/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Siargey Kachanovich * * Copyright (C) 2015 INRIA Sophia Antipolis-Méditerranée (France) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include //#include //#include "gudhi/graph_simplicial_complex.h" #include "gudhi/Relaxed_witness_complex.h" #include "gudhi/reader_utils.h" #include "gudhi/Collapse/Collapse.h" //#include //#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace Gudhi; //using namespace boost::filesystem; typedef CGAL::Epick_d K; typedef K::FT FT; typedef K::Point_d Point_d; typedef CGAL::Search_traits< FT, Point_d, typename K::Cartesian_const_iterator_d, typename K::Construct_cartesian_const_iterator_d> Traits_base; typedef CGAL::Euclidean_distance Euclidean_distance; typedef std::vector< Vertex_handle > typeVectorVertex; //typedef std::pair typeSimplex; //typedef std::pair< Simplex_tree<>::Simplex_handle, bool > typePairSimplexBool; typedef CGAL::Search_traits_adapter< std::ptrdiff_t, Point_d*, Traits_base> STraits; //typedef K TreeTraits; //typedef CGAL::Distance_adapter Euclidean_adapter; //typedef CGAL::Kd_tree Kd_tree; typedef CGAL::Orthogonal_incremental_neighbor_search> Neighbor_search; typedef Neighbor_search::Tree Tree; typedef Neighbor_search::Distance Distance; typedef Neighbor_search::iterator KNS_iterator; typedef Neighbor_search::iterator KNS_range; typedef boost::container::flat_map Point_etiquette_map; typedef CGAL::Kd_tree Tree2; typedef CGAL::Fuzzy_sphere Fuzzy_sphere; typedef std::vector Point_Vector; //typedef K::Equal_d Equal_d; typedef CGAL::Random_points_in_cube_d Random_cube_iterator; typedef CGAL::Random_points_in_ball_d Random_point_iterator; bool toric=false; /** * \brief Customized version of read_points * which takes into account a possible nbP first line * */ inline void read_points_cust ( std::string file_name , Point_Vector & points) { std::ifstream in_file (file_name.c_str(),std::ios::in); if(!in_file.is_open()) { std::cerr << "Unable to open file " << file_name << std::endl; return; } std::string line; double x; while( getline ( in_file , line ) ) { std::vector< double > point; std::istringstream iss( line ); while(iss >> x) { point.push_back(x); } Point_d p(point.begin(), point.end()); if (point.size() != 1) points.push_back(p); } in_file.close(); } void generate_points_sphere(Point_Vector& W, int nbP, int dim) { CGAL::Random_points_on_sphere_d rp(dim,1); for (int i = 0; i < nbP; i++) W.push_back(*rp++); } void write_wl( std::string file_name, std::vector< std::vector > & WL) { std::ofstream ofs (file_name, std::ofstream::out); for (auto w : WL) { for (auto l: w) ofs << l << " "; ofs << "\n"; } ofs.close(); } void write_rl( std::string file_name, std::vector< std::vector ::iterator> > & rl) { std::ofstream ofs (file_name, std::ofstream::out); for (auto w : rl) { for (auto l: w) ofs << *l << " "; ofs << "\n"; } ofs.close(); } std::vector convert_to_torus(std::vector< Point_d>& points) { std::vector< Point_d > points_torus; for (auto p: points) { FT theta = M_PI*p[0]; FT phi = M_PI*p[1]; std::vector p_torus; p_torus.push_back((1+0.2*cos(theta))*cos(phi)); p_torus.push_back((1+0.2*cos(theta))*sin(phi)); p_torus.push_back(0.2*sin(theta)); points_torus.push_back(Point_d(p_torus)); } return points_torus; } void write_points_torus( std::string file_name, std::vector< Point_d > & points) { std::ofstream ofs (file_name, std::ofstream::out); std::vector points_torus = convert_to_torus(points); for (auto w : points_torus) { for (auto it = w.cartesian_begin(); it != w.cartesian_end(); ++it) ofs << *it << " "; ofs << "\n"; } ofs.close(); } void write_points( std::string file_name, std::vector< Point_d > & points) { if (toric) write_points_torus(file_name, points); else { std::ofstream ofs (file_name, std::ofstream::out); for (auto w : points) { for (auto it = w.cartesian_begin(); it != w.cartesian_end(); ++it) ofs << *it << " "; ofs << "\n"; } ofs.close(); } } void write_edges_torus(std::string file_name, Witness_complex<>& witness_complex, Point_Vector& landmarks) { std::ofstream ofs (file_name, std::ofstream::out); Point_Vector l_torus = convert_to_torus(landmarks); for (auto u: witness_complex.complex_vertex_range()) for (auto v: witness_complex.complex_vertex_range()) { typeVectorVertex edge = {u,v}; if (u < v && witness_complex.find(edge) != witness_complex.null_simplex()) { for (auto it = l_torus[u].cartesian_begin(); it != l_torus[u].cartesian_end(); ++it) ofs << *it << " "; ofs << "\n"; for (auto it = l_torus[v].cartesian_begin(); it != l_torus[v].cartesian_end(); ++it) ofs << *it << " "; ofs << "\n\n\n"; } } ofs.close(); } void write_edges(std::string file_name, Witness_complex<>& witness_complex, Point_Vector& landmarks) { std::ofstream ofs (file_name, std::ofstream::out); if (toric) write_edges_torus(file_name, witness_complex, landmarks); else { for (auto u: witness_complex.complex_vertex_range()) for (auto v: witness_complex.complex_vertex_range()) { typeVectorVertex edge = {u,v}; if (u < v && witness_complex.find(edge) != witness_complex.null_simplex()) { for (auto it = landmarks[u].cartesian_begin(); it != landmarks[u].cartesian_end(); ++it) ofs << *it << " "; ofs << "\n"; for (auto it = landmarks[v].cartesian_begin(); it != landmarks[v].cartesian_end(); ++it) ofs << *it << " "; ofs << "\n\n\n"; } } ofs.close(); } } /** Function that chooses landmarks from W and place it in the kd-tree L. * Note: nbL hould be removed if the code moves to Witness_complex */ void landmark_choice(Point_Vector &W, int nbP, int nbL, Point_Vector& landmarks, std::vector& landmarks_ind) { std::cout << "Enter landmark choice to kd tree\n"; //std::vector landmarks; int chosen_landmark; //std::pair res = std::make_pair(L_i.begin(),false); Point_d* p; CGAL::Random rand; for (int i = 0; i < nbL; i++) { // while (!res.second) // { do chosen_landmark = rand.get_int(0,nbP); while (std::find(landmarks_ind.begin(), landmarks_ind.end(), chosen_landmark) != landmarks_ind.end()); //rand++; //std::cout << "Chose " << chosen_landmark << std::endl; p = &W[chosen_landmark]; //L_i.emplace(chosen_landmark,i); // } landmarks.push_back(*p); landmarks_ind.push_back(chosen_landmark); //std::cout << "Added landmark " << chosen_landmark << std::endl; } } void landmarks_to_witness_complex(Point_Vector &W, Point_Vector& landmarks, std::vector& landmarks_ind, FT alpha) { //********************Preface: origin point unsigned D = W[0].size(); std::vector orig_vector; for (unsigned i = 0; i < D; i++) orig_vector.push_back(0); Point_d origin(orig_vector); //Distance dist; //dist.transformed_distance(0,1); //******************** Constructing a WL matrix int nbP = W.size(); int nbL = landmarks.size(); STraits traits(&(landmarks[0])); Euclidean_distance ed; std::vector< std::vector > WL(nbP); std::vector< std::vector< typename std::vector::iterator > > ope_limits(nbP); Tree L(boost::counting_iterator(0), boost::counting_iterator(nbL), typename Tree::Splitter(), traits); std::cout << "Enter (D+1) nearest landmarks\n"; //std::cout << "Size of the tree is " << L.size() << std::endl; for (int i = 0; i < nbP; i++) { //std::cout << "Entered witness number " << i << std::endl; Point_d& w = W[i]; std::queue< typename std::vector::iterator > ope_queue; // queue of points at (1+epsilon) distance to current landmark Neighbor_search search(L, w, FT(0), true, CGAL::Distance_adapter(&(landmarks[0]))); Neighbor_search::iterator search_it = search.begin(); //Incremental search and filling WL while (WL[i].size() < D) WL[i].push_back((search_it++)->first); FT dtow = ed.transformed_distance(w, landmarks[WL[i][D-1]]); while (search_it->second < dtow + alpha) WL[i].push_back((search_it++)->first); //Filling the (1+epsilon)-limits table for (std::vector::iterator wl_it = WL[i].begin(); wl_it != WL[i].end(); ++wl_it) { ope_queue.push(wl_it); FT d_to_curr_l = ed.transformed_distance(w, landmarks[*wl_it]); //std::cout << "d_to_curr_l=" << d_to_curr_l << std::endl; //std::cout << "d_to_front+alpha=" << d_to_curr_l << std::endl; while (d_to_curr_l > alpha + ed.transformed_distance(w, landmarks[*(ope_queue.front())])) { ope_limits[i].push_back(wl_it); ope_queue.pop(); } } while (ope_queue.size() > 0) { ope_limits[i].push_back(WL[i].end()); ope_queue.pop(); } //std::cout << "Safely constructed a point\n"; ////Search D+1 nearest neighbours from the tree of landmarks L /* if (w[0]>0.95) std::cout << i << std::endl; */ //K_neighbor_search search(L, w, D, FT(0), true, // CGAL::Distance_adapter(&(landmarks[0])) ); //std::cout << "Safely found nearest landmarks\n"; /* for(K_neighbor_search::iterator it = search.begin(); it != search.end(); ++it) { //std::cout << "Entered KNN_it with point at distance " << it->second << "\n"; //Point_etiquette_map::iterator itm = L_i.find(it->first); //assert(itm != L_i.end()); //std::cout << "Entered KNN_it with point at distance " << it->second << "\n"; WL[i].push_back(it->first); //std::cout << "ITFIRST " << it->first << std::endl; //std::cout << i << " " << it->first << ": " << it->second << std::endl; } */ } //std::cout << "\n"; //std::string out_file = "wl_result"; write_wl("wl_result",WL); write_rl("rl_result",ope_limits); //******************** Constructng a witness complex std::cout << "Entered witness complex construction\n"; Witness_complex<> witnessComplex; witnessComplex.setNbL(nbL); witnessComplex.relaxed_witness_complex(WL, ope_limits); char buffer[100]; int i = sprintf(buffer,"stree_result.txt"); if (i >= 0) { std::string out_file = (std::string)buffer; std::ofstream ofs (out_file, std::ofstream::out); witnessComplex.st_to_file(ofs); ofs.close(); } write_edges("landmarks/edges", witnessComplex, landmarks); std::cout << Distance().transformed_distance(Point_d(std::vector({0.1,0.1})), Point_d(std::vector({1.9,1.9}))) << std::endl; } int main (int argc, char * const argv[]) { if (argc != 5) { std::cerr << "Usage: " << argv[0] << " nbP nbL dim alpha\n"; return 0; } /* boost::filesystem::path p; for (; argc > 2; --argc, ++argv) p /= argv[1]; */ int nbP = atoi(argv[1]); int nbL = atoi(argv[2]); int dim = atoi(argv[3]); double alpha = atof(argv[4]); //clock_t start, end; //Construct the Simplex Tree Witness_complex<> witnessComplex; std::cout << "Let the carnage begin!\n"; Point_Vector point_vector; //read_points_cust(file_name, point_vector); generate_points_sphere(point_vector, nbP, dim); /* for (auto &p: point_vector) { assert(std::count(point_vector.begin(),point_vector.end(),p) == 1); } */ //std::cout << "Successfully read the points\n"; //witnessComplex.setNbL(nbL); Point_Vector L; std::vector chosen_landmarks; landmark_choice(point_vector, nbP, nbL, L, chosen_landmarks); //start = clock(); write_points("landmarks/initial_pointset",point_vector); write_points("landmarks/initial_landmarks",L); landmarks_to_witness_complex(point_vector, L, chosen_landmarks, alpha); //end = clock(); /* std::cout << "Landmark choice took " << (double)(end-start)/CLOCKS_PER_SEC << " s. \n"; start = clock(); witnessComplex.witness_complex(WL); // end = clock(); std::cout << "Howdy world! The process took " << (double)(end-start)/CLOCKS_PER_SEC << " s. \n"; */ /* out_file = "output/"+file_name+"_"+argv[2]+".stree"; std::ofstream ofs (out_file, std::ofstream::out); witnessComplex.st_to_file(ofs); ofs.close(); out_file = "output/"+file_name+"_"+argv[2]+".badlinks"; std::ofstream ofs2(out_file, std::ofstream::out); witnessComplex.write_bad_links(ofs2); ofs2.close(); */ }