/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Vincent Rouvreau * * Copyright (C) 2015 Inria * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #define BOOST_TEST_DYN_LINK #define BOOST_TEST_MODULE "alpha_complex_3d" #include #include #include // float comparison #include #include #include #include #include // for std::size_t #include #include #include #include // to construct Alpha_complex from a OFF file of points #include #include #include using Fast_alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; using Safe_alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; using Exact_alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; using Fast_weighted_alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; using Safe_weighted_alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; using Exact_weighted_alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; using Fast_periodic_alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; using Safe_periodic_alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; using Exact_periodic_alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; using Fast_weighted_periodic_alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; using Safe_weighted_periodic_alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; using Exact_weighted_periodic_alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d; BOOST_AUTO_TEST_CASE(Alpha_complex_3d_from_points) { // ----------------- // Fast version // ----------------- std::cout << "Fast alpha complex 3d" << std::endl; std::vector points; points.push_back(Fast_alpha_complex_3d::Point_3(0.0, 0.0, 0.0)); points.push_back(Fast_alpha_complex_3d::Point_3(0.0, 0.0, 0.2)); points.push_back(Fast_alpha_complex_3d::Point_3(0.2, 0.0, 0.2)); points.push_back(Fast_alpha_complex_3d::Point_3(0.6, 0.6, 0.0)); points.push_back(Fast_alpha_complex_3d::Point_3(0.8, 0.8, 0.2)); points.push_back(Fast_alpha_complex_3d::Point_3(0.2, 0.8, 0.6)); Fast_alpha_complex_3d alpha_complex(points); Gudhi::Simplex_tree<> stree; alpha_complex.create_complex(stree); // ----------------- // Exact version // ----------------- std::cout << "Exact alpha complex 3d" << std::endl; Exact_alpha_complex_3d exact_alpha_complex(points); Gudhi::Simplex_tree<> exact_stree; exact_alpha_complex.create_complex(exact_stree); // --------------------- // Compare both versions // --------------------- std::cout << "Exact Alpha complex 3d is of dimension " << exact_stree.dimension() << " - Non exact is " << stree.dimension() << std::endl; BOOST_CHECK(exact_stree.dimension() == stree.dimension()); std::cout << "Exact Alpha complex 3d num_simplices " << exact_stree.num_simplices() << " - Non exact is " << stree.num_simplices() << std::endl; BOOST_CHECK(exact_stree.num_simplices() == stree.num_simplices()); std::cout << "Exact Alpha complex 3d num_vertices " << exact_stree.num_vertices() << " - Non exact is " << stree.num_vertices() << std::endl; BOOST_CHECK(exact_stree.num_vertices() == stree.num_vertices()); auto sh = stree.filtration_simplex_range().begin(); while (sh != stree.filtration_simplex_range().end()) { std::vector simplex; std::vector exact_simplex; std::cout << "Non-exact ( "; for (auto vertex : stree.simplex_vertex_range(*sh)) { simplex.push_back(vertex); std::cout << vertex << " "; } std::cout << ") -> " << "[" << stree.filtration(*sh) << "] "; std::cout << std::endl; // Find it in the exact structure auto sh_exact = exact_stree.find(simplex); BOOST_CHECK(sh_exact != exact_stree.null_simplex()); // Exact and non-exact version is not exactly the same due to float comparison