summaryrefslogtreecommitdiff
path: root/src/Gudhi_stat/example/persistence_landscape.cpp
blob: 7ba9387d46b47593637943bd8038ecec611de77d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
/*    This file is part of the Gudhi Library. The Gudhi library
 *    (Geometric Understanding in Higher Dimensions) is a generic C++
 *    library for computational topology.
 *
 *    Author(s):       Pawel Dlotko
 *
 *    Copyright (C) 2015  INRIA (France)
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation, either version 3 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */



#include <gudhi/concretizations/Persistence_landscape.h>



using namespace Gudhi;
using namespace Gudhi::Gudhi_stat;

#include <iostream>


int main( int argc , char** argv )
{	
	//create two simple vectors with birth--death pairs:
	
	std::vector< std::pair< double , double > > persistence1;
	std::vector< std::pair< double , double > > persistence2;
	
	persistence1.push_back( std::make_pair(1,2) );
	persistence1.push_back( std::make_pair(6,8) );
	persistence1.push_back( std::make_pair(0,4) );
	persistence1.push_back( std::make_pair(3,8) );
	
	persistence2.push_back( std::make_pair(2,9) );
	persistence2.push_back( std::make_pair(1,6) );
	persistence2.push_back( std::make_pair(3,5) );
	persistence2.push_back( std::make_pair(6,10) );
	
	//create two persistence landscapes based on persistence1 and persistence2:
	Persistence_landscape l1( persistence1 );
	Persistence_landscape l2( persistence2 );
	
	//This is how to compute integral of landscapes:
	std::cout << "Integral of the first landscape : " << l1.compute_integral_of_landscape() << endl;
	std::cout << "Integral of the second landscape : " << l2.compute_integral_of_landscape() << endl;
	
	//And here how to write landscapes to stream:
	std::cout << "l1 : " << l1 << std::endl;
	std::cout << "l2 : " << l2 << std::endl;
	
	//Arythmetic operations on landscapes:
	Persistence_landscape sum = l1+l2;
	std::cout << "sum : " << sum << std::endl;
	
	//here are the maxima of the functions:
	std::cout << "Maximum of l1 : " << l1.compute_maximum() << std::endl;
	std::cout << "Maximum of l2 : " << l2.compute_maximum() << std::endl;
	
	//here are the norms of landscapes:
	std::cout << "L^1 Norm of l1 : " << l1.compute_norm_of_landscape( 1. ) << std::endl;
	std::cout << "L^1 Norm of l2 : " << l2.compute_norm_of_landscape( 1. ) << std::endl;
	
	//here is the average of landscapes:
	Persistence_landscape average;
	std::vector< Persistence_landscape* > to_average;
	to_average.push_back( &l1 );
	to_average.push_back( &l2 );
	average.compute_average( to_average );
	std::cout << "average : " << average << std::endl;
	
	//here is the distance of landscapes:
	std::cout << "Distance : " << l1.distance( l2 ) << std::endl;
	
	//here is the scalar product of landscapes:
	std::cout << "Scalar product : " << l1.compute_scalar_product( l2 ) << std::endl;
	
	//here is how to create a file which is suitable for vizualization via gnuplot:
	average.plot( "average_landscape" );
		
	return 0;
}


//Below I am storing the code used to generate tests for that functionality.
/*
if ( argc != 2 )
	{
		std::cerr << "To run this program, please provide a name of a file with persistence landscape \n";
		//return 1;
	}		
	Persistence_landscape p("../test/data/file_with_diagram");
	
	Persistence_landscape q;
	q.load_landscape_from_file( "file_with_landscape_from_file_with_diagram" );
	
	if ( p != q )
	{
		cout << "Not equal \n";
	}
	
	double integral = p.compute_integral_of_landscape();
	cout << "integral : " << integral <<endl;
	
	//compute integral for each level separatelly
	for ( size_t level = 0 ; level != p.size() ; ++level )
	{
		cout << p.compute_integral_of_landscape( level ) << endl;
	}
	
