summaryrefslogtreecommitdiff
path: root/src/Gudhi_stat/include/gudhi/concretizations/Persistence_landscapes.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Gudhi_stat/include/gudhi/concretizations/Persistence_landscapes.h')
-rw-r--r--src/Gudhi_stat/include/gudhi/concretizations/Persistence_landscapes.h1487
1 files changed, 0 insertions, 1487 deletions
diff --git a/src/Gudhi_stat/include/gudhi/concretizations/Persistence_landscapes.h b/src/Gudhi_stat/include/gudhi/concretizations/Persistence_landscapes.h
deleted file mode 100644
index b6266375..00000000
--- a/src/Gudhi_stat/include/gudhi/concretizations/Persistence_landscapes.h
+++ /dev/null
@@ -1,1487 +0,0 @@
-/* This file is part of the Gudhi Library. The Gudhi library
- * (Geometric Understanding in Higher Dimensions) is a generic C++
- * library for computational topology.
- *
- * Author(s): Pawel Dlotko
- *
- * Copyright (C) 2015 INRIA Sophia-Saclay (France)
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
-
-
-#ifndef Persistence_landscapes_H
-#define Persistence_landscapes_H
-
-//standard include
-#include <cmath>
-#include <iostream>
-#include <vector>
-#include <limits>
-#include <fstream>
-#include <sstream>
-#include <algorithm>
-#include <unistd.h>
-
-
-//gudhi include
-#include <gudhi/abstract_classes/Abs_Vectorized_topological_data.h>
-#include <gudhi/abstract_classes/Abs_Topological_data_with_averages.h>
-#include <gudhi/abstract_classes/Abs_Topological_data_with_distances.h>
-#include <gudhi/abstract_classes/Abs_Real_valued_topological_data.h>
-#include <gudhi/abstract_classes/Abs_Topological_data_with_scalar_product.h>
-#include <gudhi/concretizations/read_persitence_from_file.h>
-#include <gudhi/common.h>
-using namespace std;
-
-
-
-
-namespace Gudhi
-{
-namespace Gudhi_stat
-{
-
-
-
-
-
-
-/**
- * Extra functions needed in construction of barcodes.
-**/
-double minus_length( std::pair<double,double> a )
-{
- return a.first-a.second;
-}
-double birth_plus_deaths( std::pair<double,double> a )
-{
- return a.first+a.second;
-}
-
-
-
-/**
- * Given two points in R^2, the procedure compute the parameters A and B of the line y = Ax + B that crosses those two points.
-**/
-std::pair<double,double> compute_parameters_of_a_line( std::pair<double,double> p1 , std::pair<double,double> p2 )
-{
- double a = (p2.second-p1.second)/( p2.first - p1.first );
- double b = p1.second - a*p1.first;
- return std::make_pair(a,b);
-}
-
-/**
- * This procedure given two points which lies on the opposide sides of x axis, compute x for which the line connecting those two points crosses x axis.
-**/
-double find_zero_of_a_line_segment_between_those_two_points ( std::pair<double,double> p1, std::pair<double,double> p2 )
-{
- if ( p1.first == p2.first )return p1.first;
- if ( p1.second*p2.second > 0 )
- {
- std::ostringstream errMessage;
- errMessage <<"In function find_zero_of_a_line_segment_between_those_two_points the agguments are: (" << p1.first << "," << p1.second << ") and (" << p2.first << "," << p2.second << "). There is no zero in line between those two points. Program terminated.";
- std::string errMessageStr = errMessage.str();
- const char* err = errMessageStr.c_str();
- throw(err);
- }
- //we assume here, that x \in [ p1.first, p2.first ] and p1 and p2 are points between which we will put the line segment
- double a = (p2.second - p1.second)/(p2.first - p1.first);
- double b = p1.second - a*p1.first;
- //cerr << "Line crossing points : (" << p1.first << "," << p1.second << ") oraz (" << p2.first << "," << p2.second << ") : \n";
- //cerr << "a : " << a << " , b : " << b << " , x : " << x << endl;
- return -b/a;
-}
-
-
-
-
-/**
- * Lexicographical ordering of points .
-**/
-bool compare_points_sorting( std::pair<double,double> f, std::pair<double,double> s )
-{
- if ( f.first < s.first )
- {
- return true;
- }
- else
- {//f.first >= s.first
- if ( f.first > s.first )
- {
- return false;
- }
- else
- {//f.first == s.first
- if ( f.second > s.second )
- {
- return true;
- }
- else
- {
- return false;
- }
- }
- }
-}
-
-
-
-/**
- * This procedure takes two points in R^2 and a double value x. It conputes the line pasing through those two points and return the value of that linear function at x.
-**/
-double function_value ( std::pair<double,double> p1, std::pair<double,double> p2 , double x )
-{
- //we assume here, that x \in [ p1.first, p2.first ] and p1 and p2 are points between which we will put the line segment
- double a = (p2.second - p1.second)/(p2.first - p1.first);
- double b = p1.second - a*p1.first;
- return (a*x+b);
-}
-
-
-
-
-
-/**
- * A clas implementing persistence landascpes data structures. For theroretical desciritpion, please consult a paper ''Statistical topological data analysis using persistence landscapes'' by Peter Bubenik.
- * For details of algorithms, please consult ''A persistence landscapes toolbox for topological statistics'' by Peter Bubenik and Pawel Dlotko.
- * Persistence landscapes allow vertorization, computations of distances, computations of projections to Real, computations of averages and scalar products. Therefore they implement suitable interfaces.
-**/
-class Persistence_landscape :
- public Abs_Vectorized_topological_data ,
- public Abs_Topological_data_with_distances,
- public Abs_Real_valued_topological_data,
- public Abs_Topological_data_with_averages,
- public Abs_Topological_data_with_scalar_product
-{
-public:
- /**
- * Default constructor.
- **/
- Persistence_landscape()
- {
- this->set_up_numbers_of_functions_for_vectorization_and_projections_to_reals();
- }
-
- /**
- * Constructor that takes as an input a vector of birth-death pairs.
- **/
- Persistence_landscape( const std::vector< std::pair< double , double > >& p );
-
- /**
- * Assignement operator.
- **/
- Persistence_landscape& operator=( const Persistence_landscape& org );
-
- /**
- * Copy constructor.
- **/
- Persistence_landscape(const Persistence_landscape&);
-
- /**
- * Constructor that reads persistence intervals from file and creates persistence landscape. The format of the input file is the following: in each line we put birth-death pair. Last line is assumed
- * to be empty. Even if the points within a line are not ordered, they will be ordered while the input is read.
- **/
- Persistence_landscape(const char* filename , size_t dimension = 0);
-
-
-
- /**
- * This procedure loads a landscape from file. It erase all the data that was previously stored in this landscape.
- **/
- void load_landscape_from_file( const char* filename );
-
-
- /**
- * The procedure stores a landscape to a file. The file can be later used by a procedure load_landscape_from_file.
- **/
- void print_to_file( const char* filename )const;
-
-
-
- /**
- * This function compute integral of the landscape (defined formally as sum of integrals on R of all landscape functions)
- **/
- double compute_integral_of_landscape()const;
-
-
- /**
- * This function compute integral of the 'level'-level of a landscape.
