summaryrefslogtreecommitdiff
path: root/src/Witness_complex/example/Landmark_choice_sparsification.h
blob: 1052b0c41edcd136ef85210b8c97769ee276b1bc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
/*    This file is part of the Gudhi Library. The Gudhi library
 *    (Geometric Understanding in Higher Dimensions) is a generic C++
 *    library for computational topology.
 *
 *    Author(s):       Siargey Kachanovich
 *
 *    Copyright (C) 2015  INRIA Sophia Antipolis-Méditerranée (France)
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation, either version 3 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef LANDMARK_CHOICE_BY_SPARSIFICATION_H_
#define LANDMARK_CHOICE_BY_SPARSIFICATION_H_

#include <utility>  // for pair<>
#include <vector>
#include <cstddef> // for ptrdiff_t type
#include <algorithm>

//#include <CGAL/Cartesian_d.h>
#include <CGAL/Search_traits.h>
#include <CGAL/Search_traits_adapter.h>
//#include <CGAL/property_map.h>
#include <CGAL/Epick_d.h>
#include <CGAL/Orthogonal_incremental_neighbor_search.h>
#include <CGAL/Orthogonal_k_neighbor_search.h>
#include <CGAL/Kd_tree.h>
#include <CGAL/Euclidean_distance.h>
//#include <CGAL/Kernel_d/Vector_d.h>
#include <CGAL/Random.h>
#include <CGAL/Fuzzy_sphere.h>

namespace Gudhi {

namespace witness_complex {

  typedef CGAL::Epick_d<CGAL::Dynamic_dimension_tag> K;
  typedef K::FT FT;
  typedef K::Point_d Point_d;
  typedef CGAL::Search_traits< FT,
                               Point_d,
                               typename K::Cartesian_const_iterator_d,
                               typename K::Construct_cartesian_const_iterator_d > Traits_base;
  typedef CGAL::Euclidean_distance<Traits_base> Euclidean_distance;
  typedef CGAL::Search_traits_adapter< std::ptrdiff_t,
                                       Point_d*,
                                       Traits_base> STraits;
  typedef CGAL::Distance_adapter< std::ptrdiff_t,
                                  Point_d*,
                                  Euclidean_distance > Distance_adapter;
  typedef CGAL::Orthogonal_incremental_neighbor_search< STraits,
                                                        Distance_adapter > Neighbor_search;
  typedef CGAL::Orthogonal_k_neighbor_search< STraits > Neighbor_search2;
  typedef Neighbor_search::Tree Tree;
  typedef CGAL::Fuzzy_sphere<STraits> Fuzzy_sphere;

  /** \brief Landmark selection function by as a sub-epsilon-net of the
   *  given set of points.
   */
  template <typename Point_random_access_range>
  void landmark_choice_by_sparsification(Point_random_access_range & points,
                                         unsigned nbL,
                                         FT mu_epsilon,
                                         Point_random_access_range & landmarks)
  {
    int nbP = points.end() - points.begin();
    assert(nbP >= nbL);
    CGAL::Random rand;
    // TODO(SK) Consider using rand_r(...) instead of rand(...) for improved thread safety
    STraits points_traits(&(points[0]));
    CGAL::Distance_adapter<std::ptrdiff_t,Point_d*,Euclidean_distance> points_adapter(&(points[0]));
    std::vector<bool> dropped_points(nbP, false);
    
    Tree witness_tree(boost::counting_iterator<std::ptrdiff_t>(0),
                      boost::counting_iterator<std::ptrdiff_t>(nbP),
                      typename Tree::Splitter(),
                      points_traits);
    
    for (int points_i = 0; points_i < nbP; points_i++) {
      if (dropped_points[points_i])
        continue;
      Point_d & w = points[points_i];
      Fuzzy_sphere fs(w, mu_epsilon, 0, points_traits);
      std::vector<int> close_neighbors;
      witness_tree.search(std::insert_iterator<std::vector<int>>(close_neighbors,close_neighbors.begin()),fs);
      for (int i: close_neighbors)
        dropped_points[i] = true;
    }

    for (int points_i = 0; points_i < nbP; points_i++) {
      if (dropped_points[points_i])
        landmarks.push_back(points[points_i]);
    }

    if (nbL < landmarks.size()) {
      std::random_shuffle(landmarks.begin(), landmarks.end());
      landmarks.resize(nbL);
    }
  }
    


