ for(auto it = v.cbegin(); it != v.cend(); it++)
+ max = std::max(max, it->y());
+ return max;
+}
+
+
+} // namespace persistence_diagram
+
+} // namespace Gudhi
+
+#endif // PERSISTENCE_GRAPH_H_