GUDHI_TEST_FLOAT_EQUALITY_CHECK(exact_stree.filtration(sh_exact), stree.filtration(*sh)); ++sh; } // ----------------- // Safe version // ----------------- std::cout << "Safe alpha complex 3d" << std::endl; Safe_alpha_complex_3d safe_alpha_complex(points); Gudhi::Simplex_tree<> safe_stree; safe_alpha_complex.create_complex(safe_stree); // --------------------- // Compare both versions // --------------------- std::cout << "Exact Alpha complex 3d is of dimension " << safe_stree.dimension() << " - Non exact is " << stree.dimension() << std::endl; BOOST_CHECK(safe_stree.dimension() == stree.dimension()); std::cout << "Exact Alpha complex 3d num_simplices " << safe_stree.num_simplices() << " - Non exact is " << stree.num_simplices() << std::endl; BOOST_CHECK(safe_stree.num_simplices() == stree.num_simplices()); std::cout << "Exact Alpha complex 3d num_vertices " << safe_stree.num_vertices() << " - Non exact is " << stree.num_vertices() << std::endl; BOOST_CHECK(safe_stree.num_vertices() == stree.num_vertices()); auto safe_sh = stree.filtration_simplex_range().begin(); while (safe_sh != stree.filtration_simplex_range().end()) { std::vector simplex; std::vector exact_simplex; #ifdef DEBUG_TRACES std::cout << "Non-exact ( "; #endif for (auto vertex : stree.simplex_vertex_range(*safe_sh)) { simplex.push_back(vertex); #ifdef DEBUG_TRACES std::cout << vertex << " "; #endif } #ifdef DEBUG_TRACES std::cout << ") -> " << "[" << stree.filtration(*safe_sh) << "] "; std::cout << std::endl; #endif // Find it in the exact structure auto sh_exact = safe_stree.find(simplex); BOOST_CHECK(sh_exact != safe_stree.null_simplex()); // Exact and non-exact version is not exactly the same due to float comparison GUDHI_TEST_FLOAT_EQUALITY_CHECK(safe_stree.filtration(sh_exact), stree.filtration(*safe_sh)); ++safe_sh; } } typedef boost::mpl::list weighted_variants_type_list; #ifdef GUDHI_DEBUG BOOST_AUTO_TEST_CASE_TEMPLATE(Alpha_complex_weighted_throw, Weighted_alpha_complex_3d, weighted_variants_type_list) { using Point_3 = typename Weighted_alpha_complex_3d::Point_3; std::vector w_points; w_points.push_back(Point_3(0.0, 0.0, 0.0)); w_points.push_back(Point_3(0.0, 0.0, 0.2)); w_points.push_back(Point_3(0.2, 0.0, 0.2)); // w_points.push_back(Point_3(0.6, 0.6, 0.0)); // w_points.push_back(Point_3(0.8, 0.8, 0.2)); // w_points.push_back(Point_3(0.2, 0.8, 0.6)); // weights size is different from w_points size to make weighted Alpha_complex_3d throw in debug mode std::vector weights = {0.01, 0.005, 0.006, 0.01, 0.009, 0.001}; std::cout << "Check exception throw in debug mode" << std::endl; BOOST_CHECK_THROW(Weighted_alpha_complex_3d wac(w_points, weights), std::invalid_argument); } #endif BOOST_AUTO_TEST_CASE_TEMPLATE(Alpha_complex_weighted, Weighted_alpha_complex_3d, weighted_variants_type_list) { std::cout << "Weighted alpha complex 3d from points and weights" << std::endl; using Point_3 = typename Weighted_alpha_complex_3d::Point_3; std::vector w_points; w_points.push_back(Point_3(0.0, 0.0, 0.0)); w_points.push_back(Point_3(0.0, 0.0, 0.2)); w_points.push_back(Point_3(0.2, 0.0, 0.2)); w_points.push_back(Point_3(0.6, 0.6, 0.0)); w_points.push_back(Point_3(0.8, 0.8, 0.2)); w_points.push_back(Point_3(0.2, 0.8, 0.6)); // weights size is different from w_points size to make weighted Alpha_complex_3d throw in debug mode std::vector weights = {0.01, 0.005, 0.006, 0.01, 0.009, 0.001}; Weighted_alpha_complex_3d alpha_complex_p_a_w(w_points, weights); Gudhi::Simplex_tree<> stree; alpha_complex_p_a_w.create_complex(stree); std::cout << "Weighted alpha complex 3d from weighted