/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Siargey Kachanovich * * Copyright (C) 2015 INRIA Sophia Antipolis-Méditerranée (France) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include //#include //#include "gudhi/graph_simplicial_complex.h" #include "gudhi/Witness_complex.h" #include "gudhi/reader_utils.h" #include "Torus_distance.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace Gudhi; //using namespace boost::filesystem; typedef CGAL::Epick_d K; typedef K::Point_d Point_d; //typedef CGAL::Cartesian_d K; //typedef CGAL::Point_d Point_d; typedef K::FT FT; typedef CGAL::Search_traits< FT, Point_d, typename K::Cartesian_const_iterator_d, typename K::Construct_cartesian_const_iterator_d> Traits_base; typedef CGAL::Euclidean_distance Euclidean_distance; typedef std::vector< Vertex_handle > typeVectorVertex; //typedef std::pair typeSimplex; //typedef std::pair< Simplex_tree<>::Simplex_handle, bool > typePairSimplexBool; typedef CGAL::Search_traits_adapter< std::ptrdiff_t, Point_d*, Traits_base> STraits; //typedef K TreeTraits; //typedef CGAL::Distance_adapter Euclidean_adapter; //typedef CGAL::Kd_tree Kd_tree; typedef CGAL::Orthogonal_k_neighbor_search> K_neighbor_search; typedef K_neighbor_search::Tree Tree; typedef K_neighbor_search::Distance Distance; typedef K_neighbor_search::iterator KNS_iterator; typedef K_neighbor_search::iterator KNS_range; typedef boost::container::flat_map Point_etiquette_map; typedef CGAL::Kd_tree Tree2; typedef CGAL::Fuzzy_sphere Fuzzy_sphere; typedef std::vector Point_Vector; //typedef K::Equal_d Equal_d; //typedef CGAL::Random_points_in_cube_d > > Random_cube_iterator; typedef CGAL::Random_points_in_cube_d Random_cube_iterator; typedef CGAL::Random_points_in_ball_d Random_point_iterator; typedef CGAL::Delaunay_triangulation Delaunay_triangulation; typedef Delaunay_triangulation::Facet Facet; typedef CGAL::Sphere_d Sphere_d; bool toric=false; /** * \brief Customized version of read_points * which takes into account a possible nbP first line * */ inline void read_points_cust ( std::string file_name , Point_Vector & points) { std::ifstream in_file (file_name.c_str(),std::ios::in); if(!in_file.is_open()) { std::cerr << "Unable to open file " << file_name << std::endl; return; } std::string line; double x; while( getline ( in_file , line ) ) { std::vector< double > point; std::istringstream iss( line ); while(iss >> x) { point.push_back(x); } Point_d p(point.begin(), point.end()); if (point.size() != 1) points.push_back(p); } in_file.close(); } void generate_points_grid(Point_Vector& W, int width, int D) { int nb_points = 1; for (int i = 0; i < D; ++i) nb_points *= width; for (int i = 0; i < nb_points; ++i) { std::vector point; int cell_i = i; for (int l = 0; l < D; ++l) { point.push_back(0.01*(cell_i%width)); cell_i /= width; } W.push_back(point); } } void generate_points_random_box(Point_Vector& W, int nbP, int dim) { /* Random_cube_iterator rp(dim, 1); for (int i = 0; i < nbP; i++) { std::vector point; for (auto it = rp->cartesian_begin(); it != rp->cartesian_end(); ++it) point.push_back(*it); W.push_back(Point_d(point)); rp++; } */ Random_cube_iterator rp(dim, 1.0); for (int i = 0; i < nbP; i++) { W.push_back(*rp++); } } void write_wl( std::string file_name, std::vector< std::vector > & WL) { std::ofstream ofs (file_name, std::ofstream::out); for (auto w : WL) { for (auto