summaryrefslogtreecommitdiff
path: root/test/performance/client.cpp
blob: 3489142921a9f6b1139420884a2f644dc0c098b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
//   Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the common functions for the client-test environment.
//
// =================================================================================================

#include <string>
#include <vector>
#include <utility>
#include <algorithm>
#include <chrono>
#include <random>
#include <tuning/tuning.hpp>

#include "utilities/utilities.hpp"
#include "test/performance/client.hpp"

namespace clblast {
// =================================================================================================

template <typename T, typename U> const int Client<T,U>::kSeed = 42; // fixed seed for reproducibility

// Constructor
template <typename T, typename U>
Client<T,U>::Client(const Routine run_routine,
                    const Reference1 run_reference1, const Reference2 run_reference2,
                    const Reference3 run_reference3, const std::vector<std::string> &options,
                    const std::vector<std::string> &buffers_in,
                    const std::vector<std::string> &buffers_out,
                    const GetMetric get_flops, const GetMetric get_bytes):
  run_routine_(run_routine),
  run_reference1_(run_reference1),
  run_reference2_(run_reference2),
  run_reference3_(run_reference3),
  options_(options),
  buffers_in_(buffers_in),
  buffers_out_(buffers_out),
  get_flops_(get_flops),
  get_bytes_(get_bytes) {
}

// =================================================================================================

// Parses all arguments available for the CLBlast client testers. Some arguments might not be
// applicable, but are searched for anyway to be able to create one common argument parser. All
// arguments have a default value in case they are not found.
template <typename T, typename U>
Arguments<U> Client<T,U>::ParseArguments(int argc, char *argv[], const size_t level,
                                         const GetMetric default_a_ld,
                                         const GetMetric default_b_ld,
                                         const GetMetric default_c_ld) {
  const auto command_line_args = RetrieveCommandLineArguments(argc, argv);
  auto args = Arguments<U>{};
  auto help = std::string{"\n* Options given/available:\n"};

  // These are the options which are not for every client: they are optional
  for (auto &o: options_) {

    // Data-sizes
    if (o == kArgM)  { args.m   = GetArgument(command_line_args, help, kArgM, size_t{512}); }
    if (o == kArgN)  { args.n   = GetArgument(command_line_args, help, kArgN, size_t{512}); }
    if (o == kArgK)  { args.k   = GetArgument(command_line_args, help, kArgK, size_t{512}); }
    if (o == kArgKU) { args.ku  = GetArgument(command_line_args, help, kArgKU, size_t{128}); }
    if (o == kArgKL) { args.kl  = GetArgument(command_line_args, help, kArgKL, size_t{128}); }

    // Data-layouts
    if (o == kArgLayout)   { args.layout      = GetArgument(command_line_args, help, kArgLayout, Layout::kRowMajor); }
    if (o == kArgATransp)  { args.a_transpose = GetArgument(command_line_args, help, kArgATransp, Transpose::kNo); }
    if (o == kArgBTransp)  { args.b_transpose = GetArgument(command_line_args, help, kArgBTransp, Transpose::kNo); }
    if (o == kArgSide)     { args.side        = GetArgument(command_line_args, help, kArgSide, Side::kLeft); }
    if (o == kArgTriangle) { args.triangle    = GetArgument(command_line_args, help, kArgTriangle, Triangle::kUpper); }
    if (o == kArgDiagonal) { args.diagonal    = GetArgument(command_line_args, help, kArgDiagonal, Diagonal::kUnit); }

    // Vector arguments
    if (o == kArgXInc)    { args.x_inc    = GetArgument(command_line_args, help, kArgXInc, size_t{1}); }
    if (o == kArgYInc)    { args.y_inc    = GetArgument(command_line_args, help, kArgYInc, size_t{1}); }
    if (o == kArgXOffset) { args.x_offset = GetArgument(command_line_args, help, kArgXOffset, size_t{0}); }
    if (o == kArgYOffset) { args.y_offset = GetArgument(command_line_args, help, kArgYOffset, size_t{0}); }

