
The gudhi stat doc.
Ver 1.0.

1 Idea

When it comes to the statistics and machine learning, one need only very limited number of opera-
tions to be performed on a data to get the results. Let us think of some representation of persistence,
of a type A. To perform most of the statistical and machine learning operations one need to be
able to compute average of objects of type A (so that the averaged object is also of a type A). One
need to be able to compute distance between objects of a type A, and to compute scalar product
of objects of a type A.

To put this statement into a context, let us assume we have two collections c1, ..., cn and d1, ..., dn
of objects of a type A. We want to verify if the average of those two collections are different by
performing bootstrap. First of all, we compute averages of those two collections: C = average of
c1, ..., cn and D = average of d1, ..., dn. Note that both C and D are of a type A. Then we compute
d(C,D), a distance between C and D. Later we put the two collections into one bin:

B = c1, ..., cn, d1, ..., dn

Then we shuffle B, and we divide the shuffled version of B into two classes: B1 and B2 (in this
case, of the same cardinality). Note that again, B1 and B2 are of a type A. We compute their
distance d(B1, B2). The procedure of shuffling and dividing the set B is repeated N times (where
N is reasonably large number). Then the p-value of a statement that the averages of c1, ..., cn and
d1, ..., dn is approximated by the number of times d(B1, B2) > d(C,D) divided by N .

As one can see, this procedure can be performed for any type A which can be averaged, and
which allows for computations of distances. The idea of Gudhi stat is to take advantage of C++
(and later python) polymorphism and implement a few interfaces:

1. Interface of a representation of persistence that allows averaging (so that the average object
is of the same type).

2. Interface of representation of persistence that allows computations of distances.

3. Interface of representation of persistence that allows computations of scalar product.

And then to implement various currently known representations based on those interfaces. At
the moment we have the implementation of following classes available (further details of those
representations will be discussed later):

1. Exact persistence landscapes (allow averaging, computation of distances and scalar products).

2. Persistence landscapes on a grid (allow averaging, computation of distances and scalar prod-
ucts).

3. Persistence heat maps various representations where one put some weighted or not Gaus-
sian kernel for each point of diagram (allow averaging, computation of distances and scalar
products).

1



4. Persistence vectors (allow averaging, computation of distances and scalar products).

5. Persistence diagrams / barcodes (allow computation of distances).

The main aim of this implementation is to be able to implement various statistical methods, both
on the level of C++ and python, that operates on the interfaces that are required for that partic-
ular method (like, in the example above, the ability of averaging and computations of distances).
Given those implementations of statistical methods, we are able to use any of representation that
implement athe required collection of interfaces (that includes the future ones that has not been
implemented yet). Doing so, we define a computational framework that joins topological methods
that uses persistent homology with statistics and machine learning. This framework is very easy
to being extend by new representations of persistence, and even more general, but any new type of
representation.

Below we are discussing the representations which are currently implemented in Gudhi stat:

2 Persistence Landscapes

Persistence landscapes were originally proposed by Bubenik in [1]. Efficient algorithms to compute
them rigorously were proposed by Bubenik and D lotko in [2]. The idea of persistence landscapes is
shortly summarized in below.

To begin with, suppose we are given a point (b, d) ∈ R2 in a persistence diagram. With this
point, we associate a piecewise linear function f(b,d) : R→ [0,∞), which is defined as

f(b,d)(x) =


0 if x 6∈ (b, d) ,

x− b if x ∈
(
b, b+d

2

]
,

d− x if x ∈
(
b+d
2 , d

)
.

(1)

A persistence landscape of the birth-death pairs (bi, di), where i = 1, . . . ,m, which constitute
the given persistence diagram is the sequence of functions λk : R → [0,∞) for k ∈ N, where λk(x)
denotes the kth largest value of the numbers f(bi,di)(x), for i = 1, . . . ,m, and we define λk(x) = 0 if
k > m. Equivalently, this sequence of functions can be combined into a single function L : N×R→
[0,∞) of two variables, if we define L(k, t) = λk(t).

The detailed description of algorithms used to compute persistence landscapes can be found
in [2]. Note that this implementation provides exact representation of landscapes. That have many
advantages, but also a few drawbacks. For instance, as discussed in [2], the exact representation of
landscape may be of quadratic size with respect to the input persistence diagram. It may therefore
happen that, for very large diagrams, using this representation may be memory–prohibitive. In
such a case, there are two possible ways to proceed:

1. Use non exact representation on a grid described in the Section 3.

2. Compute just a number of initial nonzero landscapes. This option is available from C++
level.

2



3 Persistence Landscapes on a grid

This is an alternative representation of persistence landscapes defined in the Section 2. Unlike in
the Section 2 we build a non–exact representation by sampling persistence landscape on a finite,
equally distributed grid of points. Since, the persistence landscapes that originate from persistence
diagrams have slope 1 or −1, we have an estimate of an error made in between grid points by such
a sampling. We do not have a similar estimation when a landscape is obtained from averaging
process.

Due to a lack of rigorous description of the algorithms in the literature, we are giving a short
discussion of them in below. Persistence landscapes are being represented by vector of vectors of
real numbers. Assume that i-th vector consist of ni numbers sorted from larger to smaller. They
represent the values of the functions λ1, . . . , λni (λni+1 and further are zero) on the i-th point of a
grid.

