summaryrefslogtreecommitdiff
path: root/src/Witness_complex/example/protected_sets/protected_sets_paper.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/Witness_complex/example/protected_sets/protected_sets_paper.cpp')
-rw-r--r--src/Witness_complex/example/protected_sets/protected_sets_paper.cpp610
1 files changed, 0 insertions, 610 deletions
diff --git a/src/Witness_complex/example/protected_sets/protected_sets_paper.cpp b/src/Witness_complex/example/protected_sets/protected_sets_paper.cpp
deleted file mode 100644
index f3df3f1e..00000000
--- a/src/Witness_complex/example/protected_sets/protected_sets_paper.cpp
+++ /dev/null
@@ -1,610 +0,0 @@
-#ifndef PROTECTED_SETS_H
-#define PROTECTED_SETS_H
-
-#include <algorithm>
-#include <CGAL/Cartesian_d.h>
-#include <CGAL/Epick_d.h>
-#include <CGAL/Euclidean_distance.h>
-#include <CGAL/Kernel_d/Sphere_d.h>
-#include <CGAL/Kernel_d/Hyperplane_d.h>
-#include <CGAL/Kernel_d/Vector_d.h>
-
-typedef CGAL::Epick_d<CGAL::Dynamic_dimension_tag> K;
-typedef K::Point_d Point_d;
-typedef K::Vector_d Vector_d;
-typedef K::Oriented_side_d Oriented_side_d;
-typedef K::Has_on_positive_side_d Has_on_positive_side_d;
-typedef K::Sphere_d Sphere_d;
-typedef K::Hyperplane_d Hyperplane_d;
-
-typedef CGAL::Delaunay_triangulation<K> Delaunay_triangulation;
-typedef Delaunay_triangulation::Facet Facet;
-typedef Delaunay_triangulation::Vertex_handle Delaunay_vertex;
-typedef Delaunay_triangulation::Full_cell_handle Full_cell_handle;
-
-typedef std::vector<Point_d> Point_Vector;
-typedef CGAL::Euclidean_distance<Traits_base> Euclidean_distance;
-
-FT _sfty = pow(10,-14);
-
-///////////////////////////////////////////////////////////////////////////////////////////////////////////
-// AUXILLARY FUNCTIONS
-///////////////////////////////////////////////////////////////////////////////////////////////////////////
-
-/** Insert a point in Delaunay triangulation. If you are working in a flat torus, the procedure adds all the 3^d copies in adjacent cubes as well
- *
- * W is the initial point vector
- * chosen_landmark is the index of the chosen point in W
- * landmarks_ind is the vector of indices of already chosen points in W
- * delaunay is the Delaunay triangulation
- * landmark_count is the current number of chosen vertices
- * torus is true iff you are working on a flat torus [-1,1]^d
- * OUT: Vertex handle to the newly inserted point
- */
-Delaunay_vertex insert_delaunay_landmark_with_copies(Point_d& p, Delaunay_triangulation& delaunay, int& landmark_count, bool torus)
-{
- if (!torus)
- {
- Delaunay_vertex v =delaunay.insert(p);
- landmark_count++;
- return v;
- }
- else
- {
- int D = W[0].size();
- int nb_cells = pow(3, D);
- Delaunay_vertex v;
- for (int i = 0; i < nb_cells; ++i)
- {
- std::vector<FT> point;
- int cell_i = i;
- for (int l = 0; l < D; ++l)
- {
- point.push_back(p[l] + 2.0*(cell_i%3-1));
- cell_i /= 3;
- }
- v = delaunay.insert(point);
- }
- landmark_count++;
- return v;
- }
-}
-
-/** Small check if the vertex v is in the full cell fc
- */
-
-bool vertex_is_in_full_cell(Delaunay_triangulation::Vertex_handle v, Full_cell_handle fc)
-{
- for (auto v_it = fc->vertices_begin(); v_it != fc->vertices_end(); ++v_it)
- if (*v_it == v)
- return true;
- return false;
-}
-
-/** Fill chosen point vector from indices with copies if you are working on a flat torus
- *
- * IN: W is the point vector
- * OUT: landmarks is the output vector
- * IN: landmarks_ind is the vector of indices
- * IN: torus is true iff you are working on a flat torus [-1,1]^d
- */
-
-void fill_landmarks(Point_Vector& W, Point_Vector& landmarks, std::vector<int>& landmarks_ind, bool torus)
-{
- if (!torus)
- for (unsigned j = 0; j < landmarks_ind.size(); ++j)
- landmarks.push_back(W[landmarks_ind[j]]);
- else
- {
- int D = W[0].size();
- int nb_cells = pow(3, D);
- int nbL = landmarks_ind.size();
- // Fill landmarks
- for (int i = 0; i < nb_cells-1; ++i)
- for (int j = 0; j < nbL; ++j)
- {
- int cell_i = i;
- Point_d point;
- for (int l = 0; l < D; ++l)
