summaryrefslogtreecommitdiff
path: root/test/correctness/testblas.cpp
blob: d28aba400b64e41f753f79a26e89578ca617c178 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
//   Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the TestBlas class (see the header for information about the class).
//
// =================================================================================================

#include <algorithm>
#include <iostream>
#include <random>

#include "utilities/utilities.hpp"
#include "test/correctness/testblas.hpp"

namespace clblast {
// =================================================================================================

// The transpose configurations to test with: template parameter dependent
template <> const std::vector<Transpose> TestBlas<half,half>::kTransposes = {Transpose::kNo, Transpose::kYes};
template <> const std::vector<Transpose> TestBlas<float,float>::kTransposes = {Transpose::kNo, Transpose::kYes};
template <> const std::vector<Transpose> TestBlas<double,double>::kTransposes = {Transpose::kNo, Transpose::kYes};
template <> const std::vector<Transpose> TestBlas<float2,float2>::kTransposes = {Transpose::kNo, Transpose::kYes, Transpose::kConjugate};
template <> const std::vector<Transpose> TestBlas<double2,double2>::kTransposes = {Transpose::kNo, Transpose::kYes, Transpose::kConjugate};
template <> const std::vector<Transpose> TestBlas<float2,float>::kTransposes = {Transpose::kNo, Transpose::kConjugate};
template <> const std::vector<Transpose> TestBlas<double2,double>::kTransposes = {Transpose::kNo, Transpose::kConjugate};

// Constructor, initializes the base class tester and input data
template <typename T, typename U>
TestBlas<T,U>::TestBlas(const std::vector<std::string> &arguments, const bool silent,
                        const std::string &name, const std::vector<std::string> &options,
                        const DataPrepare prepare_data,
                        const Routine run_routine,
                        const Routine run_reference1, const Routine run_reference2,
                        const ResultGet get_result, const ResultIndex get_index,
                        const ResultIterator get_id1, const ResultIterator get_id2):
    Tester<T,U>(arguments, silent, name, options),
    kOffsets(GetOffsets()),
    kAlphaValues(GetExampleScalars<U>(full_test_)),
    kBetaValues(GetExampleScalars<U>(full_test_)),
    prepare_data_(prepare_data),
    run_routine_(run_routine),
    run_reference1_(run_reference1),
    run_reference2_(run_reference2),
    get_result_(get_result),
    get_index_(get_index),
    get_id1_(get_id1),
    get_id2_(get_id2) {

  // Sanity check
  if (!compare_clblas_ && !compare_cblas_) {
    throw std::runtime_error("Invalid configuration: no reference to test against");
  }

  // Computes the maximum sizes. This allows for a single set of input/output buffers.
  const auto max_vec = *std::max_element(kVectorDims.begin(), kVectorDims.end());
  const auto max_inc = *std::max_element(kIncrements.begin(), kIncrements.end());
  const auto max_mat = *std::max_element(kMatrixDims.begin(), kMatrixDims.end());
  const auto max_ld = *std::max_element(kMatrixDims.begin(), kMatrixDims.end());
  const auto max_matvec = *std::max_element(kMatrixVectorDims.begin(), kMatrixVectorDims.end());
  const auto max_offset = *std::max_element(kOffsets.begin(), kOffsets.end());
  const auto max_batch_count = *std::max_element(kBatchCounts.begin(), kBatchCounts.end());