- **/
- double compute_integral_of_landscape( size_t level )const;
-
-
- /**
- * This function compute integral of the landscape p-th power of a landscape (defined formally as sum of integrals on R of p-th powers of all landscape functions)
- **/
- double compute_integral_of_landscape( double p )const;//this function compute integral of p-th power of landscape.
-
-
- /**
- * A function that computes the value of a landscape at a given point. The parameters of the function are: unsigned level and double x.
- * The procedure will compute the value of the level-landscape at the point x.
- **/
- double compute_value_at_a_given_point( unsigned level , double x )const;
-
- /**
- * Writing landscape into a stream. A i-th level landscape starts with a string "lambda_i". Then the discontinuity points of the landscapes follows.
- * Shall those points be joined with lines, we will obtain the i-th landscape function.
- **/
- friend std::ostream& operator<<(std::ostream& out, Persistence_landscape& land );
-
-
-
-
-
- /**
- * A function that compute sum of two landscapes.
- **/
- friend Persistence_landscape add_two_landscapes ( const Persistence_landscape& land1 , const Persistence_landscape& land2 )
- {
- return operation_on_pair_of_landscapes< std::plus<double> >(land1,land2);
- }
-
- /**
- * A function that compute difference of two landscapes.
- **/
- friend Persistence_landscape subtract_two_landscapes ( const Persistence_landscape& land1 , const Persistence_landscape& land2 )
- {
- return operation_on_pair_of_landscapes< std::minus<double> >(land1,land2);
- }
-
- /**
- * An operator +, that compute sum of two landscapes.
- **/
- friend Persistence_landscape operator+( const Persistence_landscape& first , const Persistence_landscape& second )
- {
- return add_two_landscapes( first,second );
- }
-
- /**
- * An operator -, that compute difference of two landscapes.
- **/
- friend Persistence_landscape operator-( const Persistence_landscape& first , const Persistence_landscape& second )
- {
- return subtract_two_landscapes( first,second );
- }
-
- /**
- * An operator * that allows multipilication of a landscape by a real number.
- **/
- friend Persistence_landscape operator*( const Persistence_landscape& first , double con )
- {
- return first.multiply_lanscape_by_real_number_not_overwrite(con);
- }
-
- /**
- * An operator * that allows multipilication of a landscape by a real number (order of parameters swapped).
- **/
- friend Persistence_landscape operator*( double con , const Persistence_landscape& first )
- {
- return first.multiply_lanscape_by_real_number_not_overwrite(con);
- }
-
- /**
- * Operator +=. The second parameter is persistnece landwscape.
- **/
- Persistence_landscape operator += ( const Persistence_landscape& rhs )
- {
- *this = *this + rhs;
- return *this;
- }
-
- /**
- * Operator -=. The second parameter is persistnece landwscape.
- **/
- Persistence_landscape operator -= ( const Persistence_landscape& rhs )
- {
- *this = *this - rhs;
- return *this;
- }
-
-
- /**
- * Operator *=. The second parameter is a real number by which the y values of all landscape functions are multiplied. The x-values remain unchanged.
- **/
- Persistence_landscape operator *= ( double x )
- {
- *this = *this*x;
- return *this;
- }
-
- /**
- * Operator /=. The second parameter is a real number.
- **/
- Persistence_landscape operator /= ( double x )
- {
- if ( x == 0 )throw( "In operator /=, division by 0. Program terminated." );
- *this = *this * (1/x);
- return *this;
- }
-
- /**
- * An operator to compare two persistence landscapes.
- **/
- bool operator == ( const Persistence_landscape& rhs )const;
-
-
- /**
- * An operator to compare two persistence landscapes.
- **/
- bool operator != ( const Persistence_landscape& rhs )const
- {
- return !((*this) == rhs);
- }
-
-
- /**
- * Computations of maximum (y) value of landscape.
- **/
- double compute_maximum()const
- {
- double maxValue = 0;
- if ( this->land.size() )
- {
- maxValue = -std::numeric_limits<int>::max();
- for ( size_t i = 0 ; i != this->land[0].size() ; ++i )
- {
- if ( this->land[0][i].second > maxValue )maxValue = this->land[0][i].second;
- }
- }
- return maxValue;
- }
-
- /**
- * Computations of a L^i norm of landscape, where i is the input parameter.
- **/
- double compute_norm_of_landscape( double i )
- {
- Persistence_landscape l;
- if ( i != -1 )
- {
- return compute_discance_of_landscapes(*this,l,i);
- }
- else
- {
- return compute_max_norm_discance_of_landscapes(*this,l);
- }
- }
-
- /**
- * An operator to compute the value of a landscape in the level 'level' at the argument 'x'.
- **/
- double operator()(unsigned level,double x)const{return this->compute_value_at_a_given_point(level,x);}
-
- /**
- * Computations of L^{\infty} distance between two landscapes.
- **/
- friend double compute_max_norm_discance_of_landscapes( const Persistence_landscape& first, const Persistence_landscape& second );
- //friend double compute_max_norm_discance_of_landscapes( const Persistence_landscape& first, const Persistence_landscape& second , unsigned& nrOfLand , double&x , double& y1, double& y2 );
-
-
- /**
- * Computations of L^{p} distance between two landscapes. p is the parameter of the procedure.
- **/
- friend double compute_discance_of_landscapes( const Persistence_landscape& first, const Persistence_landscape& second , int p );
-
-
-
- /**
- * Function to compute absolute value of a PL function. The representation of persistence landscapes allow to store general PL-function. When computing distance betwen two landscapes, we compute difference between
- * them. In this case, a general PL-function with negative value can appear as a result. Then in order to compute distance, we need to take its absolute value. This is the purpose of this procedure.
- **/
- Persistence_landscape abs();
-
- /**
- * Computes the number of landscape functions.
- **/
- size_t size()const{return this->land.size(); }
-
- /**
- * Computate maximal value of lambda-level landscape.
- **/
- double find_max( unsigned lambda )const;
-
- /**
- * Function to compute inner (scalar) product of two landscapes.
- **/
- friend double compute_inner_product( const Persistence_landscape& l1 , const Persistence_landscape& l2 );
-
-
-
-
- //concretization of abstract functions:
-
- /**
- * The number of projections to R is defined to the number of nonzero landscape functions. I-th projection is an integral of i-th landscape function over whole R.
- **/
- double project_to_R( int number_of_function )
- {
- return this->compute_integral_of_landscape( (size_t)number_of_function );
- }
-
- std::vector<double> vectorize( int number_of_function )
- {
- //TODO, think of something smarter over here
- std::vector<double> v;
- if ( (size_t)number_of_function > this->land.size() )
- {
- return v;
- }
- v.reserve( this->land[number_of_function].size() );
- for ( size_t i = 0 ; i != this->land[number_of_function].size() ; ++i )
- {
- v.push_back( this->land[number_of_function][i].second );
- }
- return v;
- }
- void compute_average( std::vector< Abs_Topological_data_with_averages* > to_average )
- {
- bool dbg = false;
-
- std::vector< Persistence_landscape* > nextLevelMerge( to_average.size() );
- for ( size_t i = 0 ; i != to_average.size() ; ++i )
- {
- nextLevelMerge[i] = (Persistence_landscape*)to_average[i];
- }
- bool is_this_first_level = true;//in the loop, we will create dynamically a unmber of intermediate complexes. We have to clean that up, but we cannot erase the initial andscapes we have
- //to average. In this case, we simply check if the nextLevelMerge are the input landscapes or the ones created in that loop by usig this extra variable.
