/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Pawel Dlotko * * Copyright (C) 2015 INRIA (France) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include using namespace Gudhi; using namespace Gudhi::Gudhi_stat; #include int main( int argc , char** argv ) { //create two simple vectors with birth--death pairs: std::vector< std::pair< double , double > > persistence1; std::vector< std::pair< double , double > > persistence2; persistence1.push_back( std::make_pair(1,2) ); persistence1.push_back( std::make_pair(6,8) ); persistence1.push_back( std::make_pair(0,4) ); persistence1.push_back( std::make_pair(3,8) ); persistence2.push_back( std::make_pair(2,9) ); persistence2.push_back( std::make_pair(1,6) ); persistence2.push_back( std::make_pair(3,5) ); persistence2.push_back( std::make_pair(6,10) ); //create two persistence landscapes based on persistence1 and persistence2: Persistence_landscape l1( persistence1 ); Persistence_landscape l2( persistence2 ); //This is how to compute integral of landscapes: std::cout << "Integral of the first landscape : " << l1.compute_integral_of_landscape() << endl; std::cout << "Integral of the second landscape : " << l2.compute_integral_of_landscape() << endl; //And here how to write landscapes to stream: std::cout << "l1 : " << l1 << std::endl; std::cout << "l2 : " << l2 << std::endl; //Arythmetic operations on landscapes: Persistence_landscape sum = l1+l2; std::cout << "sum : " << sum << std::endl; //here are the maxima of the functions: std::cout << "Maximum of l1 : " << l1.compute_maximum() << std::endl; std::cout << "Maximum of l2 : " << l2.compute_maximum() << std::endl; //here are the norms of landscapes: std::cout << "L^1 Norm of l1 : " << l1.compute_norm_of_landscape( 1. ) << std::endl; std::cout << "L^1 Norm of l2 : " << l2.compute_norm_of_landscape( 1. ) << std::endl; //here is the average of landscapes: Persistence_landscape average; std::vector< Persistence_landscape* > to_average; to_average.push_back( &l1 ); to_average.push_back( &l2 ); average.compute_average( to_average ); std::cout << "average : " << average << std::endl; //here is the distance of landscapes: std::cout << "Distance : " << l1.distance( l2 ) << std::endl; //here is the scalar product of landscapes: std::cout << "Scalar product : " << l1.compute_scalar_product( l2 ) << std::endl; //here is how to create a file which is suitable for vizualization via gnuplot: average.plot( "average_landscape" ); return 0; } //Below I am storing the code used to generate tests for that functionality. /* if ( argc != 2 ) { std::cerr << "To run this program, please provide a name of a file with persistence landscape \n"; //return 1; } Persistence_landscape p("../test/data/file_with_diagram"); Persistence_landscape q; q.load_landscape_from_file( "file_with_landscape_from_file_with_diagram" ); if ( p != q ) { cout << "Not equal \n"; } double integral = p.compute_integral_of_landscape(); cout << "integral : " << integral < to_average; to_average.push_back( &p ); to_average.push_back( &q ); Persistence_landscape av; av.compute_average( to_average ); Persistence_landscape template_average; template_average.load_landscape_from_file( "average" ); if ( template_average != av ) { cerr << "We have a problem with average \n"; } } { Persistence_landscape p( "../test/data/file_with_diagram" ); Persistence_landscape q( "../test/data/file_with_diagram_1" ); cout << "L^1 distance : " << p.distance( &q ) << endl; cout << "L^2 distance : " << p.distance( &q , 2) << endl; cout << "L^infty distance : " << p.distance( &q , -1 ) << endl; } { Persistence_landscape p( "../test/data/file_with_diagram" ); Persistence_landscape q( "../test/data/file_with_diagram_1" ); cout << "Scalar product : " << p.compute_scalar_product( &q ) << endl; } */