points" << std::endl; using Weighted_point_3 = typename Weighted_alpha_complex_3d::Triangulation_3::Weighted_point; std::vector weighted_points; for (std::size_t i = 0; i < w_points.size(); i++) { weighted_points.push_back(Weighted_point_3(w_points[i], weights[i])); } Weighted_alpha_complex_3d alpha_complex_w_p(weighted_points); Gudhi::Simplex_tree<> stree_bis; alpha_complex_w_p.create_complex(stree_bis); // --------------------- // Compare both versions // --------------------- std::cout << "Weighted alpha complex 3d is of dimension " << stree_bis.dimension() << " - versus " << stree.dimension() << std::endl; BOOST_CHECK(stree_bis.dimension() == stree.dimension()); std::cout << "Weighted alpha complex 3d num_simplices " << stree_bis.num_simplices() << " - versus " << stree.num_simplices() << std::endl; BOOST_CHECK(stree_bis.num_simplices() == stree.num_simplices()); std::cout << "Weighted alpha complex 3d num_vertices " << stree_bis.num_vertices() << " - versus " << stree.num_vertices() << std::endl; BOOST_CHECK(stree_bis.num_vertices() == stree.num_vertices()); auto sh = stree.filtration_simplex_range().begin(); while (sh != stree.filtration_simplex_range().end()) { std::vector simplex; std::vector exact_simplex; #ifdef DEBUG_TRACES std::cout << " ( "; #endif for (auto vertex : stree.simplex_vertex_range(*sh)) { simplex.push_back(vertex); #ifdef DEBUG_TRACES std::cout << vertex << " "; #endif } #ifdef DEBUG_TRACES std::cout << ") -> " << "[" << stree.filtration(*sh) << "] "; std::cout << std::endl; #endif // Find it in the exact structure auto sh_exact = stree_bis.find(simplex); BOOST_CHECK(sh_exact != stree_bis.null_simplex()); // Exact and non-exact version is not exactly the same due to float comparison GUDHI_TEST_FLOAT_EQUALITY_CHECK(stree_bis.filtration(sh_exact), stree.filtration(*sh)); ++sh; } } #ifdef GUDHI_DEBUG typedef boost::mpl::list periodic_variants_type_list; BOOST_AUTO_TEST_CASE_TEMPLATE(Alpha_complex_periodic_throw, Periodic_alpha_complex_3d, periodic_variants_type_list) { std::cout << "Periodic alpha complex 3d exception throw" << std::endl; using Point_3 = typename Periodic_alpha_complex_3d::Point_3; std::vector p_points; // Not important, this is not what we want to check p_points.push_back(Point_3(0.0, 0.0, 0.0)); std::cout << "Check exception throw in debug mode" << std::endl; // Check it throws an exception when the cuboid is not iso BOOST_CHECK_THROW(Periodic_alpha_complex_3d periodic_alpha_complex(p_points, 0., 0., 0., 0.9, 1., 1.), std::invalid_argument); BOOST_CHECK_THROW(Periodic_alpha_complex_3d periodic_alpha_complex(p_points, 0., 0., 0., 1., 0.9, 1.), std::invalid_argument); BOOST_CHECK_THROW(Periodic_alpha_complex_3d periodic_alpha_complex(p_points, 0., 0., 0., 1., 1., 0.9), std::invalid_argument); BOOST_CHECK_THROW(Periodic_alpha_complex_3d periodic_alpha_complex(p_points, 0., 0., 0., 1.1, 1., 1.), std::invalid_argument); BOOST_CHECK_THROW(Periodic_alpha_complex_3d periodic_alpha_complex(p_points, 0., 0., 0., 1., 1.1, 1.), std::invalid_argument); BOOST_CHECK_THROW(Periodic_alpha_complex_3d periodic_alpha_complex(p_points, 0., 0., 0., 1., 1., 1.1), std::invalid_argument); } #endif BOOST_AUTO_TEST_CASE(Alpha_complex_periodic) { // --------------------- // Fast periodic version // --------------------- std::cout << "Fast periodic alpha complex 3d" << std::endl; using Creator = CGAL::Creator_uniform_3; CGAL::Random random(7); CGAL::Random_points_in_cube_3 in_cube(1, random); std::vector p_points; for (int i = 0; i < 50; i++) { Fast_periodic_alpha_complex_3d::Point_3 p = *in_cube++; p_points.push_back(p); } Fast_periodic_alpha_complex_3d periodic_alpha_complex(p_points, -1., -1., -1., 1., 1., 1.); Gudhi::Simplex_tree<> stree; periodic_alpha_complex.create_complex(stree); // ---------------------- // Exact periodic version // ---------------------- std::cout << "Exact periodic alpha complex 3d" << std::endl; std::vector e_p_points; for (auto p : p_points) { e_p_points.push_back(Exact_periodic_alpha_complex_3d::Point_3(p[0], p[1], p[2])); } Exact_periodic_alpha_complex_3d exact_alpha_complex(e_p_points, -1., -1., -1., 1., 1., 1.); Gudhi::Simplex_tree<> exact_stree; exact_alpha_complex.create_complex(exact_stree); // --------------------- // Compare both versions // --------------------- std::cout << "Exact periodic alpha complex 3d is of dimension " << exact_stree.dimension() << " - Non exact is " << stree.dimension() << std::endl; BOOST_CHECK(exact_stree.dimension() == stree.dimension()); std::cout << "Exact periodic alpha complex 3d num_simplices " << exact_stree.num_simplices() << " - Non exact is " << stree.num_simplices() << std::endl; BOOST_CHECK(exact_stree.num_simplices() == stree.num_simplices()); std::cout << "Exact periodic alpha complex 3d num_vertices " << exact_stree.num_vertices() << " - Non exact is " << stree.num_vertices() << std::endl; BOOST_CHECK(exact_stree.num_vertices() == stree.num_vertices()); // We cannot compare as objects from dispatcher on the alpha shape is not deterministic. // cf. https://github.com/CGAL/cgal/issues/3346 auto sh = stree.filtration_simplex_range().begin(); auto sh_exact = exact_stree.filtration_simplex_range().begin(); while (sh != stree.filtration_simplex_range().end() || sh_exact != exact_stree.filtration_simplex_range().end()) { GUDHI_TEST_FLOAT_EQUALITY_CHECK(stree.filtration(*sh), exact_stree.filtration(*sh_exact), 1e-14); std::vector vh(stree.simplex_vertex_range(*sh).begin(), stree.simplex_vertex_range(*sh).end()); std::vector exact_vh(exact_stree.simplex_vertex_range(*sh_exact).begin(), exact_stree.simplex_vertex_range(*sh_exact).end()); BOOST_CHECK(vh.size() == exact_vh.size()); ++sh; ++sh_exact; } BOOST_CHECK(sh == stree.filtration_simplex_range().end()); BOOST_CHECK(sh_exact == exact_stree.filtration_simplex_range().end()); // ---------------------- // Safe periodic version // ---------------------- std::cout << "Safe periodic alpha complex 3d" << std::endl; std::vector s_p_points; for (auto p : p_points) { s_p_points.push_back(Safe_periodic_alpha_complex_3d::Point_3(p[0], p[1], p[2])); } Safe_periodic_alpha_complex_3d safe_alpha_complex(s_p_points, -1., -1., -1., 1., 1., 1.); Gudhi::Simplex_tree<> safe_stree; safe_alpha_complex.create_complex(safe_stree); // --------------------- // Compare both versions // --------------------- // We cannot compare as objects from dispatcher on the alpha shape is not deterministic. // cf. https://github.com/CGAL/cgal/issues/3346 sh = stree.filtration_simplex_range().begin(); auto sh_safe = safe_stree.filtration_simplex_range().begin(); while (sh != stree.filtration_simplex_range().end() || sh_safe != safe_stree.filtration_simplex_range().end()) { GUDHI_TEST_FLOAT_EQUALITY_CHECK(stree.filtration(*sh), safe_stree.filtration(*sh_safe), 1e-14); std::vector vh(stree.simplex_vertex_range(*sh).begin(), stree.simplex_vertex_range(*sh).end()); std::vector safe_vh(safe_stree.simplex_vertex_range(*sh_safe).begin(), safe_stree.simplex_vertex_range(*sh_safe).end()); BOOST_CHECK(vh.size() == safe_vh.size()); ++sh; ++sh_safe; } BOOST_CHECK(sh == stree.filtration_simplex_range().end()); BOOST_CHECK(sh_safe == safe_stree.filtration_simplex_range().end()); } typedef