- {
- point.push_back(W[landmarks_ind[j]][l] + 2.0*(cell_i-1));
- cell_i /= 3;
- }
- landmarks.push_back(point);
- }
- }
-}
-
-/** Fill a vector of all simplices in the Delaunay triangulation giving integer indices to vertices
- *
- * IN: t is the Delaunay triangulation
- * OUT: full_cells is the output vector
- */
-
-void fill_full_cell_vector(Delaunay_triangulation& t, std::vector<std::vector<int>>& full_cells)
-{
- // Store vertex indices in a map
- int ind = 0; //index of a vertex
- std::map<Delaunay_triangulation::Vertex_handle, int> index_of_vertex;
- for (auto v_it = t.vertices_begin(); v_it != t.vertices_end(); ++v_it)
- if (t.is_infinite(v_it))
- continue;
- else
- index_of_vertex[v_it] = ind++;
- // Write full cells as vectors in full_cells
- for (auto fc_it = t.full_cells_begin(); fc_it != t.full_cells_end(); ++fc_it)
- {
- if (t.is_infinite(fc_it))
- continue;
- Point_Vector vertices;
- for (auto fc_v_it = fc_it->vertices_begin(); fc_v_it != fc_it->vertices_end(); ++fc_v_it)
- vertices.push_back((*fc_v_it)->point());
- Sphere_d cs( vertices.begin(), vertices.end());
- Point_d csc = cs.center();
- bool in_cube = true;
- for (auto xi = csc.cartesian_begin(); xi != csc.cartesian_end(); ++xi)
- if (*xi > 1.0 || *xi < -1.0)
- {
- in_cube = false; break;
- }
- if (!in_cube)
- continue;
- std::vector<int> cell;
- for (auto v_it = fc_it->vertices_begin(); v_it != fc_it->vertices_end(); ++v_it)
- cell.push_back(index_of_vertex[*v_it]);
- full_cells.push_back(cell);
- }
-}
-
-////////////////////////////////////////////////////////////////////////////////////////////////////////////
-// IS VIOLATED TEST
-////////////////////////////////////////////////////////////////////////////////////////////////////////////
-
-/** Check if a newly created cell is protected from old vertices
- *
- * t is the Delaunay triangulation
- * vertices is the vector containing the point to insert and a facet f in t
- * v1 is the vertex of t, such that f and v1 form a simplex
- * v2 is the vertex of t, such that f and v2 form another simplex
- * delta is the protection constant
- * power_protection is true iff the delta-power protection is used
- */
-
-bool new_cell_is_violated(Delaunay_triangulation& t, std::vector<Point_d>& vertices, const Delaunay_vertex& v1, const Delaunay_vertex v2, FT delta, bool power_protection, FT theta0)
-{
- assert(vertices.size() == vertices[0].size() ||
- vertices.size() == vertices[0].size() + 1); //simplex size = d | d+1
- assert(v1 != v2);
- if (vertices.size() == vertices[0].size() + 1)
- // FINITE CASE
- {
- Sphere_d cs(vertices.begin(), vertices.end());
- Point_d center_cs = cs.center();
- FT r = sqrt(Euclidean_distance().transformed_distance(center_cs, vertices[0]));
- /*
- for (auto v_it = t.vertices_begin(); v_it != t.vertices_end(); ++v_it)
- if (!t.is_infinite(v_it))
- {
- //CGAL::Oriented_side side = Oriented_side_d()(cs, (v_it)->point());
- if (std::find(vertices.begin(), vertices.end(), v_it->point()) == vertices.end())
- {
- FT dist2 = Euclidean_distance().transformed_distance(center_cs, (v_it)->point());
- if (!power_protection)
- if (dist2 >= r*r-_sfty && dist2 <= (r+delta)*(r+delta))
- return true;
- if (power_protection)
- if (dist2 >= r*r-_sfty && dist2 <= r*r+delta*delta)
- return true;
- }
- }
- */
- // Check if the simplex is thick enough
- Hyperplane_d tau_h(vertices.begin()+1, vertices.end());
- Vector_d orth_tau = tau_h.orthogonal_vector();
- /*
- p_s1 = Vector_d(*(vertices.begin()), *(vertices.begin()+1));
- */
- //std::cout << "||orth_tau|| = " << sqrt(orth_tau.squared_length()) << "\n";
- FT orth_length = sqrt(orth_tau.squared_length());
- K::Cartesian_const_iterator_d o_it, p_it, s_it, c_it;
- // Compute the altitude
- FT h = 0;
- for (o_it = orth_tau.cartesian_begin(),
- p_it = vertices.begin()->cartesian_begin(),
- s_it = (vertices.begin()+1)->cartesian_begin();
- o_it != orth_tau.cartesian_end();
- ++o_it, ++p_it, ++s_it)
- h += (*o_it)*(*p_it - *s_it)/orth_length;
- h = fabs(h);
- // Is the center inside the box?
