/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Francois Godi * * Copyright (C) 2015 INRIA Sophia-Antipolis (France) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #define BOOST_TEST_MODULE bottleneck test #include #include #include using namespace Gudhi::Bottleneck_distance; int n1 = 81; // a natural number >0 int n2 = 180; // a natural number >0 double upper_bound = 406.43; // any real >0 BOOST_AUTO_TEST_CASE(persistence_diagrams_graph){ // Random construction std::uniform_real_distribution unif(0.,upper_bound); std::default_random_engine re; std::vector< std::pair > v1, v2; for (int i = 0; i < n1; i++) { double a = unif(re); double b = unif(re); v1.emplace_back(std::min(a,b), std::max(a,b)); } for (int i = 0; i < n2; i++) { double a = unif(re); double b = unif(re); v2.emplace_back(std::min(a,b), std::max(a,b)); } G::initialize(v1, v2, 0.); std::shared_ptr< std::vector > d(G::sorted_distances()); // BOOST_CHECK(!G::on_the_u_diagonal(n1-1)); BOOST_CHECK(!G::on_the_u_diagonal(n1)); BOOST_CHECK(!G::on_the_u_diagonal(n2-1)); BOOST_CHECK(G::on_the_u_diagonal(n2)); BOOST_CHECK(!G::on_the_v_diagonal(n1-1)); BOOST_CHECK(G::on_the_v_diagonal(n1)); BOOST_CHECK(G::on_the_v_diagonal(n2-1)); BOOST_CHECK(G::on_the_v_diagonal(n2)); // BOOST_CHECK(G::corresponding_point_in_u(0)==n2); BOOST_CHECK(G::corresponding_point_in_u(n1)==0); BOOST_CHECK(G::corresponding_point_in_v(0)==n1); BOOST_CHECK(G::corresponding_point_in_v(n2)==0); // BOOST_CHECK(G::size()==(n1+n2)); // BOOST_CHECK((int) d->size() <= (n1+n2)*(n1+n2) - n1*n2 + 1); BOOST_CHECK(std::count(d->begin(), d->end(), G::distance(0,0))==1); BOOST_CHECK(std::count(d->begin(), d->end(), G::distance(0,n1-1))==1); BOOST_CHECK(std::count(d->begin(), d->end(), G::distance(0,n1))==1); BOOST_CHECK(std::count(d->begin(), d->end(), G::distance(0,n2-1))==1); BOOST_CHECK(std::count(d->begin(), d->end(), G::distance(0,n2))==1); BOOST_CHECK(std::count(d->begin(), d->end(), G::distance(0,(n1+n2)-1))==1); BOOST_CHECK(std::count(d->begin(), d->end(), G::distance(n1,0))==1); BOOST_CHECK(std::count(d->begin(), d->end(), G::distance(n1,n1-1))==1); BOOST_CHECK(std::count(d->begin(), d->end(), G::distance(n1,n1))==1); BOOST_CHECK(std::count(d->begin(), d->end(), G::distance(n1,n2-1))==1); BOOST_CHECK(std::count(d->begin(), d->end(), G::distance(n1,n2))==1); BOOST_CHECK(std::count(d->begin(), d->end(), G::distance(n1,(n1+n2)-1))==1); BOOST_CHECK(std::count(d->begin(), d->end(), G::distance((n1+n2)-1,0))==1); BOOST_CHECK(std::count(d->begin(), d->end(), G::distance((n1+n2)-1,n1-1))==1); BOOST_CHECK(std::count(d->begin(), d->end(), G::distance((n1+n2)-1,n1))==1); BOOST_CHECK(std::count(d->begin(), d->end(), G::distance((n1+n2)-1,n2-1))==1); BOOST_CHECK(std::count(d->begin(), d->end(), G::distance((n1+n2)-1,n2))==1); BOOST_CHECK(std::count(d->begin(), d->end(), G::distance((n1+n2)-1,(n1+n2)-1))==1); } BOOST_AUTO_TEST_CASE(planar_neighbors_finder) { Planar_neighbors_finder pnf(1.); for(int v_point_index=0; v_point_index l = *pnf.pull_all_near(n2/2); bool v = true; for(auto it = l.cbegin(); it != l.cend(); ++it) v = v && (G::distance(n2/2,*it)>1.); BOOST_CHECK(v); int v_point_index_2 = pnf.pull_near(n2/2); BOOST_CHECK(v_point_index_2 == -1); } BOOST_AUTO_TEST_CASE(neighbors_finder) { Neighbors_finder nf(1.); for(int v_point_index=1; v_point_index<((n2+n1)*9/10); v_point_index+=2) nf.add(v_point_index); // int v_point_index_1 = nf.pull_near(n2/2); BOOST_CHECK((v_point_index_1 == -1) || (G::distance(n2/2,v_point_index_1)<=1.)); std::list l = *nf.pull_all_near(n2/2); bool v = true; for(auto it = l.cbegin(); it != l.cend(); ++it) v = v && (G::distance(n2/2,*it)>1.); BOOST_CHECK(v); int v_point_index_2 = nf.pull_near(n2/2); BOOST_CHECK(v_point_index_2 == -1); } BOOST_AUTO_TEST_CASE(layered_neighbors_finder) { Layered_neighbors_finder lnf(1.); for(int v_point_index=1; v_point_index<((n2+n1)*9/10); v_point_index+=2) lnf.add(v_point_index, v_point_index % 7); // int v_point_index_1 = lnf.pull_near(n2/2,6); BOOST_CHECK((v_point_index_1 == -1) || (G::distance(n2/2,v_point_index_1)<=1.)); int v_point_index_2 = lnf.pull_near(n2/2,6); BOOST_CHECK(v_point_index_2 == -1); v_point_index_1 = lnf.pull_near(n2/2,0); BOOST_CHECK((v_point_index_1 == -1) || (G::distance(n2/2,v_point_index_1)<=1.)); v_point_index_2 = lnf.pull_near(n2/2,0); BOOST_CHECK(v_point_index_2 == -1); } BOOST_AUTO_TEST_CASE(graph_matching) { Graph_matching m1; m1.set_r(0.); int e = 0; while (m1.multi_augment()) ++e; BOOST_CHECK(e <= 2*sqrt(2*(n1+n2))); Graph_matching m2 = m1; BOOST_CHECK(!m2.multi_augment()); m2.set_r(upper_bound); e = 0; while (m2.multi_augment()) ++e; BOOST_CHECK(e <= 2*sqrt(2*(n1+n2))); BOOST_CHECK(m2.perfect()); BOOST_CHECK(!m1.perfect()); } BOOST_AUTO_TEST_CASE(global){ std::uniform_real_distribution unif1(0.,upper_bound); std::uniform_real_distribution unif2(upper_bound/1000.,upper_bound/100.); std::default_random_engine re; std::vector< std::pair > v1, v2; for (int i = 0; i < n1; i++) { double a = unif1(re); double b = unif1(re); double x = unif2(re); double y = unif2(re); v1.emplace_back(std::min(a,b), std::max(a,b)); v2.emplace_back(std::min(a,b)+std::min(x,y), std::max(a,b)+std::max(x,y)); if(i%5==0) v1.emplace_back(std::min(a,b),std::min(a,b)+x); if(i%3==0) v2.emplace_back(std::max(a,b),std::max(a,b)+y); } BOOST_CHECK(compute(v1, v2) <= upper_bound/100.); }