summaryrefslogtreecommitdiff
path: root/src/python/doc
diff options
context:
space:
mode:
Diffstat (limited to 'src/python/doc')
-rw-r--r--src/python/doc/alpha_complex_user.rst39
-rw-r--r--src/python/doc/representations.rst2
2 files changed, 22 insertions, 19 deletions
diff --git a/src/python/doc/alpha_complex_user.rst b/src/python/doc/alpha_complex_user.rst
index a3b35c10..de706de9 100644
--- a/src/python/doc/alpha_complex_user.rst
+++ b/src/python/doc/alpha_complex_user.rst
@@ -89,25 +89,28 @@ In order to build the alpha complex, first, a Simplex tree is built from the cel
Filtration value computation algorithm
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- **for** i : dimension :math:`\rightarrow` 0 **do**
- **for all** :math:`\sigma` of dimension i
- **if** filtration(:math:`\sigma`) is NaN **then**
- filtration(:math:`\sigma`) = :math:`\alpha^2(\sigma)`
- **end if**
+.. code-block:: vim
+
+ for i : dimension → 0 do
+ for all σ of dimension i
+ if filtration(σ) is NaN then
+ filtration(σ) = α²(σ)
+ end if
+ for all τ face of σ do // propagate alpha filtration value
+ if filtration(τ) is not NaN then
+ filtration(τ) = min( filtration(τ), filtration(σ) )
+ else
+ if τ is not Gabriel for σ then
+ filtration(τ) = filtration(σ)
+ end if
+ end if
+ end for
+ end for
+ end for
+
+ make_filtration_non_decreasing()
+ prune_above_filtration()
- *//propagate alpha filtration value*
-
- **for all** :math:`\tau` face of :math:`\sigma`
- **if** filtration(:math:`\tau`) is not NaN **then**
- filtration(:math:`\tau`) = filtration(:math:`\sigma`)
- **end if**
- **end for**
- **end for**
- **end for**
-
- make_filtration_non_decreasing()
-
- prune_above_filtration()
Dimension 2
^^^^^^^^^^^
diff --git a/src/python/doc/representations.rst b/src/python/doc/representations.rst
index 11dcbcf9..041e3247 100644
--- a/src/python/doc/representations.rst
+++ b/src/python/doc/representations.rst
@@ -10,7 +10,7 @@ Representations manual
This module, originally available at https://github.com/MathieuCarriere/sklearn-tda and named sklearn_tda, aims at bridging the gap between persistence diagrams and machine learning, by providing implementations of most of the vector representations for persistence diagrams in the literature, in a scikit-learn format. More specifically, it provides tools, using the scikit-learn standard interface, to compute distances and kernels on persistence diagrams, and to convert these diagrams into vectors in Euclidean space.
-A diagram is represented as a numpy array of shape (n,2), as can be obtained from :func:`~gudhi.SimplexTree.persistence_intervals_in_dimension` for instance. Points at infinity are represented as a numpy array of shape (n,1), storing only the birth time.
+A diagram is represented as a numpy array of shape (n,2), as can be obtained from :func:`~gudhi.SimplexTree.persistence_intervals_in_dimension` for instance. Points at infinity are represented as a numpy array of shape (n,1), storing only the birth time. The classes in this module can handle several persistence diagrams at once. In that case, the diagrams are provided as a list of numpy arrays. Note that it is not necessary for the diagrams to have the same number of points, i.e., for the corresponding arrays to have the same number of rows: all classes can handle arrays with different shapes.
A small example is provided