- bool inside_the_box = true;
- for (c_it = center_cs.cartesian_begin(); c_it != center_cs.cartesian_end(); ++c_it)
- if (*c_it > 1.0 || *c_it < -1.0)
- {
- inside_the_box = false; break;
- }
- if (inside_the_box && h/r < theta0)
- return true;
- if (!t.is_infinite(v1))
- {
- FT dist2 = Euclidean_distance().transformed_distance(center_cs, v1->point());
- if (!power_protection)
- if (dist2 >= r*r-_sfty && dist2 <= (r+delta)*(r+delta))
- return true;
- if (power_protection)
- if (dist2 >= r*r-_sfty && dist2 <= r*r+delta*delta)
- return true;
- }
- if (!t.is_infinite(v2))
- {
- FT dist2 = Euclidean_distance().transformed_distance(center_cs, v2->point());
- if (!power_protection)
- if (dist2 >= r*r-_sfty && dist2 <= (r+delta)*(r+delta))
- return true;
- if (power_protection)
- if (dist2 >= r*r-_sfty && dist2 <= r*r+delta*delta)
- return true;
- }
- }
- else
- // INFINITE CASE
- {
- Delaunay_triangulation::Vertex_iterator v = t.vertices_begin();
- while (t.is_infinite(v) || std::find(vertices.begin(), vertices.end(), v->point()) == vertices.end())
- v++;
- Hyperplane_d facet_plane(vertices.begin(), vertices.end(), v->point(), CGAL::ON_POSITIVE_SIDE);
- Vector_d orth_v = facet_plane.orthogonal_vector();
- /*
- for (auto v_it = t.vertices_begin(); v_it != t.vertices_end(); ++v_it)
- if (!t.is_infinite(v_it))
- if (std::find(vertices.begin(), vertices.end(), v_it->point()) == vertices.end())
- {
- std::vector<FT> coords;
- Point_d p = v_it->point();
- auto orth_i = orth_v.cartesian_begin(), p_i = p.cartesian_begin();
- for (; orth_i != orth_v.cartesian_end(); ++orth_i, ++p_i)
- coords.push_back((*p_i) - (*orth_i) * delta / sqrt(orth_v.squared_length()));
- Point_d p_delta = Point_d(coords);
- bool p_is_inside = !Has_on_positive_side_d()(facet_plane, p);
- bool p_delta_is_inside = !Has_on_positive_side_d()(facet_plane, p_delta);
- if (!p_is_inside && p_delta_is_inside)
- return true;
- }
- */
- if (!t.is_infinite(v1))
- {
- std::vector<FT> coords;
- Point_d p = v1->point();
- auto orth_i = orth_v.cartesian_begin(), p_i = p.cartesian_begin();
- for (; orth_i != orth_v.cartesian_end(); ++orth_i, ++p_i)
- coords.push_back((*p_i) - (*orth_i) * delta / sqrt(orth_v.squared_length()));
- Point_d p_delta = Point_d(coords);
- bool p_is_inside = !Has_on_positive_side_d()(facet_plane, p);
- bool p_delta_is_inside = !Has_on_positive_side_d()(facet_plane, p_delta);
- if (!power_protection && !p_is_inside && p_delta_is_inside)
- return true;
- }
- if (!t.is_infinite(v2))
- {
- std::vector<FT> coords;
- Point_d p = v2->point();
- auto orth_i = orth_v.cartesian_begin(), p_i = p.cartesian_begin();
- for (; orth_i != orth_v.cartesian_end(); ++orth_i, ++p_i)
- coords.push_back((*p_i) - (*orth_i) * delta / sqrt(orth_v.squared_length()));
- Point_d p_delta = Point_d(coords);
- bool p_is_inside = !Has_on_positive_side_d()(facet_plane, p);
- bool p_delta_is_inside = !Has_on_positive_side_d()(facet_plane, p_delta);
- if (!power_protection && !p_is_inside && p_delta_is_inside)
- return true;
- }
- }
- return false;
-}
-