boost::mpl::list wp_variants_type_list; #ifdef GUDHI_DEBUG BOOST_AUTO_TEST_CASE_TEMPLATE(Alpha_complex_weighted_periodic_throw, Weighted_periodic_alpha_complex_3d, wp_variants_type_list) { std::cout << "Weighted periodic alpha complex 3d exception throw" << std::endl; using Creator = CGAL::Creator_uniform_3; CGAL::Random random(7); CGAL::Random_points_in_cube_3 in_cube(1, random); std::vector wp_points; for (int i = 0; i < 50; i++) { Weighted_periodic_alpha_complex_3d::Point_3 p = *in_cube++; wp_points.push_back(p); } std::vector p_weights; // Weights must be in range ]0, 1/64 = 0.015625[ for (std::size_t i = 0; i < wp_points.size(); ++i) { p_weights.push_back(random.get_double(0., 0.01)); } std::cout << "Cuboid is not iso exception" << std::endl; // Check it throws an exception when the cuboid is not iso BOOST_CHECK_THROW( Weighted_periodic_alpha_complex_3d wp_alpha_complex(wp_points, p_weights, -1., -1., -1., 0.9, 1., 1.), std::invalid_argument); BOOST_CHECK_THROW( Weighted_periodic_alpha_complex_3d wp_alpha_complex(wp_points, p_weights, -1., -1., -1., 1., 0.9, 1.), std::invalid_argument); BOOST_CHECK_THROW( Weighted_periodic_alpha_complex_3d wp_alpha_complex(wp_points, p_weights, -1., -1., -1., 1., 1., 0.9), std::invalid_argument); BOOST_CHECK_THROW( Weighted_periodic_alpha_complex_3d wp_alpha_complex(wp_points, p_weights, -1., -1., -1., 1.1, 1., 1.), std::invalid_argument); BOOST_CHECK_THROW( Weighted_periodic_alpha_complex_3d wp_alpha_complex(wp_points, p_weights, -1., -1., -1., 1., 1.1, 1.), std::invalid_argument); BOOST_CHECK_THROW( Weighted_periodic_alpha_complex_3d wp_alpha_complex(wp_points, p_weights, -1., -1., -1., 1., 1., 1.1), std::invalid_argument); std::cout << "0 <= point.weight() < 1/64 * domain_size * domain_size exception" << std::endl; // Weights must be in range ]0, 1/64 = 0.015625[ double temp = p_weights[25]; p_weights[25] = 1.0; BOOST_CHECK_THROW(Weighted_periodic_alpha_complex_3d wp_alpha_complex(wp_points, p_weights, 0., 0., 0., 1., 1., 1.), std::invalid_argument); // Weights must be in range ]0, 1/64 = 0.015625[ p_weights[25] = temp; temp = p_weights[14]; p_weights[14] = -1e-10; BOOST_CHECK_THROW(Weighted_periodic_alpha_complex_3d wp_alpha_complex(wp_points, p_weights, 0., 0., 0., 1., 1., 1.), std::invalid_argument); p_weights[14] = temp; std::cout << "wp_points and p_weights size exception" << std::endl; // Weights and points must have the same size // + 1 p_weights.push_back(1e-10); BOOST_CHECK_THROW(Weighted_periodic_alpha_complex_3d wp_alpha_complex(wp_points, p_weights, 0., 0., 0., 1., 1., 1.), std::invalid_argument); // - 1 p_weights.pop_back(); p_weights.pop_back(); BOOST_CHECK_THROW(Weighted_periodic_alpha_complex_3d wp_alpha_complex(wp_points, p_weights, 0., 0., 0., 1., 1., 1.), std::invalid_argument); } #endif BOOST_AUTO_TEST_CASE(Alpha_complex_weighted_periodic) { // --------------------- // Fast weighted periodic version // --------------------- std::cout << "Fast weighted periodic alpha complex 3d" << std::endl; using Creator = CGAL::Creator_uniform_3; CGAL::Random random(7); CGAL::Random_points_in_cube_3 in_cube(1, random); std::vector p_points; for (int i = 0; i < 50; i++) { Fast_weighted_periodic_alpha_complex_3d::Point_3 p = *in_cube++; p_points.push_back(p); } std::vector p_weights; // Weights must be in range ]0, 1/64 = 0.015625[ for (std::size_t i = 0; i < p_points.size(); ++i) { p_weights.push_back(random.get_double(0., 0.01)); } Fast_weighted_periodic_alpha_complex_3d periodic_alpha_complex(p_points, p_weights, -1., -1., -1., 1., 1., 