-
- while ( nextLevelMerge.size() != 1 )
- {
- if ( dbg ){cerr << "nextLevelMerge.size() : " << nextLevelMerge.size() << endl;}
- std::vector< Persistence_landscape* > nextNextLevelMerge;
- nextNextLevelMerge.reserve( to_average.size() );
- for ( size_t i = 0 ; i < nextLevelMerge.size() ; i=i+2 )
- {
- if ( dbg ){cerr << "i : " << i << endl;}
- Persistence_landscape* l = new Persistence_landscape;
- if ( i+1 != nextLevelMerge.size() )
- {
- (*l) = (*nextLevelMerge[i])+(*nextLevelMerge[i+1]);
- }
- else
- {
- (*l) = *nextLevelMerge[i];
- }
- nextNextLevelMerge.push_back( l );
- }
- if ( dbg ){cerr << "After this iteration \n";}
-
- if ( !is_this_first_level )
- {
- //deallocate the memory if the vector nextLevelMerge do not consist of the initial landscapes
- for ( size_t i = 0 ; i != nextLevelMerge.size() ; ++i )
- {
- delete nextLevelMerge[i];
- }
- }
- is_this_first_level = false;
- nextLevelMerge.swap(nextNextLevelMerge);
- }
- (*this) = (*nextLevelMerge[0]);
- (*this) *= 1/( (double)to_average.size() );
- }
-
-
- double distance( const Abs_Topological_data_with_distances* second , double power = 1 )
- {
- if ( power != -1 )
- {
- return compute_discance_of_landscapes( *this , *((Persistence_landscape*)second) , power );
- }
- else
- {
- return compute_max_norm_discance_of_landscapes( *this , *((Persistence_landscape*)second) );
- }
- }
-
-
- double compute_scalar_product( const Abs_Topological_data_with_scalar_product* second )
- {
- return compute_inner_product( (*this) , *((Persistence_landscape*)second) );
- }
-
-
- std::vector< std::vector< std::pair<double,double> > > output_for_visualization()
- {
- return this->land;
- }
-
-
- //a function used to create a gnuplot script for visualization of landscapes
- void plot( const char* filename ,int from = -1, int to = -1 , double xRangeBegin = -1 , double xRangeEnd = -1 , double yRangeBegin = -1 , double yRangeEnd = -1 );
-
-
-private:
- std::vector< std::vector< std::pair<double,double> > > land;
-
- void construct_persistence_landscape_from_barcode( const std::vector< std::pair< double , double > > & p );
- Persistence_landscape multiply_lanscape_by_real_number_not_overwrite( double x )const;
- void multiply_lanscape_by_real_number_overwrite( double x );
- template < typename oper > friend Persistence_landscape operation_on_pair_of_landscapes ( const Persistence_landscape& land1 , const Persistence_landscape& land2 );
- friend double compute_maximal_distance_non_symmetric( const Persistence_landscape& pl1, const Persistence_landscape& pl2 );
-
- void set_up_numbers_of_functions_for_vectorization_and_projections_to_reals()
- {
- //warning, this function can be only called after filling in the intervals vector.
- this->number_of_functions_for_vectorization = this->land.size();
- this->number_of_functions_for_projections_to_reals = this->land.size();
- }
-};
-
-
-Persistence_landscape::Persistence_landscape(const Persistence_landscape& oryginal)
-{
- //std::cerr << "Running copy constructor \n";
- std::vector< std::vector< std::pair<double,double> > > land( oryginal.land.size() );
- for ( size_t i = 0 ; i != oryginal.land.size() ; ++i )
- {
- land[i].insert( land[i].end() , oryginal.land[i].begin() , oryginal.land[i].end() );
- }
- this->land = land;
- this->set_up_numbers_of_functions_for_vectorization_and_projections_to_reals();
-}
-
-
-
-
-
-Persistence_landscape::Persistence_landscape(const char* filename , size_t dimension)
-{
- bool dbg = false;
-
- if ( dbg )
- {
- std::cerr << "Using constructor : Persistence_landscape(char* filename)" << std::endl;
- }
- //standard file with barcode
- std::vector< std::pair< double , double > > barcode = read_standard_file( filename );
- //gudhi file with barcode
- //std::vector< std::pair< double , double > > barcode = read_gudhi_file( filename , dimension );
- this->construct_persistence_landscape_from_barcode( barcode );
- this->set_up_numbers_of_functions_for_vectorization_and_projections_to_reals();
-}
-
-
-bool operatorEqualDbg = false;
-bool Persistence_landscape::operator == ( const Persistence_landscape& rhs )const
-{
- if ( this->land.size() != rhs.land.size() )
- {
- if (operatorEqualDbg)std::cerr << "1\n";
- return false;
- }
- for ( size_t level = 0 ; level != this->land.size() ; ++level )
- {
- if ( this->land[level].size() != rhs.land[level].size() )
- {
- if (operatorEqualDbg)std::cerr << "this->land[level].size() : " << this->land[level].size() << "\n";
- if (operatorEqualDbg)std::cerr << "rhs.land[level].size() : " << rhs.land[level].size() << "\n";
- if (operatorEqualDbg)std::cerr << "2\n";
- return false;
- }
- for ( size_t i = 0 ; i != this->land[level].size() ; ++i )
- {
- if ( !( almost_equal(this->land[level][i].first , rhs.land[level][i].first) && almost_equal(this->land[level][i].second , rhs.land[level][i].second) ) )
- {
- //cerr<< this->land[level][i].first << " , " << rhs.land[level][i].first << " and " << this->land[level][i].second << " , " << rhs.land[level][i].second << endl;
- if (operatorEqualDbg)std::cerr << "this->land[level][i] : " << this->land[level][i].first << " " << this->land[level][i].second << "\n";
- if (operatorEqualDbg)std::cerr << "rhs.land[level][i] : " << rhs.land[level][i].first << " " << rhs.land[level][i].second << "\n";
- if (operatorEqualDbg)std::cerr << "3\n";
- return false;
- }
- }
- }
- return true;
-}
-
-
-Persistence_landscape& Persistence_landscape::operator=( const Persistence_landscape& oryginal )
-{
- std::vector< std::vector< std::pair<double,double> > > land( oryginal.land.size() );
- for ( size_t i = 0 ; i != oryginal.land.size() ; ++i )
- {
- land[i].insert( land[i].end() , oryginal.land[i].begin() , oryginal.land[i].end() );
- }
- this->land = land;
- return *this;
-}
-
-
-
-Persistence_landscape::Persistence_landscape( const std::vector< std::pair< double , double > > & p )
-{
- this->construct_persistence_landscape_from_barcode( p );
- this->set_up_numbers_of_functions_for_vectorization_and_projections_to_reals();
-}
-
-
-void Persistence_landscape::construct_persistence_landscape_from_barcode( const std::vector< std::pair< double , double > > & p )
-{
- bool dbg = false;
- if ( dbg ){cerr << "Persistence_landscape::Persistence_landscape( const std::vector< std::pair< double , double > >& p )" << endl;}
-
- //this is a general algorithm to construct persistence landscapes.