l: w) ofs << l << " "; ofs << "\n"; } ofs.close(); } void write_points( std::string file_name, std::vector< Point_d > & points) { std::ofstream ofs (file_name, std::ofstream::out); for (auto w : points) { for (auto it = w.cartesian_begin(); it != w.cartesian_end(); ++it) ofs << *it << " "; ofs << "\n"; } ofs.close(); } void write_edges(std::string file_name, Witness_complex<>& witness_complex, Point_Vector& landmarks) { std::ofstream ofs (file_name, std::ofstream::out); for (auto u: witness_complex.complex_vertex_range()) for (auto v: witness_complex.complex_vertex_range()) { typeVectorVertex edge = {u,v}; if (u < v && witness_complex.find(edge) != witness_complex.null_simplex()) { for (auto it = landmarks[u].cartesian_begin(); it != landmarks[u].cartesian_end(); ++it) ofs << *it << " "; ofs << "\n"; for (auto it = landmarks[v].cartesian_begin(); it != landmarks[v].cartesian_end(); ++it) ofs << *it << " "; ofs << "\n\n\n"; } } ofs.close(); } void insert_delaunay_landmark_with_copies(Point_Vector& W, int chosen_landmark, std::vector& landmarks_ind, Delaunay_triangulation& delaunay, int& landmark_count) { delaunay.insert(W[chosen_landmark]); landmarks_ind.push_back(chosen_landmark); landmark_count++; } bool is_violating_protection(Point_d& p, Delaunay_triangulation& t, int D, FT delta) { Euclidean_distance ed; Delaunay_triangulation::Vertex_handle v; Delaunay_triangulation::Face f(t.current_dimension()); Delaunay_triangulation::Facet ft; Delaunay_triangulation::Full_cell_handle c; Delaunay_triangulation::Locate_type lt; c = t.locate(p, lt, f, ft, v); for (auto fc_it = t.full_cells_begin(); fc_it != t.full_cells_end(); ++fc_it) if (!t.is_infinite(fc_it)) { std::vector vertices; for (auto v_it = fc_it->vertices_begin(); v_it != fc_it->vertices_end(); ++v_it) vertices.push_back((*v_it)->point()); Sphere_d cs(D, vertices.begin(), vertices.end()); Point_d center_cs = cs.center(); FT r = sqrt(ed.transformed_distance(center_cs, fc_it->vertex(1)->point())); FT dist2 = ed.transformed_distance(center_cs, p); //if the new point is inside the protection ball of a non conflicting simplex if (dist2 >= r*r && dist2 <= (r+delta)*(r+delta)) return true; } return false; } bool triangulation_is_protected(Delaunay_triangulation& t, FT delta) { Euclidean_distance ed; int D = t.current_dimension(); for (auto fc_it = t.full_cells_begin(); fc_it != t.full_cells_end(); ++fc_it) if (!t.is_infinite(fc_it)) for (auto v_it = t.vertices_begin(); v_it != t.vertices_end(); ++v_it) { //check if vertex belongs to the face bool belongs = false; for (auto fc_v_it = fc_it->vertices_begin(); fc_v_it != fc_it->vertices_end(); ++fc_v_it) if (v_it == *fc_v_it) { belongs = true; break; } if (!belongs) { std::vector vertices; for (auto fc_v_it = fc_it->vertices_begin(); fc_v_it != fc_it->vertices_end(); ++fc_v_it) vertices.push_back((*fc_v_it)->point()); Sphere_d cs(D, vertices.begin(), vertices.end()); Point_d center_cs = cs.center(); FT r = sqrt(ed.transformed_distance(center_cs, fc_it->vertex(1)->point())); FT dist2 = ed.transformed_distance(center_cs, v_it->point()); //if the new point is inside the protection ball of a non conflicting simplex if (dist2 <= (r+delta)*(r+delta)) return false; } } return true; } void fill_landmarks(Point_Vector& W, Point_Vector& landmarks, std::vector& landmarks_ind) { for (unsigned j = 0; j < landmarks_ind.size(); ++j) landmarks.push_back(W[landmarks_ind[j]]); } void landmark_choice_by_delaunay(Point_Vector& W, int nbP, int nbL, Point_Vector& landmarks, std::vector& landmarks_ind, FT delta) { int D = W[0].size(); Delaunay_triangulation t(D); CGAL::Random rand; int chosen_landmark; int landmark_count = 0; for (int i = 0; i <= D+1; ++i) { do chosen_landmark = rand.get_int(0,nbP); while (std::count(landmarks_ind.begin(),landmarks_ind.end(),chosen_landmark)!