/* This file is part of the Gudhi Library. The Gudhi library * (Geometric Understanding in Higher Dimensions) is a generic C++ * library for computational topology. * * Author(s): Siargey Kachanovich * * Copyright (C) 2015 INRIA Sophia Antipolis-Méditerranée (France) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include //#include //#include "gudhi/graph_simplicial_complex.h" #include "gudhi/Witness_complex.h" #include "gudhi/reader_utils.h" //#include //#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace Gudhi; //using namespace boost::filesystem; typedef CGAL::Epick_d K; typedef K::Point_d Point_d; //typedef CGAL::Cartesian_d K; //typedef CGAL::Point_d Point_d; typedef K::FT FT; typedef CGAL::Search_traits< FT, Point_d, typename K::Cartesian_const_iterator_d, typename K::Construct_cartesian_const_iterator_d> Traits_base; typedef CGAL::Euclidean_distance Euclidean_distance; /** * \brief Class of distance in a flat torus in dimension D * */ //class Torus_distance : public Euclidean_distance { /* class Torus_distance { public: typedef K::FT FT; typedef K::Point_d Point_d; typedef Point_d Query_item; typedef typename CGAL::Dynamic_dimension_tag D; double box_length = 2; FT transformed_distance(Query_item q, Point_d p) const { FT distance = FT(0); FT coord = FT(0); //std::cout << "Hello skitty!\n"; typename K::Construct_cartesian_const_iterator_d construct_it=Traits_base().construct_cartesian_const_iterator_d_object(); typename K::Cartesian_const_iterator_d qit = construct_it(q), qe = construct_it(q,1), pit = construct_it(p); for(; qit != qe; qit++, pit++) { coord = sqrt(((*qit)-(*pit))*((*qit)-(*pit))); if (coord*coord <= (box_length-coord)*(box_length-coord)) distance += coord*coord; else distance += (box_length-coord)*(box_length-coord); } return distance; } FT min_distance_to_rectangle(const Query_item& q, const CGAL::Kd_tree_rectangle& r) const { FT distance = FT(0); FT dist1, dist2; typename K::Construct_cartesian_const_iterator_d construct_it=Traits_base().construct_cartesian_const_iterator_d_object(); typename K::Cartesian_const_iterator_d qit = construct_it(q), qe = construct_it(q,1); for(unsigned int i = 0;qit != qe; i++, qit++) { if((*qit) < r.min_coord(i)) { dist1 = (r.min_coord(i)-(*qit)); dist2 = (box_length - r.max_coord(i)+(*qit)); if (dist1 < dist2) distance += dist1*dist1; else distance += dist2*dist2; } else if ((*qit) > r.max_coord(i)) { dist1 = (box_length - (*qit)+r.min_coord(i)); dist2 = ((*qit) - r.max_coord(i)); if (dist1 < dist2) distance += dist1*dist1; else distance += dist2*dist2; } } return distance; } FT min_distance_to_rectangle(const Query_item& q, const CGAL::Kd_tree_rectangle& r, std::vector& dists) const { FT distance = FT(0); FT dist1, dist2; typename K::Construct_cartesian_const_iterator_d construct_it=Traits_base().construct_cartesian_const_iterator_d_object(); typename K::Cartesian_const_iterator_d qit = construct_it(q), qe = construct_it(q,1); //std::cout << r.max_coord(0) << std::endl; for(unsigned int i = 0;qit != qe; i++, qit++) { if((*qit) < r.min_coord(i)) { dist1 = (r.min_coord(i)-(*qit)); dist2 = (box_length - r.max_coord(i)+(*qit)); if (dist1 < dist2) { dists[i] = dist1; distance += dist1*dist1; } else { dists[i] = dist2; distance += dist2*dist2; //std::cout << "Good stuff1\n"; } } else if ((*qit) > r.max_coord(i)) { dist1 = (box_length - (*qit)+r.min_coord(i)); dist2 = ((*qit) - r.max_coord(i)); if (dist1 < dist2) { dists[i] = dist1; distance += dist1*dist1; //std::cout << "Good stuff2\n"; } else { dists[i] = dist2; distance += dist2*dist2; } } }; return