- std::vector< std::pair<double,double> > bars;
- bars.insert( bars.begin() , p.begin() , p.end() );
- std::sort( bars.begin() , bars.end() , compare_points_sorting );
-
- if (dbg)
- {
- std::cerr << "Bars : \n";
- for ( size_t i = 0 ; i != bars.size() ; ++i )
- {
- std::cerr << bars[i].first << " " << bars[i].second << "\n";
- }
- getchar();
- }
-
- std::vector< std::pair<double,double> > characteristicPoints(p.size());
- for ( size_t i = 0 ; i != bars.size() ; ++i )
- {
- characteristicPoints[i] = std::make_pair((bars[i].first+bars[i].second)/2.0 , (bars[i].second - bars[i].first)/2.0);
- }
- std::vector< std::vector< std::pair<double,double> > > Persistence_landscape;
- while ( !characteristicPoints.empty() )
- {
- if(dbg)
- {
- for ( size_t i = 0 ; i != characteristicPoints.size() ; ++i )
- {
- std::cout << "(" << characteristicPoints[i].first << " " << characteristicPoints[i].second << ")\n";
- }
- std::cin.ignore();
- }
-
- std::vector< std::pair<double,double> > lambda_n;
- lambda_n.push_back( std::make_pair( -std::numeric_limits<int>::max() , 0 ) );
- lambda_n.push_back( std::make_pair(minus_length(characteristicPoints[0]),0) );
- lambda_n.push_back( characteristicPoints[0] );
-
- if (dbg)
- {
- std::cerr << "1 Adding to lambda_n : (" << -std::numeric_limits<int>::max() << " " << 0 << ") , (" << minus_length(characteristicPoints[0]) << " " << 0 << ") , (" << characteristicPoints[0].first << " " << characteristicPoints[0].second << ") \n";
- }
-
- size_t i = 1;
- std::vector< std::pair<double,double> > newCharacteristicPoints;
- while ( i < characteristicPoints.size() )
- {
- size_t p = 1;
- if ( (minus_length(characteristicPoints[i]) >= minus_length(lambda_n[lambda_n.size()-1])) && (birth_plus_deaths(characteristicPoints[i]) > birth_plus_deaths(lambda_n[lambda_n.size()-1])) )
- {
- if ( minus_length(characteristicPoints[i]) < birth_plus_deaths(lambda_n[lambda_n.size()-1]) )
- {
- std::pair<double,double> point = std::make_pair( (minus_length(characteristicPoints[i])+birth_plus_deaths(lambda_n[lambda_n.size()-1]))/2 , (birth_plus_deaths(lambda_n[lambda_n.size()-1])-minus_length(characteristicPoints[i]))/2 );
- lambda_n.push_back( point );
- if (dbg)
- {
- std::cerr << "2 Adding to lambda_n : (" << point.first << " " << point.second << ")\n";
- }
-
-
- if ( dbg )
- {
- std::cerr << "characteristicPoints[i+p] : " << characteristicPoints[i+p].first << " " << characteristicPoints[i+p].second << "\n";
- std::cerr << "point : " << point.first << " " << point.second << "\n";
- getchar();
- }
-
- while ( (i+p < characteristicPoints.size() ) && ( almost_equal(minus_length(point),minus_length(characteristicPoints[i+p])) ) && ( birth_plus_deaths(point) <= birth_plus_deaths(characteristicPoints[i+p]) ) )
- {
- newCharacteristicPoints.push_back( characteristicPoints[i+p] );
- if (dbg)
- {
- std::cerr << "3.5 Adding to newCharacteristicPoints : (" << characteristicPoints[i+p].first << " " << characteristicPoints[i+p].second << ")\n";
- getchar();
- }
- ++p;
- }
-
-
- newCharacteristicPoints.push_back( point );
- if (dbg)
- {
- std::cerr << "4 Adding to newCharacteristicPoints : (" << point.first << " " << point.second << ")\n";
- }
-
-
- while ( (i+p < characteristicPoints.size() ) && ( minus_length(point) <= minus_length(characteristicPoints[i+p]) ) && (birth_plus_deaths(point)>=birth_plus_deaths(characteristicPoints[i+p])) )
- {
- newCharacteristicPoints.push_back( characteristicPoints[i+p] );
- if (dbg)
- {
- std::cerr << "characteristicPoints[i+p] : " << characteristicPoints[i+p].first << " " << characteristicPoints[i+p].second << "\n";
- std::cerr << "point : " << point.first << " " << point.second << "\n";
- std::cerr << "characteristicPoints[i+p] birth and death : " << minus_length(characteristicPoints[i+p]) << " , " << birth_plus_deaths(characteristicPoints[i+p]) << "\n";
- std::cerr << "point birth and death : " << minus_length(point) << " , " << birth_plus_deaths(point) << "\n";
-
- std::cerr << "3 Adding to newCharacteristicPoints : (" << characteristicPoints[i+p].first << " " << characteristicPoints[i+p].second << ")\n";
- getchar();
- }
- ++p;
- }
-
- }
- else
- {
- lambda_n.push_back( std::make_pair( birth_plus_deaths(lambda_n[lambda_n.size()-1]) , 0 ) );
- lambda_n.push_back( std::make_pair( minus_length(characteristicPoints[i]) , 0 ) );
- if (dbg)
- {
- std::cerr << "5 Adding to lambda_n : (" << birth_plus_deaths(lambda_n[lambda_n.size()-1]) << " " << 0 << ")\n";
- std::cerr << "5 Adding to lambda_n : (" << minus_length(characteristicPoints[i]) << " " << 0 << ")\n";
- }
- }
- lambda_n.push_back( characteristicPoints[i] );
- if (dbg)
- {
- std::cerr << "6 Adding to lambda_n : (" << characteristicPoints[i].first << " " << characteristicPoints[i].second << ")\n";
- }
- }
- else
- {
- newCharacteristicPoints.push_back( characteristicPoints[i] );
- if (dbg)
- {
- std::cerr << "7 Adding to newCharacteristicPoints : (" << characteristicPoints[i].first << " " << characteristicPoints[i].second << ")\n";
- }
- }
- i = i+p;
- }
- lambda_n.push_back( std::make_pair(birth_plus_deaths(lambda_n[lambda_n.size()-1]),0) );
- lambda_n.push_back( std::make_pair( std::numeric_limits<int>::max() , 0 ) );
-
- characteristicPoints = newCharacteristicPoints;
-
- lambda_n.erase(std::unique(lambda_n.begin(), lambda_n.end()), lambda_n.end());
- this->land.push_back( lambda_n );
- }
-}
-
-
-
-//this function find maximum of lambda_n
-double Persistence_landscape::find_max( unsigned lambda )const
-{
- if ( this->land.size() < lambda )return 0;
- double maximum = -std::numeric_limits<int>::max();
- for ( size_t i = 0 ; i != this->land[lambda].size() ; ++i )
- {
- if ( this->land[lambda][i].second > maximum )maximum = this->land[lambda][i].second;
- }
- return maximum;
-}
-
-
-double Persistence_landscape::compute_integral_of_landscape()const
-{
- double result = 0;
- for ( size_t i = 0 ; i != this->land.size() ; ++i )
- {
- for ( size_t nr = 2 ; nr != this->land[i].size()-1 ; ++nr )
- {
- //it suffices to compute every planar integral and then sum them ap for each lambda_n
- result += 0.5*( this->land[i][nr].first - this->land[i][nr-1].first )*(this->land[i][nr].second + this->land[i][nr-1].second);
- }
- }
- return result;
-}
-
-double Persistence_landscape::compute_integral_of_landscape( size_t level )const
-{
- double result = 0;
- if ( level >= this->land.size() )
- {
- //this landscape function is constantly equal 0, so is the intergral.