	//compute integral of p-th power of landscspe
	for ( size_t power = 0 ; power != 5 ; ++power ) 
	{
		cout << p.compute_integral_of_landscape( power ) << endl;
	}
	
	cout << "Value of level 1 at 0 : " <<  p.compute_value_at_a_given_point(1,0.0) << endl;
	cout << "Value of level 1  at 1 : " <<  p.compute_value_at_a_given_point(1,0.1) << endl;
	cout << "Value of level 1  at 2 : " <<  p.compute_value_at_a_given_point(1,0.2) << endl;
	cout << "Value of level 1  at 3 : " <<  p.compute_value_at_a_given_point(1,0.3) << endl;
	
		
	cout << "Value of level 2 at 0 : " <<  p.compute_value_at_a_given_point(2,0.0) << endl;
	cout << "Value of level 2  at 1 : " <<  p.compute_value_at_a_given_point(2,0.1) << endl;
	cout << "Value of level 2  at 2 : " <<  p.compute_value_at_a_given_point(2,0.2) << endl;
	cout << "Value of level 2  at 3 : " <<  p.compute_value_at_a_given_point(2,0.3) << endl;
	
		
	cout << "Value of level 3 at 0 : " <<  p.compute_value_at_a_given_point(3,0.0) << endl;
	cout << "Value of level 3  at 1 : " <<  p.compute_value_at_a_given_point(3,0.1) << endl;
	cout << "Value of level 3  at 2 : " <<  p.compute_value_at_a_given_point(3,0.2) << endl;
	cout << "Value of level 3  at 3 : " <<  p.compute_value_at_a_given_point(3,0.3) << endl;
	
	
	
	Persistence_landscape second;
	second.load_landscape_from_file("file_with_landscape_from_file_with_diagram_1" );
	
	Persistence_landscape sum = p + second;
	Persistence_landscape difference = p - second;
	Persistence_landscape multiply_by_scalar = 10*p;
	
	//sum.print_to_file("sum");
	//difference.print_to_file("difference");
	//multiply_by_scalar.print_to_file("multiply_by_scalar");
	
	Persistence_landscape template_sum;
	template_sum.load_landscape_from_file( "sum" );
	Persistence_landscape template_difference;
	template_difference.load_landscape_from_file( "difference" );
	Persistence_landscape template_multiply_by_scalar;
	template_multiply_by_scalar.load_landscape_from_file( "multiply_by_scalar" );
	
	if ( sum != template_sum )
	{
		cerr << "Problem with sums \n";
	}
	if ( difference != template_difference )
	{
		cerr << "Problem with differences \n";
	}
	if ( multiply_by_scalar != template_multiply_by_scalar )
	{
		cerr << "Problem with multiplication by scalar \n";
	}
	
	
	
	cout << "Maximum : " << p.compute_maximum() << endl;
	
	cout << "L^1 norm : " << p.compute_norm_of_landscape(1) << endl;
	cout << "L^2 norm : " << p.compute_norm_of_landscape(2) << endl;
	cout << "L^3 norm : " << p.compute_norm_of_landscape(3) << endl;	
	
	
	cout << "L^1 distance : " << compute_discance_of_landscapes(p,sum,1) << endl;
	cout << "L^2 distance : " << compute_discance_of_landscapes(p,sum,2) << endl;
	cout << "L^infty distance : " << compute_discance_of_landscapes(p,sum,-1) << endl;
	
	{
		Persistence_landscape p( "../test/data/file_with_diagram" );
		Persistence_landscape q( "../test/data/file_with_diagram_1" );
		std::vector< Abs_Topological_data_with_averages* > to_average;
		to_average.push_back( &p );
		to_average.push_back( &q );
		Persistence_landscape av;
		av.compute_average( to_average );
	
		Persistence_landscape template_average;
		template_average.load_landscape_from_file( "average" );
		if ( template_average != av )
		{
			cerr << "We have a problem with average \n";
		}
	}
	
	
	{
		Persistence_landscape p( "../test/data/file_with_diagram" );
		Persistence_landscape q( "../test/data/file_with_diagram_1" );
		cout << "L^1 distance : " <<  p.distance( &q ) << endl;
		cout << "L^2 distance : " <<  p.distance( &q , 2) << endl;
		cout << "L^infty distance : " <<  p.distance( &q , -1 ) << endl;
	}
	
	
	{
		Persistence_landscape p( "../test/data/file_with_diagram" );
		Persistence_landscape q( "../test/data/file_with_diagram_1" );
		cout << "Scalar product : " <<  p.compute_scalar_product( &q ) << endl;		
	}
*/