  // Creates test input data. Adds a 'canary' region to detect buffer overflows
  x_source_.resize(max_batch_count * std::max(max_vec, max_matvec)*max_inc + max_offset + kCanarySize);
  y_source_.resize(max_batch_count * std::max(max_vec, max_matvec)*max_inc + max_offset + kCanarySize);
  a_source_.resize(max_batch_count * std::max(max_mat, max_matvec)*std::max(max_ld, max_matvec) + max_offset + kCanarySize);
  b_source_.resize(max_batch_count * std::max(max_mat, max_matvec)*std::max(max_ld, max_matvec) + max_offset + kCanarySize);
  c_source_.resize(max_batch_count * std::max(max_mat, max_matvec)*std::max(max_ld, max_matvec) + max_offset + kCanarySize);
  ap_source_.resize(max_batch_count * std::max(max_mat, max_matvec)*std::max(max_mat, max_matvec) + max_offset + kCanarySize);
  scalar_source_.resize(max_batch_count * std::max(max_mat, max_matvec) + max_offset + kCanarySize);
  std::mt19937 mt(kSeed);
  std::uniform_real_distribution<double> dist(kTestDataLowerLimit, kTestDataUpperLimit);
  PopulateVector(x_source_, mt, dist);
  PopulateVector(y_source_, mt, dist);
  PopulateVector(a_source_, mt, dist);
  PopulateVector(b_source_, mt, dist);
  PopulateVector(c_source_, mt, dist);
  PopulateVector(ap_source_, mt, dist);
  PopulateVector(scalar_source_, mt, dist);
}

// ===============================================================================================

// Tests the routine for a wide variety of parameters
template <typename T, typename U>
void TestBlas<T,U>::TestRegular(std::vector<Arguments<U>> &test_vector, const std::string &name) {
  if (!PrecisionSupported<T>(device_)) { return; }
  TestStart("regular behaviour", name);

  // Iterates over all the to-be-tested combinations of arguments
  for (auto &args: test_vector) {

    // Adds a 'canary' region to detect buffer overflows
    args.x_size += kCanarySize;
    args.y_size += kCanarySize;
    args.a_size += kCanarySize;
    args.b_size += kCanarySize;
    args.c_size += kCanarySize;
    args.ap_size += kCanarySize;
    args.scalar_size += kCanarySize;

    // Prints the current test configuration
    if (verbose_) {
      fprintf(stdout, "   Testing: %s", GetOptionsString(args).c_str());
      std::cout << std::flush;
    }

    // Optionally prepares the input data
    prepare_data_(args, queue_, kSeed,
                  x_source_, y_source_, a_source_, b_source_, c_source_,
                  ap_source_, scalar_source_);

    // Set-up for the CLBlast run
    auto x_vec2 = Buffer<T>(context_, args.x_size);
    auto y_vec2 = Buffer<T>(context_, args.y_size);
    auto a_mat2 = Buffer<T>(context_, args.a_size);
    auto b_mat2 = Buffer<T>(context_, args.b_size);
    auto c_mat2 = Buffer<T>(context_, args.c_size);
    auto ap_mat2 = Buffer<T>(context_, args.ap_size);
    auto scalar2 = Buffer<T>(context_, args.scalar_size);
    x_vec2.Write(queue_, args.x_size, x_source_);
    y_vec2.Write(queue_, args.y_size, y_source_);
    a_mat2.Write(queue_, args.a_size, a_source_);
    b_mat2.Write(queue_, args.b_size, b_source_);
    c_mat2.Write(queue_, args.c_size, c_source_);
    ap_mat2.Write(queue_, args.ap_size, ap_source_);
    scalar2.Write(queue_, args.scalar_size, scalar_source_);
    auto buffers2 = Buffers<T>{x_vec2, y_vec2, a_mat2, b_mat2, c_mat2, ap_mat2, scalar2};

    // Runs CLBlast
    if (verbose_) {
      fprintf(stdout, "[CLBlast]");
      std::cout << std::flush;
    }
    const auto status2 = run_routine_(args, buffers2, queue_);

    // Don't continue with CBLAS if there are incorrect parameters
    if (compare_cblas_ && status2 != StatusCode::kSuccess) {
      if (verbose_) {
        fprintf(stdout, " -> %d -> ", static_cast<int>(status2));
        std::cout << std::flush;
      }
      TestErrorCodes(status2, status2, args);
      continue;
    }