  
  /** \brief Landmark choice strategy by taking random vertices for landmarks.
   *  \details It chooses nbL distinct landmarks from a random access range `points`
   *  and outputs a matrix {witness}*{closest landmarks} in knn.
   */
  template <typename KNearestNeighbours,
            typename Point_random_access_range,
            typename Distance_matrix>
  void build_distance_matrix(Point_random_access_range const & points,
                             Point_random_access_range & landmarks,
                             FT alpha,
                             unsigned limD,
                             KNearestNeighbours & knn,
                             Distance_matrix & distances)
  {
    int nbP = points.end() - points.begin();
    knn = KNearestNeighbours(nbP);
    distances = Distance_matrix(nbP);
    STraits traits(&(landmarks[0]));
    CGAL::Distance_adapter<std::ptrdiff_t,Point_d*,Euclidean_distance> adapter(&(landmarks[0]));
    Euclidean_distance ed;
    Tree landmark_tree(boost::counting_iterator<std::ptrdiff_t>(0),
                       boost::counting_iterator<std::ptrdiff_t>(landmarks.size()),
                       typename Tree::Splitter(),
                       traits);
    for (int points_i = 0; points_i < nbP; points_i++) {
      Point_d const & w = points[points_i];
      Neighbor_search search(landmark_tree,
                             w,
                             FT(0),
                             true,
                             adapter);
      Neighbor_search::iterator search_it = search.begin();
      // Neighbor_search2 search(landmark_tree,
      //                         w, limD+1,
      //                         FT(0),
      //                         true,
      //                         adapter);
      // Neighbor_search2::iterator search_it = search.begin();
      
      while (knn[points_i].size() <= limD) {
        distances[points_i].push_back(search_it->second); //!sq_dist
        knn[points_i].push_back((search_it++)->first);
      }
      FT dtow = distances[points_i][limD];
      
      while (search_it != search.end() && search_it->second < dtow + alpha) {
        distances[points_i].push_back(search_it->second);
        knn[points_i].push_back((search_it++)->first);
      }
      //std::cout << "k = " << knn[points_i].size() << std::endl;
    }
  }
 
  /*
  template <typename Kernel, typename Point_container>
  std::vector<typename Point_container::value_type>
  sparsify_point_set(const Kernel &k,
                     Point_container const& input_pts,
                     typename Kernel::FT min_squared_dist)
  {
    typedef typename CGAL::Tangential_complex_::Point_cloud_data_structure<Kernel, Point_container> Points_ds;
    typedef typename Points_ds::INS_iterator      INS_iterator;
    typedef typename Points_ds::INS_range         INS_range;

  typename Kernel::Squared_distance_d sqdist = k.squared_distance_d_object();

  // Create the output container
  std::vector<typename Point_container::value_type> output;

  Points_ds points_ds(input_pts);

  std::vector<bool> dropped_points(input_pts.size(), false);

  // Parse the input points, and add them if they are not too close to
  // the other points
  std::size_t pt_idx = 0;
  for (typename Point_container::const_iterator it_pt = input_pts.begin() ;
       it_pt != input_pts.end();
       ++it_pt, ++pt_idx)
  {
    if (dropped_points[pt_idx])
      continue;

    output.push_back(*it_pt);

    INS_range ins_range = points_ds.query_incremental_ANN(*it_pt);

    // If another point Q is closer that min_squared_dist, mark Q to be dropped
    for (INS_iterator nn_it = ins_range.begin() ;
        nn_it != ins_range.end() ;
        ++nn_it)
    {
      std::size_t neighbor_point_idx = nn_it->first;
      // If the neighbor is too close, we drop the neighbor
      if (nn_it->second < min_squared_dist)
      {
        // N.B.: If neighbor_point_idx < pt_idx, 
        // dropped_points[neighbor_point_idx] is already true but adding a
        // test doesn't make things faster, so why bother?
        dropped_points[neighbor_point_idx] = true;
      }
      else
        break;
    }
  }

  return output;
}
  */  


}  // namespace witness_complex

}  // namespace Gudhi

#endif  // LANDMARK_CHOICE_BY_RANDOM_POINT_H_