- return result;
- }
- //also negative landscapes are assumed to be zero.
- if ( level < 0 )return 0;
-
- for ( size_t nr = 2 ; nr != this->land[ level ].size()-1 ; ++nr )
- {
- //it suffices to compute every planar integral and then sum them ap for each lambda_n
- result += 0.5*( this->land[ level ][nr].first - this->land[ level ][nr-1].first )*(this->land[ level ][nr].second + this->land[ level ][nr-1].second);
- }
-
- return result;
-}
-
-
-bool compute_integral_of_landscapeDbg = false;
-double Persistence_landscape::compute_integral_of_landscape( double p )const
-{
- double result = 0;
- for ( size_t i = 0 ; i != this->land.size() ; ++i )
- {
- for ( size_t nr = 2 ; nr != this->land[i].size()-1 ; ++nr )
- {
- if (compute_integral_of_landscapeDbg)std::cout << "nr : " << nr << "\n";
- //In this interval, the landscape has a form f(x) = ax+b. We want to compute integral of (ax+b)^p = 1/a * (ax+b)^{p+1}/(p+1)
- std::pair<double,double> coef = compute_parameters_of_a_line( this->land[i][nr] , this->land[i][nr-1] );
- double a = coef.first;
- double b = coef.second;
-
- if (compute_integral_of_landscapeDbg)std::cout << "(" << this->land[i][nr].first << "," << this->land[i][nr].second << ") , " << this->land[i][nr-1].first << "," << this->land[i][nr].second << ")" << std::endl;
- if ( this->land[i][nr].first == this->land[i][nr-1].first )continue;
- if ( a != 0 )
- {
- result += 1/(a*(p+1)) * ( pow((a*this->land[i][nr].first+b),p+1) - pow((a*this->land[i][nr-1].first+b),p+1));
- }
- else
- {
- result += ( this->land[i][nr].first - this->land[i][nr-1].first )*( pow(this->land[i][nr].second,p) );
- }
- if ( compute_integral_of_landscapeDbg )
- {
- std::cout << "a : " <<a << " , b : " << b << std::endl;
- std::cout << "result : " << result << std::endl;
- }
- }
- //if (compute_integral_of_landscapeDbg) std::cin.ignore();
- }
- return result;
-}
-
-
-//this is O(log(n)) algorithm, where n is number of points in this->land.
-double Persistence_landscape::compute_value_at_a_given_point( unsigned level , double x )const
-{
- bool compute_value_at_a_given_pointDbg = false;
- //in such a case lambda_level = 0.
- if ( level > this->land.size() ) return 0;
-
- //we know that the points in this->land[level] are ordered according to x coordinate. Therefore, we can find the point by using bisection:
- unsigned coordBegin = 1;
- unsigned coordEnd = this->land[level].size()-2;
-
- if ( compute_value_at_a_given_pointDbg )
- {
- std::cerr << "Tutaj \n";
- std::cerr << "x : " << x << "\n";
- std::cerr << "this->land[level][coordBegin].first : " << this->land[level][coordBegin].first << "\n";
- std::cerr << "this->land[level][coordEnd].first : " << this->land[level][coordEnd].first << "\n";
- }
-
- //in this case x is outside the support of the landscape, therefore the value of the landscape is 0.
- if ( x <= this->land[level][coordBegin].first )return 0;
- if ( x >= this->land[level][coordEnd].first )return 0;
-
- if (compute_value_at_a_given_pointDbg)std::cerr << "Entering to the while loop \n";
-
- while ( coordBegin+1 != coordEnd )
- {
- if (compute_value_at_a_given_pointDbg)
- {
- std::cerr << "coordBegin : " << coordBegin << "\n";
- std::cerr << "coordEnd : " << coordEnd << "\n";
- std::cerr << "this->land[level][coordBegin].first : " << this->land[level][coordBegin].first << "\n";
- std::cerr << "this->land[level][coordEnd].first : " << this->land[level][coordEnd].first << "\n";
- }
-
-
- unsigned newCord = (unsigned)floor((coordEnd+coordBegin)/2.0);
-
- if (compute_value_at_a_given_pointDbg)
- {
- std::cerr << "newCord : " << newCord << "\n";
- std::cerr << "this->land[level][newCord].first : " << this->land[level][newCord].first << "\n";
- std::cin.ignore();
- }
-
- if ( this->land[level][newCord].first <= x )
- {
- coordBegin = newCord;
- if ( this->land[level][newCord].first == x )return this->land[level][newCord].second;
- }
- else
- {
- coordEnd = newCord;
- }
- }
-
- if (compute_value_at_a_given_pointDbg)
- {
- std::cout << "x : " << x << " is between : " << this->land[level][coordBegin].first << " a " << this->land[level][coordEnd].first << "\n";
- std::cout << "the y coords are : " << this->land[level][coordBegin].second << " a " << this->land[level][coordEnd].second << "\n";
- std::cerr << "coordBegin : " << coordBegin << "\n";
- std::cerr << "coordEnd : " << coordEnd << "\n";
- std::cin.ignore();
- }
- return function_value( this->land[level][coordBegin] , this->land[level][coordEnd] , x );
-}
-
-std::ostream& operator<<(std::ostream& out, Persistence_landscape& land )
-{
- for ( size_t level = 0 ; level != land.land.size() ; ++level )
- {
- out << "Lambda_" << level << ":" << std::endl;
- for ( size_t i = 0 ; i != land.land[level].size() ; ++i )
- {
- if ( land.land[level][i].first == -std::numeric_limits<int>::max() )
- {
- out << "-inf";
- }
- else
- {
- if ( land.land[level][i].first == std::numeric_limits<int>::max() )
- {
- out << "+inf";
- }
- else
- {
- out << land.land[level][i].first;
- }
- }
- out << " , " << land.land[level][i].second << std::endl;
- }
- }
- return out;
-}
-
-
-
-
-void Persistence_landscape::multiply_lanscape_by_real_number_overwrite( double x )
-{
- for ( size_t dim = 0 ; dim != this->land.size() ; ++dim )
- {
- for ( size_t i = 0 ; i != this->land[dim].size() ; ++i )
- {
- this->land[dim][i].second *= x;
- }
- }
-}
-
-bool AbsDbg = false;
-Persistence_landscape Persistence_landscape::abs()
-{
- Persistence_landscape result;
- for ( size_t level = 0 ; level != this->land.size() ; ++level )
- {
- if ( AbsDbg ){ std::cout << "level: " << level << std::endl; }
- std::vector< std::pair<double,double> > lambda_n;
- lambda_n.push_back( std::make_pair( -std::numeric_limits<int>::max() , 0 ) );
- for ( size_t i = 1 ; i != this->land[level].size() ; ++i )
- {
- if ( AbsDbg ){std::cout << "this->land[" << level << "][" << i << "] : " << this->land[level][i].first << " " << this->land[level][i].second << std::endl;}
- //if a line segment between this->land[level][i-1] and this->land[level][i] crosses the x-axis, then we have to add one landscape point t oresult