    // Set-up for the reference run
    auto x_vec1 = Buffer<T>(context_, args.x_size);
    auto y_vec1 = Buffer<T>(context_, args.y_size);
    auto a_mat1 = Buffer<T>(context_, args.a_size);
    auto b_mat1 = Buffer<T>(context_, args.b_size);
    auto c_mat1 = Buffer<T>(context_, args.c_size);
    auto ap_mat1 = Buffer<T>(context_, args.ap_size);
    auto scalar1 = Buffer<T>(context_, args.scalar_size);
    x_vec1.Write(queue_, args.x_size, x_source_);
    y_vec1.Write(queue_, args.y_size, y_source_);
    a_mat1.Write(queue_, args.a_size, a_source_);
    b_mat1.Write(queue_, args.b_size, b_source_);
    c_mat1.Write(queue_, args.c_size, c_source_);
    ap_mat1.Write(queue_, args.ap_size, ap_source_);
    scalar1.Write(queue_, args.scalar_size, scalar_source_);
    auto buffers1 = Buffers<T>{x_vec1, y_vec1, a_mat1, b_mat1, c_mat1, ap_mat1, scalar1};

    // Runs the reference code
    if (verbose_) {
      if (compare_clblas_) { fprintf(stdout, " [clBLAS]"); }
      else if (compare_cblas_) { fprintf(stdout, " [CPU BLAS]"); }
      std::cout << std::flush;
    }
    auto status1 = StatusCode::kSuccess;
    if (compare_clblas_) { status1 = run_reference1_(args, buffers1, queue_); }
    else if (compare_cblas_) { status1 = run_reference2_(args, buffers1, queue_); }

    // Tests for equality of the two status codes
    if (verbose_) { fprintf(stdout, " -> "); std::cout << std::flush; }
    if (status1 != StatusCode::kSuccess || status2 != StatusCode::kSuccess) {
      TestErrorCodes(status1, status2, args);
      continue;
    }

    // Downloads the results
    auto result1 = get_result_(args, buffers1, queue_);
    auto result2 = get_result_(args, buffers2, queue_);

    // Computes the L2 error
    auto l2error = 0.0;
    const auto kErrorMarginL2 = getL2ErrorMargin<T>();
    for (auto id1=size_t{0}; id1<get_id1_(args); ++id1) {
      for (auto id2=size_t{0}; id2<get_id2_(args); ++id2) {
        auto index = get_index_(args, id1, id2);
        l2error += SquaredDifference(result1[index], result2[index]);
      }
    }
    l2error /= static_cast<double>(get_id1_(args) * get_id2_(args));

    // Checks for differences in the output
    auto errors = size_t{0};
    for (auto id1=size_t{0}; id1<get_id1_(args); ++id1) {
      for (auto id2=size_t{0}; id2<get_id2_(args); ++id2) {
        auto index = get_index_(args, id1, id2);
        if (!TestSimilarity(result1[index], result2[index])) {
          if (l2error >= kErrorMarginL2) { errors++; }
          if (verbose_) {
            if (get_id2_(args) == 1) { std::cout << std::endl << "   Error at index " << id1 << ": "; }
            else { std::cout << std::endl << "   Error at " << id1 << "," << id2 << ": "; }
            std::cout << " " << ToString(result1[index]) << " (reference) versus ";
            std::cout << " " << ToString(result2[index]) << " (CLBlast)";
            if (l2error < kErrorMarginL2) {
              std::cout << " - error suppressed by a low total L2 error" << std::endl;
            }
          }
        }
      }
    }
    // Checks for differences in the 'canary' region to detect buffer overflows
    for (auto canary_id=size_t{0}; canary_id<kCanarySize; ++canary_id) {
      auto index = get_index_(args, get_id1_(args) - 1, get_id2_(args) - 1) + canary_id;
      if (!TestSimilarity(result1[index], result2[index])) {
        errors++;
        if (verbose_) {
          if (get_id2_(args) == 1) { std::cout << std::endl << "   Buffer overflow index " << index << ": "; }
          else { std::cout << std::endl << "   Buffer overflow " << index << ": "; }
          std::cout << " " << ToString(result1[index]) << " (reference) versus ";
          std::cout << " " << ToString(result2[index]) << " (CLBlast)";
        }
      }
    }


    // Report the results
    if (verbose_ && errors > 0) {
      fprintf(stdout, "\n   Combined average L2 error: %.2e\n   ", l2error);
    }

