summaryrefslogtreecommitdiff
path: root/src/python/doc/alpha_complex_user.rst
diff options
context:
space:
mode:
Diffstat (limited to 'src/python/doc/alpha_complex_user.rst')
-rw-r--r--src/python/doc/alpha_complex_user.rst24
1 files changed, 21 insertions, 3 deletions
diff --git a/src/python/doc/alpha_complex_user.rst b/src/python/doc/alpha_complex_user.rst
index d49f45b4..097470c1 100644
--- a/src/python/doc/alpha_complex_user.rst
+++ b/src/python/doc/alpha_complex_user.rst
@@ -9,15 +9,33 @@ Definition
.. include:: alpha_complex_sum.inc
-`AlphaComplex` is constructing a :doc:`SimplexTree <simplex_tree_ref>` using
+:doc:`AlphaComplex <alpha_complex_ref>` is constructing a :doc:`SimplexTree <simplex_tree_ref>` using
`Delaunay Triangulation <http://doc.cgal.org/latest/Triangulation/index.html#Chapter_Triangulations>`_
:cite:`cgal:hdj-t-19b` from the `Computational Geometry Algorithms Library <http://www.cgal.org/>`_
:cite:`cgal:eb-19b`.
Remarks
^^^^^^^
-When an :math:`\alpha`-complex is constructed with an infinite value of :math:`\alpha^2`,
-the complex is a Delaunay complex (with special filtration values).
+* When an :math:`\alpha`-complex is constructed with an infinite value of :math:`\alpha^2`, the complex is a Delaunay
+ complex (with special filtration values). The Delaunay complex without filtration values is also available by
+ passing :code:`default_filtration_value = True` to :func:`~gudhi.AlphaComplex.create_simplex_tree`.
+* For people only interested in the topology of the Alpha complex (for instance persistence), Alpha complex is
+ equivalent to the `Čech complex <https://gudhi.inria.fr/doc/latest/group__cech__complex.html>`_ and much smaller if
+ you do not bound the radii. `Čech complex <https://gudhi.inria.fr/doc/latest/group__cech__complex.html>`_ can still
+ make sense in higher dimension precisely because you can bound the radii.
+* Using the default :code:`precision = 'safe'` makes the construction safe.
+ If you pass :code:`precision = 'exact'` to :func:`~gudhi.AlphaComplex.__init__`, the filtration values are the exact
+ ones converted to float. This can be very slow.
+ If you pass :code:`precision = 'safe'` (the default), the filtration values are only
+ guaranteed to have a small multiplicative error compared to the exact value.
+ A drawback, when computing persistence, is that an empty exact interval [10^12,10^12] may become a
+ non-empty approximate interval [10^12,10^12+10^6].
+ Using :code:`precision = 'fast'` makes the computations slightly faster, and the combinatorics are still exact, but
+ the computation of filtration values can exceptionally be arbitrarily bad. In all cases, we still guarantee that the
+ output is a valid filtration (faces have a filtration value no larger than their cofaces).
+* For performances reasons, it is advised to use Alpha_complex with `CGAL <installation.html#cgal>`_ :math:`\geq` 5.0.0.
+
+For performances reasons, it is advised to use CGAL :math:`\geq` 5.0.0.
Example from points
-------------------