- if ( (this->land[level][i-1].second)*(this->land[level][i].second) < 0 )
- {
- double zero = find_zero_of_a_line_segment_between_those_two_points( this->land[level][i-1] , this->land[level][i] );
-
- lambda_n.push_back( std::make_pair(zero , 0) );
- lambda_n.push_back( std::make_pair(this->land[level][i].first , fabs(this->land[level][i].second)) );
- if ( AbsDbg )
- {
- std::cout << "Adding pair : (" << zero << ",0)" << std::endl;
- std::cout << "In the same step adding pair : (" << this->land[level][i].first << "," << fabs(this->land[level][i].second) << ") " << std::endl;
- std::cin.ignore();
- }
- }
- else
- {
- lambda_n.push_back( std::make_pair(this->land[level][i].first , fabs(this->land[level][i].second)) );
- if ( AbsDbg )
- {
- std::cout << "Adding pair : (" << this->land[level][i].first << "," << fabs(this->land[level][i].second) << ") " << std::endl;
- std::cin.ignore();
- }
- }
- }
- result.land.push_back( lambda_n );
- }
- return result;
-}
-
-
-Persistence_landscape Persistence_landscape::multiply_lanscape_by_real_number_not_overwrite( double x )const
-{
- std::vector< std::vector< std::pair<double,double> > > result(this->land.size());
- for ( size_t dim = 0 ; dim != this->land.size() ; ++dim )
- {
- std::vector< std::pair<double,double> > lambda_dim( this->land[dim].size() );
- for ( size_t i = 0 ; i != this->land[dim].size() ; ++i )
- {
- lambda_dim[i] = std::make_pair( this->land[dim][i].first , x*this->land[dim][i].second );
- }
- result[dim] = lambda_dim;
- }
- Persistence_landscape res;
- //CHANGE
- //res.land = result;
- res.land.swap(result);
- return res;
-}//multiply_lanscape_by_real_number_overwrite
-
-
-void Persistence_landscape::print_to_file( const char* filename )const
-{
- std::ofstream write;
- write.open(filename);
- for ( size_t dim = 0 ; dim != this->land.size() ; ++dim )
- {
- write << "#lambda_" << dim << std::endl;
- for ( size_t i = 1 ; i != this->land[dim].size()-1 ; ++i )
- {
- write << this->land[dim][i].first << " " << this->land[dim][i].second << std::endl;
- }
- }
- write.close();
-}
-
-void Persistence_landscape::load_landscape_from_file( const char* filename )
-{
- bool dbg = false;
- //removing the current content of the persistence landscape.
- this->land.clear();
-
-
- //this constructor reads persistence landscape form a file. This file have to be created by this software beforehead
- std::ifstream in;
- in.open( filename );
- if ( !( access( filename, F_OK ) != -1 ) )
- {
- cerr << "The file : " << filename << " do not exist. The program will now terminate \n";
- throw "The file from which you are trying to read the persistence landscape do not exist. The program will now terminate \n";
- }
-
- std::string line;
- std::vector< std::pair<double,double> > landscapeAtThisLevel;
-
- bool isThisAFirsLine = true;
- while ( !in.eof() )
- {
- getline(in,line);
- if ( !(line.length() == 0 || line[0] == '#') )
- {
- std::stringstream lineSS;
- lineSS << line;
- double beginn, endd;
- lineSS >> beginn;
- lineSS >> endd;
- landscapeAtThisLevel.push_back( std::make_pair( beginn , endd ) );
- if (dbg){std::cerr << "Reading a pont : " << beginn << " , " << endd << std::endl;}
- }
- else
- {
- if (dbg)
- {
- std::cout << "IGNORE LINE\n";
- getchar();
- }
- if ( !isThisAFirsLine )
- {
- landscapeAtThisLevel.push_back( std::make_pair( std::numeric_limits<int>::max() , 0 ) );
- this->land.push_back(landscapeAtThisLevel);
- std::vector< std::pair<double,double> > newLevelOdLandscape;
- landscapeAtThisLevel.swap(newLevelOdLandscape);
- }
- landscapeAtThisLevel.push_back( std::make_pair( -std::numeric_limits<int>::max() , 0 ) );
- isThisAFirsLine = false;
- }
- }
- if ( landscapeAtThisLevel.size() > 1 )
- {
- //seems that the last line of the file is not finished with the newline sign. We need to put what we have in landscapeAtThisLevel to the constructed landscape.
- landscapeAtThisLevel.push_back( std::make_pair( std::numeric_limits<int>::max() , 0 ) );
- this->land.push_back(landscapeAtThisLevel);
- }
-
- in.close();
-}
-
-
-template < typename T >
-Persistence_landscape operation_on_pair_of_landscapes ( const Persistence_landscape& land1 , const Persistence_landscape& land2 )
-{
- bool operation_on_pair_of_landscapesDBG = false;
- if ( operation_on_pair_of_landscapesDBG ){std::cout << "operation_on_pair_of_landscapes\n";std::cin.ignore();}
- Persistence_landscape result;
- std::vector< std::vector< std::pair<double,double> > > land( std::max( land1.land.size() , land2.land.size() ) );
- result.land = land;
- T oper;
-
- for ( size_t i = 0 ; i != std::min( land1.land.size() , land2.land.size() ) ; ++i )
- {
- std::vector< std::pair<double,double> > lambda_n;
- size_t p = 0;
- size_t q = 0;
- while ( (p+1 < land1.land[i].size()) && (q+1 < land2.land[i].size()) )
- {
- if ( operation_on_pair_of_landscapesDBG )
- {
- std::cerr << "p : " << p << "\n";
- std::cerr << "q : " << q << "\n";
- std::cout << "land1.land[i][p].first : " << land1.land[i][p].first << "\n";
- std::cout << "land2.land[i][q].first : " << land2.land[i][q].first << "\n";
- }
-
- if ( land1.land[i][p].first < land2.land[i][q].first )
- {
- if ( operation_on_pair_of_landscapesDBG )
- {
- std::cout << "first \n";
- std::cout << " function_value(land2.land[i][q-1],land2.land[i][q],land1.land[i][p].first) : "<< function_value(land2.land[i][q-1],land2.land[i][q],land1.land[i][p].first) << "\n";
- //std::cout << "oper( " << land1.land[i][p].second <<"," << function_value(land2.land[i][q-1],land2.land[i][q],land1.land[i][p].first) << " : " << oper( land1.land[i][p].second , function_value(land2.land[i][q-1],land2.land[i][q],land1.land[i][p].first) ) << "\n";
- }
- lambda_n.push_back(
- std::make_pair(
- land1.land[i][p].first ,
- oper( (double)land1.land[i][p].second , function_value(land2.land[i][q-1],land2.land[i][q],land1.land[i][p].first) )
- )
- );
- ++p;
- continue;
- }
- if ( land1.land[i][p].first > land2.land[i][q].first )
- {
- if ( operation_on_pair_of_landscapesDBG )
- {