    // Tests the error count (should be zero)
    TestErrorCount(errors, get_id1_(args)*get_id2_(args) + kCanarySize, args);
  }
  TestEnd();
}

// =================================================================================================

// Tests the routine for cases with invalid OpenCL memory buffer sizes. Tests only on return-types,
// does not test for results (if any).
template <typename T, typename U>
void TestBlas<T,U>::TestInvalid(std::vector<Arguments<U>> &test_vector, const std::string &name) {
  if (!PrecisionSupported<T>(device_)) { return; }
  if (!compare_clblas_) { return; } // not supported for CPU BLAS routines
  if (std::is_same<T, half>::value) { return; } // not supported for half-precision
  TestStart("invalid buffer sizes", name);

  // Iterates over all the to-be-tested combinations of arguments
  for (const auto &args: test_vector) {

    // Prints the current test configuration
    if (verbose_) {
      fprintf(stdout, "   Testing: %s", GetSizesString(args).c_str());
      std::cout << std::flush;
    }

    // Creates the buffers. Note: we are not using the cxpp11.h C++ version since we explicitly
    // want to be able to create invalid buffers (no error checking here).
    auto x_vec1 = CreateInvalidBuffer<T>(context_, args.x_size);
    auto y_vec1 = CreateInvalidBuffer<T>(context_, args.y_size);
    auto a_mat1 = CreateInvalidBuffer<T>(context_, args.a_size);
    auto b_mat1 = CreateInvalidBuffer<T>(context_, args.b_size);
    auto c_mat1 = CreateInvalidBuffer<T>(context_, args.c_size);
    auto ap_mat1 = CreateInvalidBuffer<T>(context_, args.ap_size);
    auto scalar1 = CreateInvalidBuffer<T>(context_, args.scalar_size);
    auto x_vec2 = CreateInvalidBuffer<T>(context_, args.x_size);
    auto y_vec2 = CreateInvalidBuffer<T>(context_, args.y_size);
    auto a_mat2 = CreateInvalidBuffer<T>(context_, args.a_size);
    auto b_mat2 = CreateInvalidBuffer<T>(context_, args.b_size);
    auto c_mat2 = CreateInvalidBuffer<T>(context_, args.c_size);
    auto ap_mat2 = CreateInvalidBuffer<T>(context_, args.ap_size);
    auto scalar2 = CreateInvalidBuffer<T>(context_, args.scalar_size);
    auto buffers1 = Buffers<T>{x_vec1, y_vec1, a_mat1, b_mat1, c_mat1, ap_mat1, scalar1};
    auto buffers2 = Buffers<T>{x_vec2, y_vec2, a_mat2, b_mat2, c_mat2, ap_mat2, scalar2};

    // Runs CLBlast
    if (verbose_) {
      fprintf(stdout, "[CLBlast]");
      std::cout << std::flush;
    }
    const auto status2 = run_routine_(args, buffers2, queue_);

    // Runs the reference code
    if (verbose_) {
      if (compare_clblas_) { fprintf(stdout, " [clBLAS]"); }
      else if (compare_cblas_) { fprintf(stdout, " [CPU BLAS]"); }
      std::cout << std::flush;
    }
    auto status1 = StatusCode::kSuccess;
    if (compare_clblas_) { status1 = run_reference1_(args, buffers1, queue_); }
    else if (compare_cblas_) { status1 = run_reference2_(args, buffers1, queue_); }

    // Tests for equality of the two status codes
    if (verbose_) { fprintf(stdout, " -> "); std::cout << std::flush; }
    TestErrorCodes(status1, status2, args);
  }
  TestEnd();
}

// =================================================================================================

// Compiles the templated class
template class TestBlas<half, half>;
template class TestBlas<float, float>;
template class TestBlas<double, double>;
template class TestBlas<float2, float2>;
template class TestBlas<double2, double2>;
template class TestBlas<float2, float>;
template class TestBlas<double2, double>;

// =================================================================================================
} // namespace clblast