distance; } FT max_distance_to_rectangle(const Query_item& q, const CGAL::Kd_tree_rectangle& r) const { FT distance=FT(0); typename K::Construct_cartesian_const_iterator_d construct_it=Traits_base().construct_cartesian_const_iterator_d_object(); typename K::Cartesian_const_iterator_d qit = construct_it(q), qe = construct_it(q,1); for(unsigned int i = 0;qit != qe; i++, qit++) { if (box_length <= (r.min_coord(i)+r.max_coord(i))) if ((r.max_coord(i)+r.min_coord(i)-box_length)/FT(2.0) <= (*qit) && (*qit) <= (r.min_coord(i)+r.max_coord(i))/FT(2.0)) distance += (r.max_coord(i)-(*qit))*(r.max_coord(i)-(*qit)); else distance += ((*qit)-r.min_coord(i))*((*qit)-r.min_coord(i)); else if ((box_length-r.max_coord(i)-r.min_coord(i))/FT(2.0) <= (*qit) || (*qit) <= (r.min_coord(i)+r.max_coord(i))/FT(2.0)) distance += (r.max_coord(i)-(*qit))*(r.max_coord(i)-(*qit)); else distance += ((*qit)-r.min_coord(i))*((*qit)-r.min_coord(i)); } return distance; } FT max_distance_to_rectangle(const Query_item& q, const CGAL::Kd_tree_rectangle& r, std::vector& dists) const { FT distance=FT(0); typename K::Construct_cartesian_const_iterator_d construct_it=Traits_base().construct_cartesian_const_iterator_d_object(); typename K::Cartesian_const_iterator_d qit = construct_it(q), qe = construct_it(q,1); for(unsigned int i = 0;qit != qe; i++, qit++) { if (box_length <= (r.min_coord(i)+r.max_coord(i))) if ((r.max_coord(i)+r.min_coord(i)-box_length)/FT(2.0) <= (*qit) && (*qit) <= (r.min_coord(i)+r.max_coord(i))/FT(2.0)) { dists[i] = r.max_coord(i)-(*qit); distance += (r.max_coord(i)-(*qit))*(r.max_coord(i)-(*qit)); } else { dists[i] = sqrt(((*qit)-r.min_coord(i))*((*qit)-r.min_coord(i))); distance += ((*qit)-r.min_coord(i))*((*qit)-r.min_coord(i)); } else if ((box_length-r.max_coord(i)-r.min_coord(i))/FT(2.0) <= (*qit) || (*qit) <= (r.min_coord(i)+r.max_coord(i))/FT(2.0)) { dists[i] = sqrt((r.max_coord(i)-(*qit))*(r.max_coord(i)-(*qit))); distance += (r.max_coord(i)-(*qit))*(r.max_coord(i)-(*qit)); } else { dists[i] = (*qit)-r.min_coord(i); distance += ((*qit)-r.min_coord(i))*((*qit)-r.min_coord(i)); } } return distance; } inline FT new_distance(FT dist, FT old_off, FT new_off, int ) const { FT new_dist = dist + (new_off*new_off - old_off*old_off); return new_dist; } inline FT transformed_distance(FT d) const { return d*d; } inline FT inverse_of_transformed_distance(FT d) const { return sqrt(d); } }; */ typedef std::vector< Vertex_handle > typeVectorVertex; //typedef std::pair typeSimplex; //typedef std::pair< Simplex_tree<>::Simplex_handle, bool > typePairSimplexBool; typedef CGAL::Search_traits_adapter< std::ptrdiff_t, Point_d*, Traits_base> STraits; //typedef K TreeTraits; //typedef CGAL::Distance_adapter Euclidean_adapter; //typedef CGAL::Kd_tree Kd_tree; typedef CGAL::Orthogonal_k_neighbor_search> K_neighbor_search; typedef K_neighbor_search::Tree Tree; typedef K_neighbor_search::Distance Distance; typedef K_neighbor_search::iterator KNS_iterator; typedef K_neighbor_search::iterator KNS_range; typedef boost::container::flat_map Point_etiquette_map; typedef CGAL::Kd_tree Tree2; typedef CGAL::Fuzzy_sphere Fuzzy_sphere; typedef std::vector Point_Vector; //typedef K::Equal_d Equal_d; //typedef CGAL::Random_points_in_cube_d > > Random_cube_iterator; typedef CGAL::Random_points_in_cube_d Random_cube_iterator; typedef CGAL::Random_points_in_ball_d Random_point_iterator; bool toric=false; /** * \brief Customized version of read_points * which takes into account a possible nbP first line * */ inline void read_points_cust ( std::string file_name , Point_Vector & points) { std::ifstream in_file (file_name.c_str(),std::ios::in); if(!in_file.is_open()) { std::cerr << "Unable to open file " << file_name << std::endl; return; } std::string line; double x; while( getline ( in_file , line ) ) { std::vector< double > point; std::istringstream iss( line ); while(iss >> x) { point.push_back(x); } Point_d p(point.begin(), point.end()); if (point.size() != 1) points.push_back(p); } in_file.close(); } void generate_points_grid(Point_Vector& W, int width, int D) { int nb_points = 1; for (int i = 0; i < D; ++i) nb_points *= width; for (int i = 0; i < nb_points; ++i) { std::vector point; int cell_i = i; for (int l = 0; l < D; ++l) { point.push_back((2.0/width)*(cell_i%width)); cell_i /= width; } W.push_back(point); } } void generate_points_random_box(Point_Vector& W, int nbP, int dim) { /* Random_cube_iterator rp(dim, 1); for (int i = 0; i < nbP; i++) { std::vector point; for (auto it = rp->cartesian_begin(); it != rp->cartesian_end(); ++it) point.push_back(*it); W.push_back(Point_d(point)); rp++; } */ Random_cube_iterator rp(dim, 1.0); for (int i = 0; i < nbP; i++) { W.push_back(*rp++); } } /* NOT TORUS RELATED */ void generate_points_sphere(Point_Vector& W, int nbP, int dim) { CGAL::Random_points_on_sphere_d rp(dim,1); for (int i = 0; i < nbP; i++) W.push_back(*rp++); } /* void read_points_to_tree (std::string file_name, Tree& tree) { //I assume here that tree is empty std::ifstream in_file (file_name.c_str(),std::ios::in); if(!in_file.is_open()) { std::cerr << "Unable to open file " << file_name << std::endl; return; } std::string line; double x; while( getline ( in_file , line ) ) { std::vector coords; std::istringstream iss( line ); while(iss >> x) { coords.push_back(x); } if (coords.size() != 1) { Point_d point(coords.begin(), coords.end()); tree.insert(point); } } in_file.close(); } */ void write_wl( std::string file_name, std::vector< std::vector > & WL) { std::ofstream ofs (file_name, std::ofstream::out); for (auto w : WL) { for (auto l: w) ofs << l << " "; ofs << "\n"; } ofs.close(); } std::vector convert_to_torus(std::vector< Point_d>& points) { std::vector< Point_d > points_torus; for (auto p: points) { FT theta = M_PI*p[0]; FT phi = M_PI*p[1]; std::vector p_torus; p_torus.push_back((1+0.2*cos(theta))*cos(phi)); p_torus.push_back((1+0.2*cos(theta))*sin(phi)); p_torus.push_back(0.2*sin(theta)); points_torus.push_back(Point_d(p_torus)); } return points_torus; } void write_points_torus( std::string file_name, std::vector< Point_d > & points) { std::ofstream ofs (file_name, std::ofstream::out); std::vector points_torus = convert_to_torus(points); for (auto w : points_torus) { for (auto it = w.cartesian_begin(); it != w.cartesian_end(); ++it) ofs << *it << " "; ofs << "\n"; } ofs.close(); } void write_points( std::string file_name, std::vector< Point_d > & points) { if (toric) write_points_torus(file_name, points); else { std::ofstream ofs (file_name, std::ofstream::out); for (auto w : points) { for (auto it = w.cartesian_begin(); it != w.cartesian_end(); ++it) ofs << *it << " "; ofs << "\n"; } ofs.close(); } } void write_edges_torus(std::string file_name, Witness_complex<>& witness_complex, Point_Vector& landmarks) { std::ofstream ofs (file_name, std::ofstream::out); Point_Vector l_torus = convert_to_torus(landmarks); for (auto u: witness_complex.complex_vertex_range()) for (auto v: witness_complex.complex_vertex_range()) { typeVectorVertex edge = {u,v}; if (u < v && witness_complex.find(edge) != witness_complex.null_simplex()) { for (auto it = l_torus[u].cartesian_begin(); it != l_torus[u].cartesian_end(); ++it) ofs << *it << " "; ofs << "\n"; for (auto it = l_torus[v].cartesian_begin(); it != l_torus[v].cartesian_end(); ++it) ofs << *it << " "; ofs << "\n\n\n"; } } ofs.close(); } void write_edges(std::string file_name, Witness_complex<>& witness_complex, Point_Vector& landmarks) { std::ofstream ofs (file_name, std::ofstream::out); if (toric) write_edges_torus(file_name, witness_complex, landmarks); else { for (auto u: witness_complex.complex_vertex_range()) for (auto v: witness_complex.complex_vertex_range()) { typeVectorVertex edge = {u,v}; if (u < v && witness_complex.find(edge) != witness_complex.null_simplex()) { for (auto it = landmarks[u].cartesian_begin(); it != landmarks[u].cartesian_end(); ++it) ofs << *it << " "; ofs << "\n"; for (auto it = landmarks[v].cartesian_begin(); it != landmarks[v].cartesian_end(); ++it) ofs << *it << " "; ofs << "\n\n\n"; } } ofs.close(); } } /** Function that chooses landmarks from W and place it in the kd-tree L. * Note: nbL hould be removed if the code moves to Witness_complex */ void landmark_choice(Point_Vector &W, int nbP, int nbL, Point_Vector& landmarks, std::vector& landmarks_ind) { std::cout << "Enter landmark choice to kd tree\n"; int chosen_landmark; Point_d* p; CGAL::Random rand; for (int i = 0; i < nbL; i++) { // while (!res.second) // { do chosen_landmark = rand.get_int(0,nbP); while (std::find(landmarks_ind.begin(),landmarks_ind.end(),chosen_landmark)!=landmarks_ind.end()); //rand++; //std::cout << "Chose " << chosen_landmark << std::endl; p = &W[chosen_landmark]; //L_i.emplace(chosen_landmark,i); // } landmarks.push_back(*p); landmarks_ind.push_back(chosen_landmark); //std::cout << "Added landmark " << chosen_landmark << std::endl; } } /** \brief Choose landmarks on a body-central cubic system */ void landmark_choice_bcc(Point_Vector &W, int nbP, int width, Point_Vector& landmarks, std::vector& landmarks_ind) { int D = W[0].size(); int nb_points = 1; for (int i = 0; i < D; ++i) nb_points *= width; for (int i = 0; i < nb_points; ++i) { std::vector point; std::vector cpoint; int cell_i = i; for (int l = 0; l < D; ++l) { point.push_back(-1.0+(2.0/width)*(cell_i%width)); cpoint.push_back(-1.0+(2.0/width)*(cell_i%width)+(1.0/width)); cell_i /= width; } landmarks.push_back(point); landmarks.push_back(cpoint); landmarks_ind.push_back(2*i); landmarks_ind.push_back(2*i+1); } std::cout << "The number of landmarks is: " << landmarks.size() << std::endl; } int landmark_perturbation(Point_Vector &W, Point_Vector& landmarks, std::vector& landmarks_ind) { //********************Preface: origin point int D = W[0].size(); std::vector orig_vector; for (int i=0; i({0.8,0.8})), p2(std::vector({0.1,0.1})); FT lambda = ed.transformed_distance(landmarks[0],landmarks[1]); //std::cout << "Lambda=" << lambda << std::endl; //FT lambda = 0.1;//Euclidean_distance(); std::vector landmarks_ext; int nb_cells = 1; for (int i = 0; i < D; ++i) nb_cells *= 3; for (int i = 0; i < nb_cells; ++i) for (int k = 0; k < nbL; ++k) { std::vector point; int cell_i = i; for (int l = 0; l < D; ++l) { point.push_back(landmarks[k][l] + 2.0*((cell_i%3)-1.0)); cell_i /= 3; } landmarks_ext.push_back(point); } write_points("landmarks/initial_landmarks",landmarks_ext); STraits traits(&(landmarks_ext[0])); std::vector< std::vector > WL(nbP); Tree L(boost::counting_iterator(0), boost::counting_iterator(nb_cells*nbL), typename Tree::Splitter(), traits); /*Tree2 L2(boost::counting_iterator(0), boost::counting_iterator(nbL), typename Tree::Splitter(), STraits(&(landmarks[0]))); */ std::cout << "Enter (D+1) nearest landmarks\n"; //std::cout << "Size of the tree is " << L.size() << std::endl; for (int i = 0; i < nbP; i++) { //std::cout << "Entered witness number " << i << std::endl; Point_d& w = W[i]; //std::cout << "Safely constructed a point\n"; ////Search D+1 nearest neighbours from the tree of landmarks L /* if (w[0]>0.95) std::cout << i << std::endl; */ K_neighbor_search search(L, w, D+1, FT(0), true, //CGAL::Distance_adapter(&(landmarks[0])) ); CGAL::Distance_adapter(&(landmarks_ext[0])) ); //std::cout << "Safely found nearest landmarks\n"; for(K_neighbor_search::iterator it = search.begin(); it != search.end(); ++it) { //std::cout << "Entered KNN_it with point at distance " << it->second << "\n"; //Point_etiquette_map::iterator itm = L_i.find(it->first); //assert(itm != L_i.end()); //std::cout << "Entered KNN_it with point at distance " << it->second << "\n"; if (std::find(WL[i].begin(), WL[i].end(), (it->first)%nbL) == WL[i].end()) WL[i].push_back((it->first)%nbL); //std::cout << "ITFIRST " << it->first << std::endl; //std::cout << i << " " << it->first << ": " << it->second << std::endl; } if (i == landmarks_ind[WL[i][0]]) { //std::cout << "'"; FT dist = ed.transformed_distance(W[i], landmarks[WL[i][1]]); if (dist < lambda) lambda = dist; } } //std::cout << "\n"; std::string out_file = "wl_result"; write_wl(out_file,WL); //******************** Constructng a witness complex std::cout << "Entered witness complex construction\n"; Witness_complex<> witnessComplex; witnessComplex.setNbL(nbL); witnessComplex.witness_complex(WL); /* if (witnessComplex.is_witness_complex(WL)) std::cout << "!!YES. IT IS A WITNESS COMPLEX!!\n"; else std::cout << "??NO. IT IS NOT A WITNESS COMPLEX??\n"; */ //******************** Making a set of bad link landmarks std::cout << "Entered bad links\n"; std::set< int > perturbL; int count_badlinks = 0; //std::cout << "Bad links around "; std::vector< int > count_bad(D); std::vector< int > count_good(D); for (auto u: witnessComplex.complex_vertex_range()) { //std::cout << "Vertex " << u << " "; if (!witnessComplex.has_good_link(u, count_bad, count_good)) { //std::cout << "Landmark " << u << " start!" << std::endl; //perturbL.insert(u); count_badlinks++; //std::cout << u << " "; Point_d& l = landmarks[u]; Fuzzy_sphere fs(l, sqrt(lambda), 0, traits); std::vector curr_perturb; L.search(std::insert_iterator>(curr_perturb,curr_perturb.begin()),fs); for (int i: curr_perturb) perturbL.insert(i%nbL); //L.search(std::inserter(perturbL,perturbL.begin()),fs); //L.search(std::ostream_iterator(std::cout,"\n"),fs); //std::cout << "PerturbL size is " << perturbL.size() << std::endl; } } for (unsigned int i = 0; i != count_good.size(); i++) if (count_good[i] != 0) std::cout << "count_good[" << i << "] = " << count_good[i] << std::endl; for (unsigned int i = 0; i != count_bad.size(); i++) if (count_bad[i] != 0) std::cout << "count_bad[" << i << "] = " << count_bad[i] << std::endl; std::cout << "\nBad links total: " << count_badlinks << " Points to perturb: " << perturbL.size() << std::endl; //std::cout << "landmark[0][0] before" << landmarks[0][0] << std::endl; //*********************** Perturb bad link landmarks for (auto u: perturbL) { Random_point_iterator rp(D,sqrt(lambda)/8); //std::cout << landmarks[u] << std::endl; std::vector point; for (int i = 0; i < D; i++) { while (K().squared_distance_d_object()(*rp,origin) < lambda/256) rp++; //FT coord = W[landmarks_ind[u]][i] + (*rp)[i]; FT coord = landmarks[u][i] + (*rp)[i]; if (coord > 1) point.push_back(coord-1); else if (coord < -1) point.push_back(coord+1); else