- std::cout << "Second \n";
- std::cout << "function_value("<< land1.land[i][p-1].first << " " << land1.land[i][p-1].second <<" ,"<< land1.land[i][p].first << " " << land1.land[i][p].second <<", " << land2.land[i][q].first<<" ) : " << function_value( land1.land[i][p-1] , land1.land[i][p-1] ,land2.land[i][q].first ) << "\n";
- std::cout << "oper( " << function_value( land1.land[i][p] , land1.land[i][p-1] ,land2.land[i][q].first ) <<"," << land2.land[i][q].second <<" : " << oper( land2.land[i][q].second , function_value( land1.land[i][p] , land1.land[i][p-1] ,land2.land[i][q].first ) ) << "\n";
- }
- lambda_n.push_back( std::make_pair( land2.land[i][q].first , oper( function_value( land1.land[i][p] , land1.land[i][p-1] ,land2.land[i][q].first ) , land2.land[i][q].second ) ) );
- ++q;
- continue;
- }
- if ( land1.land[i][p].first == land2.land[i][q].first )
- {
- if (operation_on_pair_of_landscapesDBG)std::cout << "Third \n";
- lambda_n.push_back( std::make_pair( land2.land[i][q].first , oper( land1.land[i][p].second , land2.land[i][q].second ) ) );
- ++p;++q;
- }
- if (operation_on_pair_of_landscapesDBG){std::cout << "Next iteration \n";getchar();}
- }
- while ( (p+1 < land1.land[i].size())&&(q+1 >= land2.land[i].size()) )
- {
- if (operation_on_pair_of_landscapesDBG)
- {
- std::cout << "New point : " << land1.land[i][p].first << " oper(land1.land[i][p].second,0) : " << oper(land1.land[i][p].second,0) << std::endl;
- }
- lambda_n.push_back( std::make_pair(land1.land[i][p].first , oper(land1.land[i][p].second,0) ) );
- ++p;
- }
- while ( (p+1 >= land1.land[i].size())&&(q+1 < land2.land[i].size()) )
- {
- if (operation_on_pair_of_landscapesDBG)
- {
- std::cout << "New point : " << land2.land[i][q].first << " oper(0,land2.land[i][q].second) : " << oper(0,land2.land[i][q].second) << std::endl;
- }
- lambda_n.push_back( std::make_pair(land2.land[i][q].first , oper(0,land2.land[i][q].second) ) );
- ++q;
- }
- lambda_n.push_back( std::make_pair( std::numeric_limits<int>::max() , 0 ) );
- //CHANGE
- //result.land[i] = lambda_n;
- result.land[i].swap(lambda_n);
- }
- if ( land1.land.size() > std::min( land1.land.size() , land2.land.size() ) )
- {
- if (operation_on_pair_of_landscapesDBG){std::cout << "land1.land.size() > std::min( land1.land.size() , land2.land.size() )" << std::endl;}
- for ( size_t i = std::min( land1.land.size() , land2.land.size() ) ; i != std::max( land1.land.size() , land2.land.size() ) ; ++i )
- {
- std::vector< std::pair<double,double> > lambda_n( land1.land[i] );
- for ( size_t nr = 0 ; nr != land1.land[i].size() ; ++nr )
- {
- lambda_n[nr] = std::make_pair( land1.land[i][nr].first , oper( land1.land[i][nr].second , 0 ) );
- }
- //CHANGE
- //result.land[i] = lambda_n;
- result.land[i].swap(lambda_n);
- }
- }
- if ( land2.land.size() > std::min( land1.land.size() , land2.land.size() ) )
- {
- if (operation_on_pair_of_landscapesDBG){std::cout << "( land2.land.size() > std::min( land1.land.size() , land2.land.size() ) ) " << std::endl;}
- for ( size_t i = std::min( land1.land.size() , land2.land.size() ) ; i != std::max( land1.land.size() , land2.land.size() ) ; ++i )
- {
- std::vector< std::pair<double,double> > lambda_n( land2.land[i] );
- for ( size_t nr = 0 ; nr != land2.land[i].size() ; ++nr )
- {
- lambda_n[nr] = std::make_pair( land2.land[i][nr].first , oper( 0 , land2.land[i][nr].second ) );
- }
- //CHANGE
- //result.land[i] = lambda_n;
- result.land[i].swap(lambda_n);
- }
- }
- if ( operation_on_pair_of_landscapesDBG ){std::cout << "operation_on_pair_of_landscapes\n";std::cin.ignore();}
- return result;
-}//operation_on_pair_of_landscapes
-
-
-
-double compute_maximal_distance_non_symmetric( const Persistence_landscape& pl1, const Persistence_landscape& pl2 )
-{
- bool dbg = false;
- if (dbg)std::cerr << " compute_maximal_distance_non_symmetric \n";
- //this distance is not symmetric. It compute ONLY distance between inflection points of pl1 and pl2.
- double maxDist = 0;
- size_t minimalNumberOfLevels = std::min( pl1.land.size() , pl2.land.size() );
- for ( size_t level = 0 ; level != minimalNumberOfLevels ; ++ level )
- {
- if (dbg)
- {
- std::cerr << "Level : " << level << std::endl;
- std::cerr << "PL1 : \n";
- for ( size_t i = 0 ; i != pl1.land[level].size() ; ++i )
- {
- std::cerr << "(" <<pl1.land[level][i].first << "," << pl1.land[level][i].second << ") \n";
- }
- std::cerr << "PL2 : \n";
- for ( size_t i = 0 ; i != pl2.land[level].size() ; ++i )
- {
- std::cerr << "(" <<pl2.land[level][i].first << "," << pl2.land[level][i].second << ") \n";
- }
- std::cin.ignore();
- }
-
- int p2Count = 0;
- for ( size_t i = 1 ; i != pl1.land[level].size()-1 ; ++i ) //w tym przypadku nie rozwarzam punktow w nieskocznosci
- {
- while ( true )
- {
- if ( (pl1.land[level][i].first>=pl2.land[level][p2Count].first) && (pl1.land[level][i].first<=pl2.land[level][p2Count+1].first) )break;
- p2Count++;
- }
- double val = fabs( function_value( pl2.land[level][p2Count] , pl2.land[level][p2Count+1] , pl1.land[level][i].first ) - pl1.land[level][i].second);
- if ( maxDist <= val )maxDist = val;
-
- if (dbg)
- {
- std::cerr << pl1.land[level][i].first <<"in [" << pl2.land[level][p2Count].first << "," << pl2.land[level][p2Count+1].first <<"] \n";
- std::cerr << "pl1[level][i].second : " << pl1.land[level][i].second << std::endl;
- std::cerr << "function_value( pl2[level][p2Count] , pl2[level][p2Count+1] , pl1[level][i].first ) : " << function_value( pl2.land[level][p2Count] , pl2.land[level][p2Count+1] , pl1.land[level][i].first ) << std::endl;
- std::cerr << "val : " << val << std::endl;
- std::cin.ignore();
- }
- }
- }
-
- if (dbg)std::cerr << "minimalNumberOfLevels : " << minimalNumberOfLevels << std::endl;
-
- if ( minimalNumberOfLevels < pl1.land.size() )
- {
- for ( size_t level = minimalNumberOfLevels ; level != pl1.land.size() ; ++ level )
- {
- for ( size_t i = 0 ; i != pl1.land[level].size() ; ++i )
- {
- if (dbg)std::cerr << "pl1[level][i].second : " << pl1.land[level][i].second << std::endl;
