summaryrefslogtreecommitdiff
path: root/src/Subsampling/include/gudhi/Landmark_choice_by_farthest_point.h
blob: 198c9f9f5f676da7bb59785a68af900ec2605d10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/*    This file is part of the Gudhi Library. The Gudhi library
 *    (Geometric Understanding in Higher Dimensions) is a generic C++
 *    library for computational topology.
 *
 *    Author(s):       Siargey Kachanovich
 *
 *    Copyright (C) 2015  INRIA Sophia Antipolis-Méditerranée (France)
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation, either version 3 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef LANDMARK_CHOICE_BY_FARTHEST_POINT_H_
#define LANDMARK_CHOICE_BY_FARTHEST_POINT_H_

#include <gudhi/Spatial_tree_data_structure.h>

#include <iterator>
#include <algorithm>  // for sort
#include <vector>
#include <random>
#include <boost/heap/fibonacci_heap.hpp>

namespace Gudhi {


  template < typename Point_d,
             typename Heap,
             typename Tree,
             typename Presence_table >
  void update_heap( Point_d &l,
                    unsigned nbL,
                    Heap &heap,
                    Tree &tree,
                    Presence_table &table)
  {
    auto search = tree.query_incremental_ANN(l);
    for (auto w: search) {
      if (table[w.first].first)
        if (w.second < table[w.first].second->second) {
          heap.update(table[w.first].second, w);
        }
    }
  }
  
  /** 
   *  \ingroup witness_complex
   *  \brief Landmark choice strategy by iteratively adding the farthest witness from the
   *  current landmark set as the new landmark. 
   *  \details It chooses nbL landmarks from a random access range `points` and
   *  writes {witness}*{closest landmarks} matrix in `knn`.
   *
   *  The type KNearestNeighbors can be seen as 
   *  Witness_range<Closest_landmark_range<Vertex_handle>>, where
   *  Witness_range and Closest_landmark_range are random access ranges 
   *  
   */

  template < typename Kernel,
             typename Point_container,
             typename OutputIterator>
  void landmark_choice_by_farthest_point( Kernel& k,
                                          Point_container const &points,
                                          int nbL,
                                          OutputIterator output_it)
  {

    // typedef typename Kernel::FT FT;
    // typedef std::pair<unsigned, FT> Heap_node;
    
    // struct R_max_compare
    // {
    //   bool operator()(const Heap_node &rmh1, const Heap_node &rmh2) const
    //   {
    //     return rmh1.second < rmh2.second;
    //   }
    // };
    
    // typedef boost::heap::fibonacci_heap<Heap_node, boost::heap::compare<R_max_compare>> Heap;
    // typedef Spatial_tree_data_structure<Kernel, Point_container> Tree;
    // typedef std::vector< std::pair<bool, Heap_node*> > Presence_table;

    typename Kernel::Squared_distance_d sqdist = k.squared_distance_d_object();
    
  //   Tree tree(points);
  //   Heap heap;
  //   Presence_table table(points.size());
  //   for (auto p: table)
  //     std::cout << p.first << "\n";
  //   int number_landmarks = 0; // number of treated landmarks

  //   double curr_max_dist = 0;                                      // used for defining the furhest point from L
  //   const double infty = std::numeric_limits<double>::infinity();  // infinity (see next entry)
  //   std::vector< double > dist_to_L(points.size(), infty);         // vector of current distances to L from points
    
  //   // Choose randomly the first landmark 
  //   std::random_device rd;
  //   std::mt19937 gen(rd());
  //   std::uniform_int_distribution<> dis(1, 6);
  //   int curr_landmark = dis(gen);
    
  //   do {
  //     *output_landmarks++ = points[curr_landmark];
  //     std::cout << curr_landmark << "\n";
  //     number_landmarks++;
  //   }
  //   while (number_landmarks < nbL);
  // }

    int nb_points = boost::size(points);
    assert(nb_points >= nbL);

    int current_number_of_landmarks = 0;  // counter for landmarks
    double curr_max_dist = 0;  // used for defining the furhest point from L
    const double infty = std::numeric_limits<double>::infinity();  // infinity (see next entry)
    std::vector< double > dist_to_L(nb_points, infty);  // vector of current distances to L from points

    // Choose randomly the first landmark 
    std::random_device rd;
    std::mt19937 gen(rd());
    std::uniform_int_distribution<> dis(1, 6);
    int curr_max_w = dis(gen);

    
    for (current_number_of_landmarks = 0; current_number_of_landmarks != nbL; current_number_of_landmarks++) {
      // curr_max_w at this point is the next landmark
      *output_it++ = points[curr_max_w];
      std::cout << curr_max_w << "\n";
      unsigned i = 0;
      for (auto& p : points) {
        double curr_dist = sqdist(p, *(std::begin(points) + curr_max_w));
        if (curr_dist < dist_to_L[i])
          dist_to_L[i] = curr_dist;
        ++i;
      }
      // choose the next curr_max_w
      curr_max_dist = 0;
      for (i = 0; i < dist_to_L.size(); i++)
        if (dist_to_L[i] > curr_max_dist) {
          curr_max_dist = dist_to_L[i];
          curr_max_w = i;
        }
    }
  }
  
}  // namespace Gudhi

#endif  // LANDMARK_CHOICE_BY_FARTHEST_POINT_H_