    // Matrix arguments
    if (o == kArgALeadDim) { args.a_ld     = GetArgument(command_line_args, help, kArgALeadDim, default_a_ld(args)); }
    if (o == kArgBLeadDim) { args.b_ld     = GetArgument(command_line_args, help, kArgBLeadDim, default_b_ld(args)); }
    if (o == kArgCLeadDim) { args.c_ld     = GetArgument(command_line_args, help, kArgCLeadDim, default_c_ld(args)); }
    if (o == kArgAOffset)  { args.a_offset = GetArgument(command_line_args, help, kArgAOffset, size_t{0}); }
    if (o == kArgBOffset)  { args.b_offset = GetArgument(command_line_args, help, kArgBOffset, size_t{0}); }
    if (o == kArgCOffset)  { args.c_offset = GetArgument(command_line_args, help, kArgCOffset, size_t{0}); }
    if (o == kArgAPOffset) { args.ap_offset= GetArgument(command_line_args, help, kArgAPOffset, size_t{0}); }

    // Scalar result arguments
    if (o == kArgDotOffset)   { args.dot_offset = GetArgument(command_line_args, help, kArgDotOffset, size_t{0}); }
    if (o == kArgNrm2Offset)  { args.nrm2_offset = GetArgument(command_line_args, help, kArgNrm2Offset, size_t{0}); }
    if (o == kArgAsumOffset)  { args.asum_offset = GetArgument(command_line_args, help, kArgAsumOffset, size_t{0}); }
    if (o == kArgImaxOffset)  { args.imax_offset = GetArgument(command_line_args, help, kArgImaxOffset, size_t{0}); }

    // Batch arguments
    if (o == kArgBatchCount) { args.batch_count = GetArgument(command_line_args, help, kArgBatchCount, size_t{1}); }

    // Scalar values 
    if (o == kArgAlpha) { args.alpha = GetArgument(command_line_args, help, kArgAlpha, GetScalar<U>()); }
    if (o == kArgBeta)  { args.beta  = GetArgument(command_line_args, help, kArgBeta, GetScalar<U>()); }

    // Arguments for im2col and convgemm
    if (o == kArgKernelMode){ args.kernel_mode = GetArgument(command_line_args, help, kArgKernelMode, KernelMode::kConvolution); }
    if (o == kArgChannels)  { args.channels = GetArgument(command_line_args, help, kArgChannels, size_t{64}); }
    if (o == kArgHeight)    { args.height = GetArgument(command_line_args, help, kArgHeight, size_t{64}); }
    if (o == kArgWidth)     { args.width = GetArgument(command_line_args, help, kArgWidth, size_t{64}); }
    if (o == kArgKernelH)   { args.kernel_h = GetArgument(command_line_args, help, kArgKernelH, size_t{3}); }
    if (o == kArgKernelW)   { args.kernel_w = GetArgument(command_line_args, help, kArgKernelW, size_t{3}); }
    if (o == kArgPadH)      { args.pad_h = GetArgument(command_line_args, help, kArgPadH, size_t{0}); }
    if (o == kArgPadW)      { args.pad_w = GetArgument(command_line_args, help, kArgPadW, size_t{0}); }
    if (o == kArgStrideH)   { args.stride_h = GetArgument(command_line_args, help, kArgStrideH, size_t{1}); }
    if (o == kArgStrideW)   { args.stride_w = GetArgument(command_line_args, help, kArgStrideW, size_t{1}); }
    if (o == kArgDilationH) { args.dilation_h = GetArgument(command_line_args, help, kArgDilationH, size_t{1}); }
    if (o == kArgDilationW) { args.dilation_w = GetArgument(command_line_args, help, kArgDilationW, size_t{1}); }
    if (o == kArgNumKernels){ args.num_kernels = GetArgument(command_line_args, help, kArgNumKernels, size_t{1}); }
  }