-/** Auxillary recursive function to check if the point p violates the protection of the cell c and
- * if there is a violation of an eventual new cell
- *
- * p is the point to insert
- * t is the current triangulation
- * c is the current cell (simplex)
- * parent_cell is the parent cell (simplex)
- * index is the index of the facet between c and parent_cell from parent_cell's point of view
- * D is the dimension of the triangulation
- * delta is the protection constant
- * marked_cells is the vector of all visited cells containing p in their circumscribed ball
- * power_protection is true iff you are working with delta-power protection
- *
- * OUT: true iff inserting p hasn't produced any violation so far
- */
-
-bool is_violating_protection(Point_d& p, Delaunay_triangulation& t, Full_cell_handle c, Full_cell_handle parent_cell, int index, int D, FT delta, std::vector<Full_cell_handle>& marked_cells, bool power_protection, FT theta0)
-{
- Euclidean_distance ed;
- std::vector<Point_d> vertices;
- if (!t.is_infinite(c))
- {
- // if the cell is finite, we look if the protection is violated
- for (auto v_it = c->vertices_begin(); v_it != c->vertices_end(); ++v_it)
- vertices.push_back((*v_it)->point());
- Sphere_d cs( vertices.begin(), vertices.end());
- Point_d center_cs = cs.center();
- FT r = sqrt(ed.transformed_distance(center_cs, vertices[0]));
- FT dist2 = ed.transformed_distance(center_cs, p);
- // if the new point is inside the protection ball of a non conflicting simplex
- if (!power_protection)
- if (dist2 >= r*r-_sfty && dist2 <= (r+delta)*(r+delta))
- return true;
- if (power_protection)
- if (dist2 >= r*r-_sfty && dist2 <= r*r+delta*delta)
- return true;
- // if the new point is inside the circumscribing ball : continue violation searching on neighbours
- //if (dist2 < r*r)
- //if (dist2 < (5*r+delta)*(5*r+delta))
- if (dist2 < r*r)
- {
- c->tds_data().mark_visited();
- marked_cells.push_back(c);
- for (int i = 0; i < D+1; ++i)
- {
- Full_cell_handle next_c = c->neighbor(i);
- if (next_c->tds_data().is_clear() &&
- is_violating_protection(p, t, next_c, c, i, D, delta, marked_cells, power_protection, theta0))
- return true;
- }
- }
- // if the new point is outside the protection sphere
- else
- {
- // facet f is on the border of the conflict zone : check protection of simplex {p,f}
- // the new simplex is guaranteed to be finite
- vertices.clear(); vertices.push_back(p);
- for (int i = 0; i < D+1; ++i)
- if (i != index)
- vertices.push_back(parent_cell->vertex(i)->point());
- Delaunay_vertex vertex_to_check = t.infinite_vertex();
- for (auto vh_it = c->vertices_begin(); vh_it != c->vertices_end(); ++vh_it)
- if (!vertex_is_in_full_cell(*vh_it, parent_cell))
- {
- vertex_to_check = *vh_it; break;
- }
- if (new_cell_is_violated(t, vertices, vertex_to_check, parent_cell->vertex(index), delta, power_protection, theta0))
- //if (new_cell_is_violated(t, vertices, vertex_to_check->point(), delta))
- return true;
- }
- }
- else
- {
- // Inside of the convex hull is + side. Outside is - side.
