/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Vincent Rouvreau * * Copyright (C) 2015 INRIA Saclay (France) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #define BOOST_TEST_DYN_LINK #define BOOST_TEST_MODULE "alpha_complex" #include #include #include #include // float comparison #include #include #include #include // Use dynamic_dimension_tag for the user to be able to set dimension typedef CGAL::Epick_d< CGAL::Dynamic_dimension_tag > Kernel_d; // The triangulation uses the default instantiation of the TriangulationDataStructure template parameter BOOST_AUTO_TEST_CASE(ALPHA_DOC_OFF_file) { // ---------------------------------------------------------------------------- // // Init of an alpha-complex from a OFF file // // ---------------------------------------------------------------------------- std::string off_file_name("alphacomplexdoc.off"); double max_alpha_square_value = 60.0; std::cout << "========== OFF FILE NAME = " << off_file_name << " - alpha²=" << max_alpha_square_value << "==========" << std::endl; Gudhi::alpha_complex::Alpha_complex alpha_complex_from_file(off_file_name, max_alpha_square_value); const int DIMENSION = 2; std::cout << "alpha_complex_from_file.dimension()=" << alpha_complex_from_file.dimension() << std::endl; BOOST_CHECK(alpha_complex_from_file.dimension() == DIMENSION); const int NUMBER_OF_VERTICES = 7; std::cout << "alpha_complex_from_file.num_vertices()=" << alpha_complex_from_file.num_vertices() << std::endl; BOOST_CHECK(alpha_complex_from_file.num_vertices() == NUMBER_OF_VERTICES); const int NUMBER_OF_SIMPLICES = 25; std::cout << "alpha_complex_from_file.num_simplices()=" << alpha_complex_from_file.num_simplices() << std::endl; BOOST_CHECK(alpha_complex_from_file.num_simplices() == NUMBER_OF_SIMPLICES); } BOOST_AUTO_TEST_CASE(ALPHA_DOC_OFF_file_filtered) { // ---------------------------------------------------------------------------- // // Init of an alpha-complex from a OFF file // // ---------------------------------------------------------------------------- std::string off_file_name("alphacomplexdoc.off"); double max_alpha_square_value = 59.0; std::cout << "========== OFF FILE NAME = " << off_file_name << " - alpha²=" << max_alpha_square_value << "==========" << std::endl; // Use of the default dynamic kernel Gudhi::alpha_complex::Alpha_complex<> alpha_complex_from_file(off_file_name, max_alpha_square_value); const int DIMENSION = 2; std::cout << "alpha_complex_from_file.dimension()=" << alpha_complex_from_file.dimension() << std::endl; BOOST_CHECK(alpha_complex_from_file.dimension() == DIMENSION); const int NUMBER_OF_VERTICES = 7; std::cout << "alpha_complex_from_file.num_vertices()=" << alpha_complex_from_file.num_vertices() << std::endl; BOOST_CHECK(alpha_complex_from_file.num_vertices() == NUMBER_OF_VERTICES); const int NUMBER_OF_SIMPLICES = 23; std::cout << "alpha_complex_from_file.num_simplices()=" << alpha_complex_from_file.num_simplices() << std::endl; BOOST_CHECK(alpha_complex_from_file.num_simplices() == NUMBER_OF_SIMPLICES); } bool are_almost_the_same(float a, float b) { return std::fabs(a - b) < std::numeric_limits::epsilon(); } // Use dynamic_dimension_tag for the user to be able to set dimension typedef CGAL::Epick_d< CGAL::Dimension_tag<4> > Kernel_s; typedef Kernel_s::Point_d Point; typedef std::vector Vector_of_points; bool is_point_in_list(Vector_of_points points_list, Point point) { for (auto& point_in_list : points_list) { if (point_in_list == point) { return true; // point found } } return false; // point not found } BOOST_AUTO_TEST_CASE(Alpha_complex_from_points) { // ---------------------------------------------------------------------------- // Init of a list of points // ---------------------------------------------------------------------------- Vector_of_points points; std::vector coords = { 0.0, 0.0, 0.0, 1.0 }; points.push_back(Point(coords.begin(), coords.end())); coords = { 0.0, 0.0, 1.0, 0.0 }; points.push_back(Point(coords.begin(), coords.end())); coords = { 0.0, 1.0, 0.0, 0.0 }; points.push_back(Point(coords.begin(), coords.end())); coords = { 1.0, 0.0, 0.0, 0.0 }; points.push_back(Point(coords.begin(), coords.end())); // ---------------------------------------------------------------------------- // Init of an alpha complex from the list of points // ---------------------------------------------------------------------------- Gudhi::alpha_complex::Alpha_complex alpha_complex_from_points(points); std::cout << "========== Alpha_complex_from_points ==========" << std::endl; // Another way to check num_simplices std::cout << "Iterator on alpha complex simplices in the filtration order, with [filtration value]:" << std::endl; int num_simplices = 0; for (auto f_simplex : alpha_complex_from_points.filtration_simplex_range()) { num_simplices++; std::cout << " ( "; for (auto vertex : alpha_complex_from_points.simplex_vertex_range(f_simplex)) { std::cout << vertex << " "; } std::cout << ") -> " << "[" << alpha_complex_from_points.filtration(f_simplex) << "] "; std::cout << std::endl; } BOOST_CHECK(num_simplices == 15); std::cout << "alpha_complex_from_points.num_simplices()=" << alpha_complex_from_points.num_simplices() << std::endl; BOOST_CHECK(alpha_complex_from_points.num_simplices() == 15); std::cout << "alpha_complex_from_points.dimension()=" << alpha_complex_from_points.dimension() << std::endl; BOOST_CHECK(alpha_complex_from_points.dimension() == 4); std::cout << "alpha_complex_from_points.num_vertices()=" << alpha_complex_from_points.num_vertices() << std::endl; BOOST_CHECK(alpha_complex_from_points.num_vertices() == 4); for (auto f_simplex : alpha_complex_from_points.filtration_simplex_range()) { switch (alpha_complex_from_points.dimension(f_simplex)) { case 0: BOOST_CHECK(are_almost_the_same(alpha_complex_from_points.filtration(f_simplex), 0.0)); break; case 1: BOOST_CHECK(are_almost_the_same(alpha_complex_from_points.filtration(f_simplex), 1.0/2.0)); break; case 2: BOOST_CHECK(are_almost_the_same(alpha_complex_from_points.filtration(f_simplex), 2.0/3.0)); break; case 3: BOOST_CHECK(are_almost_the_same(alpha_complex_from_points.filtration(f_simplex), 3.0/4.0)); break; default: BOOST_CHECK(false); // Shall not happen break; } } Point p0 = alpha_complex_from_points.get_point(0); std::cout << "alpha_complex_from_points.get_point(0)=" << p0 << std::endl; BOOST_CHECK(4 == p0.dimension()); BOOST_CHECK(is_point_in_list(points, p0)); Point p1 = alpha_complex_from_points.get_point(1); std::cout << "alpha_complex_from_points.get_point(1)=" << p1 << std::endl; BOOST_CHECK(4 == p1.dimension()); BOOST_CHECK(is_point_in_list(points, p1)); Point p2 = alpha_complex_from_points.get_point(2); std::cout << "alpha_complex_from_points.get_point(2)=" << p2 << std::endl; BOOST_CHECK(4 == p2.dimension()); BOOST_CHECK(is_point_in_list(points, p2)); Point p3 = alpha_complex_from_points.get_point(3); std::cout << "alpha_complex_from_points.get_point(3)=" << p3 << std::endl; BOOST_CHECK(4 == p3.dimension()); BOOST_CHECK(is_point_in_list(points, p3)); // Test to the limit BOOST_CHECK_THROW (alpha_complex_from_points.get_point(4), std::out_of_range); BOOST_CHECK_THROW (alpha_complex_from_points.get_point(-1), std::out_of_range); BOOST_CHECK_THROW (alpha_complex_from_points.get_point(1234), std::out_of_range); // Test after prune_above_filtration bool modified = alpha_complex_from_points.prune_above_filtration(0.6); if (modified) { alpha_complex_from_points.initialize_filtration(); } BOOST_CHECK(modified); // Another way to check num_simplices std::cout << "Iterator on alpha complex simplices in the filtration order, with [filtration value]:" << std::endl; num_simplices = 0; for (auto f_simplex : alpha_complex_from_points.filtration_simplex_range()) { num_simplices++; std::cout << " ( "; for (auto vertex : alpha_complex_from_points.simplex_vertex_range(f_simplex)) { std::cout << vertex << " "; } std::cout << ") -> " << "[" << alpha_complex_from_points.filtration(f_simplex) << "] "; std::cout << std::endl; } BOOST_CHECK(num_simplices == 10); std::cout << "alpha_complex_from_points.num_simplices()=" << alpha_complex_from_points.num_simplices() << std::endl; BOOST_CHECK(alpha_complex_from_points.num_simplices() == 10); std::cout << "alpha_complex_from_points.dimension()=" << alpha_complex_from_points.dimension() << std::endl; BOOST_CHECK(alpha_complex_from_points.dimension() == 4); std::cout << "alpha_complex_from_points.num_vertices()=" << alpha_complex_from_points.num_vertices() << std::endl; BOOST_CHECK(alpha_complex_from_points.num_vertices() == 4); for (auto f_simplex : alpha_complex_from_points.filtration_simplex_range()) { switch (alpha_complex_from_points.dimension(f_simplex)) { case 0: BOOST_CHECK(are_almost_the_same(alpha_complex_from_points.filtration(f_simplex), 0.0)); break; case 1: BOOST_CHECK(are_almost_the_same(alpha_complex_from_points.filtration(f_simplex), 1.0/2.0)); break; default: BOOST_CHECK(false); // Shall not happen break; } } }