point.push_back(coord); } landmarks[u] = Point_d(point); //std::cout << landmarks[u] << std::endl; } //std::cout << "landmark[0][0] after" << landmarks[0][0] << std::endl; std::cout << "lambda=" << lambda << std::endl; //std::cout << "WL size" << WL.size() << std::endl; /* std::cout << "L:" << std::endl; for (int i = 0; i < landmarks.size(); i++) std::cout << landmarks[i] << std::endl; */ char buffer[100]; int i = sprintf(buffer,"stree_result.txt"); if (i >= 0) { std::string out_file = (std::string)buffer; std::ofstream ofs (out_file, std::ofstream::out); witnessComplex.st_to_file(ofs); ofs.close(); } /* i = sprintf(buffer,"badlinks.txt"); if (i >= 0) { std::string out_file = (std::string)buffer; std::ofstream ofs (out_file, std::ofstream::out); witnessComplex.write_bad_links(ofs); ofs.close(); } */ write_edges("landmarks/edges", witnessComplex, landmarks); //std::cout << Distance().transformed_distance(Point_d(std::vector({0.1,0.1})), Point_d(std::vector({1.9,1.9}))) << std::endl; return count_badlinks; } int main (int argc, char * const argv[]) { if (argc != 4) { std::cerr << "Usage: " << argv[0] << " nbP nbL dim\n"; return 0; } /* boost::filesystem::path p; for (; argc > 2; --argc, ++argv) p /= argv[1]; */ int nbP = atoi(argv[1]); int nbL = atoi(argv[2]); int dim = atoi(argv[3]); //clock_t start, end; //Construct the Simplex Tree //Witness_complex<> witnessComplex; std::cout << "Let the carnage begin!\n"; Point_Vector point_vector; //read_points_cust(file_name, point_vector); //generate_points_random_box(point_vector, nbP, dim); generate_points_grid(point_vector, (int)pow(nbP, 1.0/dim), dim); //nbP = (int)(pow((int)pow(nbP, 1.0/dim), dim)); /* for (auto &p: point_vector) { assert(std::count(point_vector.begin(),point_vector.end(),p) == 1); } */ //std::cout << "Successfully read the points\n"; //witnessComplex.setNbL(nbL); // witnessComplex.witness_complex_from_points(point_vector); //int nbP = point_vector.size(); //std::vector > WL(nbP); //std::set L; Point_Vector L; std::vector chosen_landmarks; //Point_etiquette_map L_i; //start = clock(); //witnessComplex.landmark_choice_by_furthest_points(point_vector, point_vector.size(), WL); bool ok=false; while (!ok) { ok = true; L = {}; chosen_landmarks = {}; landmark_choice(point_vector, nbP, nbL, L, chosen_landmarks); //int width = (int)pow(nbL, 1.0/dim); landmark_choice_bcc(point_vector, nbP, width, L, chosen_landmarks); for (auto i: chosen_landmarks) { ok = ok && (std::count(chosen_landmarks.begin(),chosen_landmarks.end(),i) == 1); if (!ok) break; } } int bl = nbL, curr_min = bl; write_points("landmarks/initial_pointset",point_vector); //write_points("landmarks/initial_landmarks",L); for (int i = 0; i < 1; i++) //for (int i = 0; bl > 0; i++) { std::cout << "========== Start iteration " << i << "== curr_min(" << curr_min << ")========\n"; bl=landmark_perturbation(point_vector, L, chosen_landmarks); if (bl < curr_min) curr_min=bl; write_points("landmarks/landmarks0",L); } //end = clock(); /* std::cout << "Landmark choice took " << (double)(end-start)/CLOCKS_PER_SEC << " s. \n"; start = clock(); witnessComplex.witness_complex(WL); // end = clock(); std::cout << "Howdy world! The process took " << (double)(end-start)/CLOCKS_PER_SEC << " s. \n"; */ /* out_file = "output/"+file_name+"_"+argv[2]+".stree"; std::ofstream ofs (out_file, std::ofstream::out); witnessComplex.st_to_file(ofs); ofs.close(); out_file = "output/"+file_name+"_"+argv[2]+".badlinks"; std::ofstream ofs2(out_file, std::ofstream::out); witnessComplex.write_bad_links(ofs2); ofs2.close(); */ }