- for (auto vh_it = c->vertices_begin(); vh_it != c->vertices_end(); ++vh_it)
- if (!t.is_infinite(*vh_it))
- vertices.push_back((*vh_it)->point());
- Delaunay_triangulation::Vertex_iterator v_it = t.vertices_begin();
- while (t.is_infinite(v_it) || vertex_is_in_full_cell(v_it, c))
- v_it++;
- Hyperplane_d facet_plane(vertices.begin(), vertices.end(), v_it->point(), CGAL::ON_POSITIVE_SIDE);
- //CGAL::Oriented_side outside = Oriented_side_d()(facet_plane, v_it->point());
- Vector_d orth_v = facet_plane.orthogonal_vector();
- std::vector<FT> coords;
- auto orth_i = orth_v.cartesian_begin(), p_i = p.cartesian_begin();
- for (; orth_i != orth_v.cartesian_end(); ++orth_i, ++p_i)
- coords.push_back((*p_i) - (*orth_i) * delta / sqrt(orth_v.squared_length()));
- Point_d p_delta = Point_d(coords);
- bool p_is_inside = !Has_on_positive_side_d()(facet_plane, p) && (Oriented_side_d()(facet_plane, p) != CGAL::ZERO);
- bool p_delta_is_inside = !Has_on_positive_side_d()(facet_plane, p_delta);
-
- // If we work with power protection, we just ignore any conflicts
- if (!power_protection && !p_is_inside && p_delta_is_inside)
- return true;
- //if the cell is infinite we look at the neighbours regardless
- if (p_is_inside)
- {
- c->tds_data().mark_visited();
- marked_cells.push_back(c);
- for (int i = 0; i < D+1; ++i)
- {
- Full_cell_handle next_c = c->neighbor(i);
- if (next_c->tds_data().is_clear() &&
- is_violating_protection(p, t, next_c, c, i, D, delta, marked_cells, power_protection, theta0))
- return true;
- }
- }
- else
- {
- // facet f is on the border of the conflict zone : check protection of simplex {p,f}
- // the new simplex is finite if the parent cell is finite
- vertices.clear(); vertices.push_back(p);
- for (int i = 0; i < D+1; ++i)
- if (i != index)
- if (!t.is_infinite(parent_cell->vertex(i)))
- vertices.push_back(parent_cell->vertex(i)->point());
- Delaunay_vertex vertex_to_check = t.infinite_vertex();
- for (auto vh_it = c->vertices_begin(); vh_it != c->vertices_end(); ++vh_it)
- if (!vertex_is_in_full_cell(*vh_it, parent_cell))
- {
- vertex_to_check = *vh_it; break;
- }
- if (new_cell_is_violated(t, vertices, vertex_to_check, parent_cell->vertex(index), delta, power_protection, theta0))
- //if (new_cell_is_violated(t, vertices, vertex_to_check->point(), delta))
- return true;
- }
- }
- //c->tds_data().clear_visited();
- //marked_cells.pop_back();
- return false;
-}
-
-/** Checks if inserting the point p in t will make conflicts
- *
- * p is the point to insert
- * t is the current triangulation
- * D is the dimension of triangulation
- * delta is the protection constant
- * power_protection is true iff you are working with delta-power protection
- * OUT: true iff inserting p produces a violation of delta-protection.
- */
-
-bool is_violating_protection(Point_d& p, Delaunay_triangulation& t, int D, FT delta, bool power_protection, FT theta0)
-{
- Euclidean_distance ed;
- Delaunay_triangulation::Vertex_handle v;
- Delaunay_triangulation::Face f(t.current_dimension());
- Delaunay_triangulation::Facet ft;
- Delaunay_triangulation::Full_cell_handle c;
- Delaunay_triangulation::Locate_type lt;
- std::vector<Full_cell_handle> marked_cells;
- c = t.locate(p, lt, f, ft, v);
- bool violation_existing_cells = is_violating_protection(p, t, c, c, 0, D, delta, marked_cells, power_protection, theta0);
- for (Full_cell_handle fc : marked_cells)
- fc->tds_data().clear();
- return violation_existing_cells;
-}
-
-//////////////////////////////////////////////////////////////////////
-// INITIALIZATION
-//////////////////////////////////////////////////////////////////////
-
-void initialize(Search_Tree& W, Delaunay& t, int D, int width, bool torus)
-{
- if (!torus)
- std::cout << "Non-toric case is not supported\n";
- else
- {
- if (D == 2)
- {
- FT stepx = 2.0/width;
- FT stepy = sqrt(3)/width;
- for (int i = 0; i < width; ++i)
- for (int j = 0; j < floor(2*width/sqrt(3)); ++j)
- {
- insert_delaunay_landmark_with_copies(Point_d(step*i,))
- }
- }
- else (D == 3)
- {
-
- }
- else std::cout << "T^d with d>3 not supported";
- }
-}
-
-///////////////////////////////////////////////////////////////////////
-///////////////////////////////////////////////////////////////////////
-//!!!!!!!!!!!!! THE INTERFACE FOR LANDMARK CHOICE IS BELOW !!!!!!!!!!//
-///////////////////////////////////////////////////////////////////////
-///////////////////////////////////////////////////////////////////////
-
-///////////////////////////////////////////////////////////////////////
-// LANDMARK CHOICE PROCEDURE AS IN PAPER
-///////////////////////////////////////////////////////////////////////
-
-/** Procedure to compute a maximal protected subset from a point cloud. All OUTs should be empty at call.