1.); Gudhi::Simplex_tree<> stree; periodic_alpha_complex.create_complex(stree); // ---------------------- // Exact weighted periodic version // ---------------------- std::cout << "Exact weighted periodic alpha complex 3d" << std::endl; std::vector e_p_points; for (auto p : p_points) { e_p_points.push_back(Exact_weighted_periodic_alpha_complex_3d::Point_3(p[0], p[1], p[2])); } Exact_weighted_periodic_alpha_complex_3d exact_alpha_complex(e_p_points, p_weights, -1., -1., -1., 1., 1., 1.); Gudhi::Simplex_tree<> exact_stree; exact_alpha_complex.create_complex(exact_stree); // --------------------- // Compare both versions // --------------------- std::cout << "Exact weighted periodic alpha complex 3d is of dimension " << exact_stree.dimension() << " - Non exact is " << stree.dimension() << std::endl; BOOST_CHECK(exact_stree.dimension() == stree.dimension()); std::cout << "Exact weighted periodic alpha complex 3d num_simplices " << exact_stree.num_simplices() << " - Non exact is " << stree.num_simplices() << std::endl; BOOST_CHECK(exact_stree.num_simplices() == stree.num_simplices()); std::cout << "Exact weighted periodic alpha complex 3d num_vertices " << exact_stree.num_vertices() << " - Non exact is " << stree.num_vertices() << std::endl; BOOST_CHECK(exact_stree.num_vertices() == stree.num_vertices()); // We cannot compare as objects from dispatcher on the alpha shape is not deterministic. // cf. https://github.com/CGAL/cgal/issues/3346 auto sh = stree.filtration_simplex_range().begin(); auto sh_exact = exact_stree.filtration_simplex_range().begin(); while (sh != stree.filtration_simplex_range().end() || sh_exact != exact_stree.filtration_simplex_range().end()) { GUDHI_TEST_FLOAT_EQUALITY_CHECK(stree.filtration(*sh), exact_stree.filtration(*sh_exact), 1e-14); std::vector vh(stree.simplex_vertex_range(*sh).begin(), stree.simplex_vertex_range(*sh).end()); std::vector exact_vh(exact_stree.simplex_vertex_range(*sh_exact).begin(), exact_stree.simplex_vertex_range(*sh_exact).end()); BOOST_CHECK(vh.size() == exact_vh.size()); ++sh; ++sh_exact; } BOOST_CHECK(sh == stree.filtration_simplex_range().end()); BOOST_CHECK(sh_exact == exact_stree.filtration_simplex_range().end()); // ---------------------- // Safe weighted periodic version // ---------------------- std::cout << "Safe weighted periodic alpha complex 3d" << std::endl; std::vector s_p_points; for (auto p : p_points) { s_p_points.push_back(Safe_weighted_periodic_alpha_complex_3d::Point_3(p[0], p[1], p[2])); } Safe_weighted_periodic_alpha_complex_3d safe_alpha_complex(s_p_points, p_weights, -1., -1., -1., 1., 1., 1.); Gudhi::Simplex_tree<> safe_stree; safe_alpha_complex.create_complex(safe_stree); // --------------------- // Compare both versions // --------------------- // We cannot compare as objects from dispatcher on the alpha shape is not deterministic. // cf. https://github.com/CGAL/cgal/issues/3346 sh = stree.filtration_simplex_range().begin(); auto sh_safe = safe_stree.filtration_simplex_range().begin(); while (sh != stree.filtration_simplex_range().end() || sh_safe != safe_stree.filtration_simplex_range().end()) { GUDHI_TEST_FLOAT_EQUALITY_CHECK(stree.filtration(*sh), safe_stree.filtration(*sh_safe), 1e-14); std::vector vh(stree.simplex_vertex_range(*sh).begin(), stree.simplex_vertex_range(*sh).end()); std::vector safe_vh(safe_stree.simplex_vertex_range(*sh_safe).begin(), safe_stree.simplex_vertex_range(*sh_safe).end()); BOOST_CHECK(vh.size() == safe_vh.size()); ++sh; ++sh_safe; } BOOST_CHECK(sh == stree.filtration_simplex_range().end()); BOOST_CHECK(sh_safe == safe_stree.filtration_simplex_range().end()); }