=0); insert_delaunay_landmark_with_copies(W, chosen_landmark, landmarks_ind, t, landmark_count); } while (landmark_count < nbL) { do chosen_landmark = rand.get_int(0,nbP); while (std::count(landmarks_ind.begin(),landmarks_ind.end(),chosen_landmark)!=0); // If no conflicts then insert in every copy of T^3 if (!is_violating_protection(W[chosen_landmark], t, D, delta)) insert_delaunay_landmark_with_copies(W, chosen_landmark, landmarks_ind, t, landmark_count); } } void landmark_choice_protected_delaunay(Point_Vector& W, int nbP, Point_Vector& landmarks, std::vector& landmarks_ind, FT delta) { int D = W[0].size(); Torus_distance td; Euclidean_distance ed; Delaunay_triangulation t(D); CGAL::Random rand; int landmark_count = 0; std::list index_list; // shuffle the list of indexes (via a vector) { std::vector temp_vector; for (int i = 0; i < nbP; ++i) temp_vector.push_back(i); unsigned seed = std::chrono::system_clock::now().time_since_epoch().count(); std::shuffle(temp_vector.begin(), temp_vector.end(), std::default_random_engine(seed)); for (std::vector::iterator it = temp_vector.begin(); it != temp_vector.end(); ++it) index_list.push_front(*it); } // add the first D+1 vertices to form one non-empty cell for (int i = 0; i <= D+1; ++i) { insert_delaunay_landmark_with_copies(W, index_list.front(), landmarks_ind, t, landmark_count); index_list.pop_front(); } // add other vertices if they don't violate protection std::list::iterator list_it = index_list.begin(); while (list_it != index_list.end()) if (!is_violating_protection(W[*list_it], t, D, delta)) { // If no conflicts then insert in every copy of T^3 insert_delaunay_landmark_with_copies(W, *list_it, landmarks_ind, t, landmark_count); index_list.erase(list_it); list_it = index_list.begin(); } else list_it++; fill_landmarks(W, landmarks, landmarks_ind); } int landmark_perturbation(Point_Vector &W, int nbL, Point_Vector& landmarks, std::vector& landmarks_ind) { //******************** Preface: origin point int D = W[0].size(); std::vector orig_vector; for (int i=0; i landmarks_ext; int nb_cells = 1; for (int i = 0; i < D; ++i) nb_cells *= 3; for (int i = 0; i < nb_cells; ++i) for (int k = 0; k < nbL; ++k) { std::vector point; int cell_i = i; for (int l = 0; l < D; ++l) { point.push_back(landmarks[k][l] + 2.0*((cell_i%3)-1.0)); cell_i /= 3; } landmarks_ext.push_back(point); } write_points("landmarks/initial_landmarks",landmarks_ext); STraits traits(&(landmarks_ext[0])); std::vector< std::vector > WL(nbP); //********************** Neighbor search in a Kd tree Tree L(boost::counting_iterator(0), boost::counting_iterator(nb_cells*nbL), typename Tree::Splitter(), traits); std::cout << "Enter (D+1) nearest landmarks\n"; for (int i = 0; i < nbP; i++) { Point_d& w = W[i]; ////Search D+1 nearest neighbours from the tree of landmarks L K_neighbor_search search(L, w, D+1, FT(0), true, CGAL::Distance_adapter(&(landmarks_ext[0])) ); for(K_neighbor_search::iterator it = search.begin(); it != search.end(); ++it) { if (std::find(WL[i].begin(), WL[i].end(), (it->first)%nbL) == WL[i].end()) WL[i].push_back((it->first)%nbL); } if (i == landmarks_ind[WL[i][0]]) { FT dist = ed.transformed_distance(W[i], landmarks[WL[i][1]]); if (dist < lambda) lambda = dist; } } std::string out_file = "wl_result"; write_wl(out_file,WL); //******************** Constructng a witness complex std::cout << "Entered witness complex construction\n"; Witness_complex<> witnessComplex; witnessComplex.setNbL(nbL); witnessComplex.witness_complex(WL); //******************** Making a set of bad link landmarks /* std::cout << "Entered bad links\n"; std::set< int > perturbL; int count_badlinks = 0; //std::cout << "Bad links around "; std::vector< int > count_bad(D); std::vector< int > count_good(D); for (auto u: witnessComplex.complex_vertex_range()) { if (!witnessComplex.has_good_link(u, count_bad, count_good)) { count_badlinks++; Point_d& l = landmarks[u]; Fuzzy_sphere fs(l, sqrt(lambda)*3, 0, traits); std::vector curr_perturb; L.search(std::insert_iterator>(curr_perturb,curr_perturb.begin()),fs); for (int i: curr_perturb) perturbL.insert(i%nbL); } } for (unsigned int i = 0; i != count_good.size(); i++) if (count_good[i] != 0) std::cout << "count_good[" << i << "] = " << count_good[i] << std::endl; for (unsigned int i = 0; i != count_bad.size(); i++) if (count_bad[i] != 0) std::cout << "count_bad[" << i << "] = " << count_bad[i] << std::endl; std::cout << "\nBad links total: " << count_badlinks << " Points to perturb: " << perturbL.size() << std::endl; */ //*********************** Perturb bad link landmarks /* for (auto u: perturbL) { Random_point_iterator rp(D,sqrt(lambda)/8); std::vector point; for (int i = 0; i < D; i++) { while (K().squared_distance_d_object()(*rp,origin) < lambda/256) rp++; FT coord = landmarks[u][i] + (*rp)[i]; if (coord > 1) point.push_back(coord-1); else if (coord < -1) point.push_back(coord+1); else point.push_back(coord); } landmarks[u] = Point_d(point); } std::cout << "lambda=" << lambda << std::endl; char buffer[100]; int i = sprintf(buffer,"stree_result.txt"); if (i >= 0) { std::string out_file = (std::string)buffer; std::ofstream ofs (out_file, std::ofstream::out); witnessComplex.st_to_file(ofs); ofs.close(); } write_edges("landmarks/edges", witnessComplex, landmarks); return count_badlinks; */ return 0; } int main (int argc, char * const argv[]) { if (argc != 3) { std::cerr << "Usage: " << argv[0] << " nbP dim\n"; return 0; } int nbP = atoi(argv[1]); int dim = atoi(argv[2]); std::cout << "Let the carnage begin!\n"; Point_Vector point_vector; generate_points_random_box(point_vector, nbP, dim); Point_Vector L; std::vector chosen_landmarks; //write_points("landmarks/initial_pointset",point_vector); //write_points("landmarks/initial_landmarks",L); for (int i = 0; i < 11; i++) //for (int i = 0; bl > 0; i++) { //std::cout << "========== Start iteration " << i << "== curr_min(" << curr_min << ")========\n"; double delta = pow(10, -(1.0*i)/2); std::cout << "delta = " << delta << std::endl; L = {}; chosen_landmarks = {}; landmark_choice_protected_delaunay(point_vector, nbP, L, chosen_landmarks, delta); int nbL = chosen_landmarks.size(); std::cout << "Number of landmarks = " << nbL << std::endl; landmark_perturbation(point_vector, nbL, L, chosen_landmarks); //write_points("landmarks/landmarks0",L); } }