- *
- * IN: W is the initial point cloud having type Epick_d<Dynamic_dimension_tag>::Point_d
- * IN: nbP is the size of W
- * OUT: landmarks is the output vector for the points
- * OUT: landmarks_ind is the output vector for the indices of the selected points in W
- * IN: delta is the constant of protection
- * OUT: full_cells is the output vector of the simplices in the final Delaunay triangulation
- * IN: torus is true iff you are working on a flat torus [-1,1]^d
- */
-
-template<class Search_Tree>
-void protected_delaunay_refinement(Search_Tree& W, int nbP, Point_Vector& landmarks, FT delta, bool torus, bool power_protection, FT theta0)
-{
- bool return_ = true;
- unsigned D = W[0].size();
- Torus_distance td;
- Euclidean_distance ed;
- Delaunay_triangulation t(D);
- CGAL::Random rand;
- int landmark_count = 0;
- //std::list<int> index_list;
- // shuffle the list of indexes (via a vector)
- // {
- // std::vector<int> temp_vector;
- // for (int i = 0; i < nbP; ++i)
- // temp_vector.push_back(i);
- // unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
- // std::shuffle(temp_vector.begin(), temp_vector.end(), std::default_random_engine(seed));
- // //CGAL::spatial_sort(temp_vector.begin(), temp_vector.end());
- // for (std::vector<int>::iterator it = temp_vector.begin(); it != temp_vector.end(); ++it)
- // index_list.push_front(*it);
- // }
- if (torus)
- if (D == 2)
- // \T^2
- {
- for (int i = 0; i < 4; ++i)
- for (int j = 0; j < 2; ++j)
- {
- W[index_list.front()] = Point_d(std::vector<FT>{i*0.5, j*1.0});
- insert_delaunay_landmark_with_copies(W, index_list.front(), landmarks_ind, t, landmark_count, torus);
- index_list.pop_front();
- W[index_list.front()] = Point_d(std::vector<FT>{0.25+i*0.5, 0.5+j});
- insert_delaunay_landmark_with_copies(W, index_list.front(), landmarks_ind, t, landmark_count, torus);
- index_list.pop_front();
- }
- }
- else if (D == 3)
- {
-
- }
- //std::cout << "No torus starter available for dim>2\n";
- std::list<int>::iterator list_it = index_list.begin();
- while (list_it != index_list.end())
- {
- if (!is_violating_protection(W[*list_it], t, D, delta, power_protection, theta0))
- {
- // If no conflicts then insert in every copy of T^3
-
- insert_delaunay_landmark_with_copies(W, *list_it, landmarks_ind, t, landmark_count, torus);
- if (return_)
- {
- index_list.erase(list_it);
- list_it = index_list.begin();
- }
- else
- index_list.erase(list_it++);
- /*
- // PIECE OF CODE FOR DEBUGGING PURPOSES
-
- Delaunay_vertex inserted_v = insert_delaunay_landmark_with_copies(W, *list_it, landmarks_ind, t, landmark_count);
- if (triangulation_is_protected(t, delta))
- {
- index_list.erase(list_it);
- list_it = index_list.begin();
- }
- else
- { //THAT'S WHERE SOMETHING'S WRONG
- t.remove(inserted_v);
- landmarks_ind.pop_back();
- landmark_count--;
- write_delaunay_mesh(t, W[*list_it], is2d);
- is_violating_protection(W[*list_it], t_old, D, delta); //Called for encore
- }
- */
- //std::cout << "index_list_size() = " << index_list.size() << "\n";
- }
- else
- {
- list_it++;
- //std::cout << "!!!!!WARNING!!!!! A POINT HAS BEEN OMITTED!!!\n";
- }
- //if (list_it != index_list.end())
- // write_delaunay_mesh(t, W[*list_it], is2d);
- }
- fill_landmarks(W, landmarks, landmarks_ind, torus);
- fill_full_cell_vector(t, full_cells);
- /*
- if (triangulation_is_protected(t, delta))
- std::cout << "Triangulation is ok\n";
- else
- {
- std::cout << "Triangulation is BAD!! T_T しくしく!\n";
- }
- */
- //write_delaunay_mesh(t, W[0], is2d);
- //std::cout << t << std::endl;
-}
-
-#endif