#include #include #include #include #include #include #include #include #include #include #include // Types definition using Simplex_tree = Gudhi::Simplex_tree<>; using Filtration_value = Simplex_tree::Filtration_value; using Point = std::vector; using Vector_of_points = std::vector; using Rips_complex = Gudhi::rips_complex::Rips_complex; using Rips_edge_list = Gudhi::rips_edge_list::Rips_edge_list; using Field_Zp = Gudhi::persistent_cohomology::Field_Zp; using Persistent_cohomology = Gudhi::persistent_cohomology::Persistent_cohomology; using Distance_matrix = std::vector>; using Adjacency_list = boost::adjacency_list, boost::property>; class filt_edge_to_dist_matrix { public: template filt_edge_to_dist_matrix(Distance_matrix& distance_mat, Filtered_sorted_edge_list& edge_filt, std::size_t number_of_points) { double inf = std::numeric_limits::max(); doubleVector distances; std::pair e; for (std::size_t indx = 0; indx < number_of_points; indx++) { for (std::size_t j = 0; j <= indx; j++) { if (j == indx) distances.push_back(0); else distances.push_back(inf); } distance_mat.push_back(distances); distances.clear(); } for (auto edIt = edge_filt.begin(); edIt != edge_filt.end(); edIt++) { e = std::minmax(std::get<1>(*edIt), std::get<2>(*edIt)); distance_mat.at(std::get<1>(e)).at(std::get<0>(e)) = std::get<0>(*edIt); } } }; void program_options(int argc, char* argv[], std::string& off_file_points, std::string& filediag, Filtration_value& threshold, int& dim_max, int& p, Filtration_value& min_persistence); int main(int argc, char* argv[]) { typedef size_t Vertex_handle; typedef std::vector> Filtered_sorted_edge_list; auto the_begin = std::chrono::high_resolution_clock::now(); std::size_t number_of_points; std::string off_file_points; std::string filediag; double threshold; int dim_max; int p; double min_persistence; program_options(argc, argv, off_file_points, filediag, threshold, dim_max, p, min_persistence); std::cout << "The current input values to run the program is: " << std::endl; std::cout << "min_persistence, threshold, max_complex_dimension, off_file_points, filediag" << std::endl; std::cout << min_persistence << ", " << threshold << ", " << dim_max << ", " << off_file_points << ", " << filediag << std::endl; Map map_empty; Distance_matrix sparse_distances; Gudhi::Points_off_reader off_reader(off_file_points); if (!off_reader.is_valid()) { std::cerr << "Unable to read file " << off_file_points << "\n"; exit(-1); // ----- >> } Vector_of_points point_vector = off_reader.get_point_cloud(); if (point_vector.size() <= 0) { std::cerr << "Empty point cloud." << std::endl; exit(-1); // ----- >> } //int dimension = point_vector[0].dimension(); number_of_points = point_vector.size(); std::cout << "Successfully read " << number_of_points << " point_vector.\n"; //std::cout << "Ambient dimension is " << dimension << ".\n"; std::cout << "Point Set Generated." << std::endl; Adjacency_list proximity_graph = Gudhi::compute_proximity_graph(off_reader.get_point_cloud(), threshold, Gudhi::Euclidean_distance()); if (num_edges(proximity_graph) <= 0) { std::cerr << "Total number of egdes are zero." << std::endl; exit(-1); } std::cout << "Filtered edge collapse begins" << std::endl; Flag_complex_sparse_matrix mat_filt_edge_coll(proximity_graph); std::cout << "Computing the one-skeleton for threshold: " << threshold << std::endl; std::cout << "Matrix instansiated" << std::endl; Filtered_sorted_edge_list collapse_edges; collapse_edges = mat_filt_edge_coll.filtered_edge_collapse(); filt_edge_to_dist_matrix(sparse_distances, collapse_edges, number_of_points); std::cout << "Total number of vertices after collapse in the sparse matrix are: " << mat_filt_edge_coll.num_vertices() << std::endl; // Rips_complex rips_complex_before_collapse(distances, threshold); Rips_complex rips_complex_after_collapse(sparse_distances, threshold); Simplex_tree stree; rips_complex_after_collapse.create_complex(stree, dim_max); std::cout << "The complex contains " << stree.num_simplices() << " simplices after collapse. \n"; std::cout << " and has dimension " << stree.dimension() << " \n"; // Sort the simplices in the order of the filtration stree.initialize_filtration(); // Compute the persistence diagram of the complex Persistent_cohomology pcoh(stree); // initializes the coefficient field for homology pcoh.init_coefficients(p); pcoh.compute_persistent_cohomology(min_persistence); if (filediag.empty()) { pcoh.output_diagram(); } else { std::ofstream out(filediag); pcoh.output_diagram(out); out.close(); } auto the_end = std::chrono::high_resolution_clock::now(); std::cout << "Total computation time : " << std::chrono::duration(the_end - the_begin).count() << " ms\n" << std::endl; return 0; } void program_options(int argc, char* argv[], std::string& off_file_points, std::string& filediag, Filtration_value& threshold, int& dim_max, int& p, Filtration_value& min_persistence) { namespace po = boost::program_options; po::options_description hidden("Hidden options"); hidden.add_options()("input-file", po::value(&off_file_points), "Name of an OFF file containing a point set.\n"); po::options_description visible("Allowed options", 100); visible.add_options()("help,h", "produce help message")( "output-file,o", po::value(&filediag)->default_value(std::string()), "Name of file in which the persistence diagram is written. Default print in std::cout")( "max-edge-length,r", po::value(&threshold)->default_value(std::numeric_limits::infinity()), "Maximal length of an edge for the Rips complex construction.")( "cpx-dimension,d", po::value(&dim_max)->default_value(1), "Maximal dimension of the Rips complex we want to compute.")( "field-charac,p", po::value(&p)->default_value(11), "Characteristic p of the coefficient field Z/pZ for computing homology.")( "min-persistence,m", po::value(&min_persistence), "Minimal lifetime of homology feature to be recorded. Default is 0. Enter a negative value to see zero length " "intervals"); po::positional_options_description pos; pos.add("input-file", 1); po::options_description all; all.add(visible).add(hidden); po::variables_map vm; po::store(po::command_line_parser(argc, argv).options(all).positional(pos).run(), vm); po::notify(vm); if (vm.count("help") || !vm.count("input-file")) { std::cout << std::endl; std::cout << "Compute the persistent homology with coefficient field Z/pZ \n"; std::cout << "of a Rips complex, after edge collapse, defined on a set of input points.\n \n"; std::cout << "The output diagram contains one bar per line, written with the convention: \n"; std::cout << " p dim b d \n"; std::cout << "where dim is the dimension of the homological feature,\n"; std::cout << "b and d are respectively the birth and death of the feature and \n"; std::cout << "p is the characteristic of the field Z/pZ used for homology coefficients." << std::endl << std::endl; std::cout << "Usage: " << argv[0] << " [options] input-file" << std::endl << std::endl; std::cout << visible << std::endl; exit(-1); } }