When averaging two persistence landscapes represented by a grid, we simply compute point-wise
averages of the entries of corresponding vectors1

Computations of distances between two persistence landscapes on a grid is not much different than
in the rigorous case. In this case, we sum up the distances between the same levels of corresponding
landscapes. For fixed level, we approximate the landscapes between the corresponding constitutive
points of landscapes by linear functions, and compute the Lp distance between them.

Similarly as in case of distance, when computing the scalar product of two persistence landscapes
on a grid, we sum up the scalar products of corresponding levels of landscapes. For each level, we
assume that the persistence landscape on a grid between two grid points is approximated by linear
function. Therefore to compute scalar product of two corresponding levels of landscapes, we sum
up the integrals of products of line segments for every pair of constitutive grid points.

Note that for this representation we need to specify a few parameters:

1. Begin and end point of a grid (real numbers)

2. Number of points in a grid.

Note that the same representation is used in TDA R-package [3].

4 Persistence heat maps

This is a general class of discrete structures which are based on idea of placing a Gaussian kernel
in the points of persistence diagrams. This idea appeared in work by many authors along the last
15 years. As far as we know this idea was firstly described in the work of Bologna group in [4]
and [5]. Later it has been described by Colorado State University group in [6]. The presented
paper in the first time provide a discussion of stability of the representation. Also, the same ideas
are used in construction of two recent kernels used for machine learning: [7] and [8]. Both the
kernel’s construction uses interesting ideas to ensure stability of the representation with respect
to Wasserstein metric. In the kernel presented in [7], a scaling function is used to multiply the
Gaussian kernel in the way that the points close to diagonal got low weight and consequently do
not have a big influence on the resulting total distribution. In [8] for every point (b, d) two Gaussian

1In this whole section we assume that if one vector is shorter than another, we extend the shorter one with zeros
so that they have the same length.

3



kernels are added. First, with a weight one in a point (b, d), and the second, with the weight −1 for
a point (b, d). In both cases, the representations are stable with respect to 1-Wasserstein distance.

In Gudhi stat we currently implement all the structures described above. The base of this imple-
mentation is 2-dimensional arrays of pixels. Each pixel have assigned a real value which is a sum
of values of distributions induced by each point of the persistence diagram.

The parameters of the structure are as follows:

1. Size of the image (we always assume that the images are square).

2. A filter: in practice a square matrix of a size 2k + 1× 2k + 1. By default, this is a Gaussian
kernel, but any other can be used instead.

3. The box [x0, x1]× [y0, y1] bounding the domain of the persistence image.

4. Scaling function (each Gaussian kernel at point (p, q) gets multiplied by the value of this
function at the point (p, q).

5. A boolean value determining if the space below diagonal should be erased or not.

5 Persistence vectors

This is a representation of persistent homology in a form of a vector which was designed for an
application in 3d graphic in [9]. Below we provide a short description of this representation.

Given a persistence diagram D = {(bi, di)}, for every pair of birth–death points (b1, d1) and
(b2, d2) we compute the following three distances:

1. d((b1, d1), (b2, d2)).

2. d((b1, d1), (
b1,d1
2 , b1,d12 )).

3. d((b2, d2), (
b2,d2
2 , b2,d22 )).

We pick the smallest of those and add it to a vector. The obtained vector of numbers is then sorted
in decreasing order. This way we obtain a persistence vector representing the diagram.

Given two persistence vectors, the computation of distances, averages and scalar products is
straightforward. Average is simply a coordinate-wise average of a collection of vectors. In this
section we assume that the vectors are extended by zeros if they are of a different size. To compute
distances we compute absolute value of differences between coordinates. A scalar product is a sum
of products of values at the corresponding positions of two vectors.

References

[1] P. Bubenik, Statistical topological data analysis using persistence landscapes, Journal of Ma-
chine Learning Research, 16 (2015), 77102.

[2] P. Bubenik, P. Dlotko, A persistence landscapes toolbox for topological statistics. Journal of
Symbolic Computation.

[3] B. Fasy, J. Kim, F. Lecci, C. Maria, Introduction to the R package TDA, arXiv:1411.1830.

4



[4] P. Donatini, P. Frosini, A. Lovato, Size functions for signature recognition, Proceedings of
SPIE, Vision Geometry VII, vol. 3454 (1998).

[5] M. Ferri, P. Frosini, A. Lovato, C. Zambelli, Point selection: A new comparison scheme for size
functions (With an application to monogram recognition), Proceedings Third Asian Conference
on Computer Vision, Lecture Notes in Computer Science 1351.

[6] H. Adams, S. Chepushtanova, T. Emerson, E. Hanson, M. Kirby, F. Motta, R. Neville, C.
Peterson, P. Shipman, L. Ziegelmeier, Persistence Images: A Stable Vector Representation of
Persistent Homology, arXiv:1507.06217.

[7] G. Kusano, K. Fukumizu, Y. Hiraoka, Persistence weighted Gaussian kernel for topological
data analysis, arXiv:1601.01741.

[8] J. Reininghaus, S. Huber, U. Bauer, R. Kwitt, A Stable Multi-Scale Kernel for Topological
Machine Learning, arXiv:1412.6821.

[9] M. Carrire, S. Oudot, M. Ovsjanikov, Stable Topological Signatures for Points on 3D Shapes.,
Proc. Sympos. on Geometry Processing, July 2015.

5