- if ( maxDist < pl1.land[level][i].second )maxDist = pl1.land[level][i].second;
- }
- }
- }
- return maxDist;
-}
-
-
-
-
-double compute_discance_of_landscapes( const Persistence_landscape& first, const Persistence_landscape& second , int p )
-{
- //This is what we want to compute: (\int_{- \infty}^{+\infty}| first-second |^p)^(1/p). We will do it one step at a time:
-
- //first-second :
- Persistence_landscape lan = first-second;
-
- //| first-second |:
- lan = lan.abs();
- if ( p != -1 )
- {
- //\int_{- \infty}^{+\infty}| first-second |^p
- double result;
- if ( p != 1 )
- {
- result = lan.compute_integral_of_landscape( (double)p );
- }
- else
- {
- result = lan.compute_integral_of_landscape();
- }
-
- //(\int_{- \infty}^{+\infty}| first-second |^p)^(1/p)
- return pow( result , 1/(double)p );
- }
- else
- {
- //p == -1
- return lan.compute_maximum();
- }
-}
-
-double compute_max_norm_discance_of_landscapes( const Persistence_landscape& first, const Persistence_landscape& second )
-{
- return std::max( compute_maximal_distance_non_symmetric(first,second) , compute_maximal_distance_non_symmetric(second,first) );
-}
-
-
-bool comparePairsForMerging( std::pair< double , unsigned > first , std::pair< double , unsigned > second )
-{
- return (first.first < second.first);
-}
-
-
-
-
-double compute_inner_product( const Persistence_landscape& l1 , const Persistence_landscape& l2 )
-{
- bool dbg = false;
- double result = 0;
-
- for ( size_t level = 0 ; level != std::min( l1.size() , l2.size() ) ; ++level )
- {
- if ( dbg ){cerr << "Computing inner product for a level : " << level << endl;getchar();}
- if ( l1.land[level].size() * l2.land[level].size() == 0 )continue;
-
- //endpoints of the interval on which we will compute the inner product of two locally linear functions:
- double x1 = -std::numeric_limits<int>::max();
- double x2;
- if ( l1.land[level][1].first < l2.land[level][1].first )
- {
- x2 = l1.land[level][1].first;
- }
- else
- {
- x2 = l2.land[level][1].first;
- }
-
- //iterators for the landscapes l1 and l2
- size_t l1It = 0;
- size_t l2It = 0;
-
- while ( (l1It < l1.land[level].size()-1) && (l2It < l2.land[level].size()-1) )
- {
- //compute the value of a inner product on a interval [x1,x2]
-
- double a,b,c,d;
-
- a = (l1.land[level][l1It+1].second - l1.land[level][l1It].second)/(l1.land[level][l1It+1].first - l1.land[level][l1It].first);
- b = l1.land[level][l1It].second - a*l1.land[level][l1It].first;
- c = (l2.land[level][l2It+1].second - l2.land[level][l2It].second)/(l2.land[level][l2It+1].first - l2.land[level][l2It].first);
- d = l2.land[level][l2It].second - c*l2.land[level][l2It].first;
-
- double contributionFromThisPart
- =
- (a*c*x2*x2*x2/3 + (a*d+b*c)*x2*x2/2 + b*d*x2) - (a*c*x1*x1*x1/3 + (a*d+b*c)*x1*x1/2 + b*d*x1);
-
- result += contributionFromThisPart;
-
- if ( dbg )
- {
- cerr << "[l1.land[level][l1It].first,l1.land[level][l1It+1].first] : " << l1.land[level][l1It].first << " , " << l1.land[level][l1It+1].first << endl;
- cerr << "[l2.land[level][l2It].first,l2.land[level][l2It+1].first] : " << l2.land[level][l2It].first << " , " << l2.land[level][l2It+1].first << endl;
- cerr << "a : " << a << ", b : " << b << " , c: " << c << ", d : " << d << endl;
- cerr << "x1 : " << x1 << " , x2 : " << x2 << endl;
- cerr << "contributionFromThisPart : " << contributionFromThisPart << endl;
- cerr << "result : " << result << endl;
- getchar();
- }
-
- //we have two intervals in which functions are constant:
- //[l1.land[level][l1It].first , l1.land[level][l1It+1].first]
- //and
- //[l2.land[level][l2It].first , l2.land[level][l2It+1].first]
- //We also have an interval [x1,x2]. Since the intervals in the landscapes cover the whole R, then it is clear that x2
- //is either l1.land[level][l1It+1].first of l2.land[level][l2It+1].first or both. Lets test it.
- if ( x2 == l1.land[level][l1It+1].first )
- {
- if ( x2 == l2.land[level][l2It+1].first )
- {
- //in this case, we increment both:
- ++l2It;
- if ( dbg ){cerr << "Incrementing both \n";}
- }
- else
- {
- if ( dbg ){cerr << "Incrementing first \n";}
- }
- ++l1It;
- }
- else
- {
- //in this case we increment l2It
- ++l2It;
- if ( dbg ){cerr << "Incrementing second \n";}
- }
- //Now, we shift x1 and x2:
- x1 = x2;
- if ( l1.land[level][l1It+1].first < l2.land[level][l2It+1].first )
- {
- x2 = l1.land[level][l1It+1].first;
- }
- else
- {
- x2 = l2.land[level][l2It+1].first;
- }
-
- }
-
- }
- return result;
-}
-
-
-void Persistence_landscape::plot( const char* filename , int from, int to , double xRangeBegin , double xRangeEnd , double yRangeBegin , double yRangeEnd )
-{
- //this program create a gnuplot script file that allows to plot persistence diagram.
- ofstream out;
-
- std::ostringstream nameSS;
- nameSS << filename << "_GnuplotScript";
- std::string nameStr = nameSS.str();
- out.open( (char*)nameStr.c_str() );
-
- if ( (xRangeBegin != -1) || (xRangeEnd != -1) || (yRangeBegin != -1) || (yRangeEnd != -1) )
- {
- out << "set xrange [" << xRangeBegin << " : " << xRangeEnd << "]" << endl;
- out << "set yrange [" << yRangeBegin << " : " << yRangeEnd << "]" << endl;
- }
-
- if ( from == -1 ){from = 0;}
- if ( to == -1 ){to = this->land.size();}
-
- out << "plot ";
- for ( size_t lambda= std::min((size_t)from,this->land.size()) ; lambda != std::min((size_t)to,this->land.size()) ; ++lambda )
- {
- out << " '-' using 1:2 title 'l" << lambda << "' with lp";
- if ( lambda+1 != std::min((size_t)to,this->land.size()) )
- {
- out << ", \\";
- }
- out << endl;
- }
-
- for ( size_t lambda= std::min((size_t)from,this->land.size()) ; lambda != std::min((size_t)to,this->land.size()) ; ++lambda )
- {
- for ( size_t i = 1 ; i != this->land[lambda].size()-1 ; ++i )
- {
- out << this->land[lambda][i].first << " " << this->land[lambda][i].second << endl;
- }
- out << "EOF" << endl;
- }
- cout << "Gnuplot script to visualize persistence diagram written to the file: " << nameStr << ". Type load '" << nameStr << "' in gnuplot to visualize." << endl;
-}
-
-
-
-
-}//namespace gudhi stat
-}//namespace gudhi
-
-
-#endif