/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Vincent Rouvreau * * Copyright (C) 2014 Inria * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #if BOOST_VERSION >= 105400 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include template Vertex_list from_cell(const Cell_handle& ch) { Vertex_list the_list; for (auto i = 0; i < 4; i++) { #ifdef DEBUG_TRACES std::cout << "from cell[" << i << "]=" << ch->vertex(i)->point() << std::endl; #endif // DEBUG_TRACES the_list.push_back(ch->vertex(i)); } return the_list; } template Vertex_list from_facet(const Facet& fct) { Vertex_list the_list; for (auto i = 0; i < 4; i++) { if (fct.second != i) { #ifdef DEBUG_TRACES std::cout << "from facet=[" << i << "]" << fct.first->vertex(i)->point() << std::endl; #endif // DEBUG_TRACES the_list.push_back(fct.first->vertex(i)); } } return the_list; } template Vertex_list from_edge(const Edge_3& edg) { Vertex_list the_list; for (auto i : {edg.second, edg.third}) { #ifdef DEBUG_TRACES std::cout << "from edge[" << i << "]=" << edg.first->vertex(i)->point() << std::endl; #endif // DEBUG_TRACES the_list.push_back(edg.first->vertex(i)); } return the_list; } template Vertex_list from_vertex(const Vertex_handle& vh) { Vertex_list the_list; #ifdef DEBUG_TRACES std::cout << "from vertex=" << vh->point() << std::endl; #endif // DEBUG_TRACES the_list.push_back(vh); return the_list; } // Alpha_shape_3 templates type definitions using Kernel = CGAL::Exact_predicates_inexact_constructions_kernel; using Vb = CGAL::Alpha_shape_vertex_base_3; using Fb = CGAL::Alpha_shape_cell_base_3; using Tds = CGAL::Triangulation_data_structure_3; using Triangulation_3 = CGAL::Delaunay_triangulation_3; using Alpha_shape_3 = CGAL::Alpha_shape_3; // From file type definition using Point_3 = Kernel::Point_3; // filtration with alpha values needed type definition using Alpha_value_type = Alpha_shape_3::FT; using Object = CGAL::Object; using Dispatch = CGAL::Dispatch_output_iterator, CGAL::cpp11::tuple >, std::back_insert_iterator > > >; using Cell_handle = Alpha_shape_3::Cell_handle; using Facet = Alpha_shape_3::Facet; using Edge_3 = Alpha_shape_3::Edge; using Vertex_handle = Alpha_shape_3::Vertex_handle; #if BOOST_VERSION >= 105400 using Vertex_list = boost::container::static_vector; #else using Vertex_list = std::vector; #endif // gudhi type definition using ST = Gudhi::Simplex_tree; using Filtration_value = ST::Filtration_value; using Simplex_tree_vertex = ST::Vertex_handle; using Alpha_shape_simplex_tree_map = std::map; using Simplex_tree_vector_vertex = std::vector; void program_options(int argc, char *argv[], std::string &off_file_points, std::string &output_file_diag); int main(int argc, char **argv) { std::string off_file_points; std::string output_file_diag; program_options(argc, argv, off_file_points, output_file_diag); // Read the OFF file (input file name given as parameter) and triangulate points Gudhi::Points_3D_off_reader off_reader(off_file_points); // Check the read operation was correct if (!off_reader.is_valid()) { std::cerr << "Unable to read file " << off_file_points << std::endl; exit(-1); } // Retrieve the points std::vector lp = off_reader.get_point_cloud(); // alpha shape construction from points. CGAL has a strange behavior in REGULARIZED mode. Alpha_shape_3 as(lp.begin(), lp.end(), 0, Alpha_shape_3::GENERAL); #ifdef DEBUG_TRACES std::cout << "Alpha shape computed in GENERAL mode" << std::endl; #endif // DEBUG_TRACES // filtration with alpha values from alpha shape std::vector the_objects; std::vector the_alpha_values; Dispatch disp = CGAL::dispatch_output(std::back_inserter(the_objects), std::back_inserter(the_alpha_values)); as.filtration_with_alpha_values(disp); #ifdef DEBUG_TRACES std::cout << "filtration_with_alpha_values returns : " << the_objects.size() << " objects" << std::endl; #endif // DEBUG_TRACES Alpha_shape_3::size_type count_vertices = 0; Alpha_shape_3::size_type count_edges = 0; Alpha_shape_3::size_type count_facets = 0; Alpha_shape_3::size_type count_cells = 0; // Loop on objects vector Vertex_list vertex_list; ST simplex_tree; Alpha_shape_simplex_tree_map map_cgal_simplex_tree; std::vector::iterator the_alpha_value_iterator = the_alpha_values.begin(); for (auto object_iterator : the_objects) { // Retrieve Alpha shape vertex list from object if (const Cell_handle *cell = CGAL::object_cast(&object_iterator)) { vertex_list = from_cell(*cell); count_cells++; } else if (const Facet *facet = CGAL::object_cast(&object_iterator)) { vertex_list = from_facet(*facet); count_facets++; } else if (const Edge_3 *edge = CGAL::object_cast(&object_iterator)) { vertex_list = from_edge(*edge); count_edges++; } else if (const Vertex_handle *vertex = CGAL::object_cast(&object_iterator)) { count_vertices++; vertex_list = from_vertex(*vertex); } // Construction of the vector of simplex_tree vertex from list of alpha_shapes vertex Simplex_tree_vector_vertex the_simplex; for (auto the_alpha_shape_vertex : vertex_list) { Alpha_shape_simplex_tree_map::iterator the_map_iterator = map_cgal_simplex_tree.find(the_alpha_shape_vertex); if (the_map_iterator == map_cgal_simplex_tree.end()) { // alpha shape not found Simplex_tree_vertex vertex = map_cgal_simplex_tree.size(); #ifdef DEBUG_TRACES std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] not found - insert " << vertex << std::endl; #endif // DEBUG_TRACES the_simplex.push_back(vertex); map_cgal_simplex_tree.emplace(the_alpha_shape_vertex, vertex); } else { // alpha shape found Simplex_tree_vertex vertex = the_map_iterator->second; #ifdef DEBUG_TRACES std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] found in " << vertex << std::endl; #endif // DEBUG_TRACES the_simplex.push_back(vertex); } } // Construction of the simplex_tree Filtration_value filtr = /*std::sqrt*/ (*the_alpha_value_iterator); #ifdef DEBUG_TRACES std::cout << "filtration = " << filtr << std::endl; #endif // DEBUG_TRACES simplex_tree.insert_simplex(the_simplex, filtr); GUDHI_CHECK(the_alpha_value_iterator != the_alpha_values.end(), "CGAL provided more simplices than values"); ++the_alpha_value_iterator; } #ifdef DEBUG_TRACES std::cout << "vertices \t\t" << count_vertices << std::endl; std::cout << "edges \t\t" << count_edges << std::endl; std::cout << "facets \t\t" << count_facets << std::endl; std::cout << "cells \t\t" << count_cells << std::endl; std::cout << "Information of the Simplex Tree: " << std::endl; std::cout << " Number of vertices = " << simplex_tree.num_vertices() << " "; std::cout << " Number of simplices = " << simplex_tree.num_simplices() << std::endl << std::endl; std::cout << " Dimension = " << simplex_tree.dimension() << " "; #endif // DEBUG_TRACES #ifdef DEBUG_TRACES std::cout << "Iterator on vertices: " << std::endl; for (auto vertex : simplex_tree.complex_vertex_range()) { std::cout << vertex << " "; } #endif // DEBUG_TRACES // Sort the simplices in the order of the filtration simplex_tree.initialize_filtration(); std::streambuf* streambufffer; std::ofstream ouput_file_stream; if (output_file_diag != std::string()) { ouput_file_stream.open(output_file_diag); streambufffer = ouput_file_stream.rdbuf(); } else { streambufffer = std::cout.rdbuf(); } std::ostream output_stream(streambufffer); // ---------------------------------------------------------------------------- // Display information about the alpha complex // ---------------------------------------------------------------------------- output_stream << "Alpha complex is of dimension " << simplex_tree.dimension() << " - " << simplex_tree.num_simplices() << " simplices - " << simplex_tree.num_vertices() << " vertices." << std::endl; output_stream << "Iterator on alpha complex simplices in the filtration order, with [filtration value]:" << std::endl; for (auto f_simplex : simplex_tree.filtration_simplex_range()) { output_stream << " ( "; for (auto vertex : simplex_tree.simplex_vertex_range(f_simplex)) { output_stream << vertex << " "; } output_stream << ") -> " << "[" << simplex_tree.filtration(f_simplex) << "] "; output_stream << std::endl; } return 0; } void program_options(int argc, char *argv[], std::string &off_file_points, std::string &output_file_diag) { namespace po = boost::program_options; po::options_description hidden("Hidden options"); hidden.add_options()("input-file", po::value(&off_file_points), "Name of file containing a point set. Format is one point per line: X1 ... Xd "); po::options_description visible("Allowed options", 100); visible.add_options()("help,h", "produce help message")( "output-file,o", po::value(&output_file_diag)->default_value(std::string()), "Name of file in which the persistence diagram is written. Default print in std::cout"); po::positional_options_description pos; pos.add("input-file", 1); po::options_description all; all.add(visible).add(hidden); po::variables_map vm; po::store(po::command_line_parser(argc, argv).options(all).positional(pos).run(), vm); po::notify(vm); if (vm.count("help") || !vm.count("input-file")) { std::cout << std::endl; std::cout << "Compute and displays the 3D Alpha complex defined on a set of input points.\n \n"; std::cout << "Usage: " << argv[0] << " [options] input-file" << std::endl << std::endl; std::cout << visible << std::endl; exit(-1); } }