  // These are the options common to all routines
  args.platform_id    = GetArgument(command_line_args, help, kArgPlatform, ConvertArgument(std::getenv("CLBLAST_PLATFORM"), size_t{0}));
  args.device_id      = GetArgument(command_line_args, help, kArgDevice, ConvertArgument(std::getenv("CLBLAST_DEVICE"), size_t{0}));
  args.precision      = GetArgument(command_line_args, help, kArgPrecision, Precision::kSingle);
  #ifdef CLBLAST_REF_CLBLAS
    args.compare_clblas = GetArgument(command_line_args, help, kArgCompareclblas, 1);
  #else
    args.compare_clblas = 0;
  #endif
  #ifdef CLBLAST_REF_CBLAS
    args.compare_cblas  = GetArgument(command_line_args, help, kArgComparecblas, 1);
  #else
    args.compare_cblas = 0;
  #endif
  #ifdef CLBLAST_REF_CUBLAS
    args.compare_cublas  = GetArgument(command_line_args, help, kArgComparecublas, 1);
  #else
    args.compare_cublas = 0;
  #endif
  args.step           = GetArgument(command_line_args, help, kArgStepSize, size_t{1});
  args.num_steps      = GetArgument(command_line_args, help, kArgNumSteps, size_t{0});
  args.num_runs       = GetArgument(command_line_args, help, kArgNumRuns, size_t{10});
  args.print_help     = CheckArgument(command_line_args, help, kArgHelp);
  args.silent         = CheckArgument(command_line_args, help, kArgQuiet);
  args.no_abbrv       = CheckArgument(command_line_args, help, kArgNoAbbreviations);
  args.full_statistics= CheckArgument(command_line_args, help, kArgFullStatistics);
  warm_up_            = CheckArgument(command_line_args, help, kArgWarmUp);

  // Parse the optional JSON file name arguments
  const auto tuner_files_default = std::string{"<none>"};
  const auto tuner_files_string = GetArgument(command_line_args, help, kArgTunerFiles, tuner_files_default);
  if (tuner_files_string != tuner_files_default) {
    args.tuner_files = split(tuner_files_string, ',');
  }

  // Prints the chosen (or defaulted) arguments to screen. This also serves as the help message,
  // which is thus always displayed (unless silence is specified).
  if (!args.silent) { fprintf(stdout, "%s\n", help.c_str()); }

  // Comparison against a non-BLAS routine is not supported
  if (level == 4) { // level-4 == level-X
    if (args.compare_clblas != 0 || args.compare_cblas != 0 || args.compare_cublas != 0) {
      if (!args.silent) {
        fprintf(stdout, "* Disabling clBLAS/CBLAS/cuBLAS comparisons for this non-BLAS routine\n\n");
      }
    }
    args.compare_clblas = 0;
    args.compare_cblas = 0;
    args.compare_cublas = 0;
  }

  // Comparison against other BLAS libraries is not supported in case of half-precision
  if (args.precision == Precision::kHalf) {
    if (args.compare_clblas != 0 || args.compare_cblas != 0 || args.compare_cublas != 0) {
      if (!args.silent) {
        fprintf(stdout, "* Disabling clBLAS/CBLAS/cuBLAS comparisons for half-precision\n\n");
      }
    }
    args.compare_clblas = 0;
    args.compare_cblas = 0;
    args.compare_cublas = 0;
  }

  // Returns the arguments
  return args;
}

// =================================================================================================

// This is main performance tester
template <typename T, typename U>
void Client<T,U>::PerformanceTest(Arguments<U> &args, const SetMetric set_sizes) {

  // Initializes OpenCL and the libraries
  auto platform = Platform(args.platform_id);
  auto device = Device(platform, args.device_id);
  auto context = Context(device);
  auto queue = Queue(context, device);
  #ifdef CLBLAST_REF_CLBLAS
    if (args.compare_clblas) { clblasSetup(); }
  #endif
  #ifdef CLBLAST_REF_CUBLAS
    if (args.compare_cublas) { cublasSetup(args); }
  #endif

  // Optionally overrides parameters if tuner files are given (semicolon separated)
  OverrideParametersFromJSONFiles(args.tuner_files, device(), args.precision);

  // Prints the header of the output table
  PrintTableHeader(args);

  // Iterates over all "num_step" values jumping by "step" each time
  auto s = size_t{0};
  while(true) {

    // Sets the buffer sizes (routine-specific)
    set_sizes(args, queue);

    // Populates input host matrices with random data
    std::vector<T> x_source(args.x_size);
    std::vector<T> y_source(args.y_size);
    std::vector<T> a_source(args.a_size);
    std::vector<T> b_source(args.b_size);
    std::vector<T> c_source(args.c_size);
    std::vector<T> ap_source(args.ap_size);
    std::vector<T> scalar_source(args.scalar_size);
    std::mt19937 mt(kSeed);
    std::uniform_real_distribution<double> dist(kTestDataLowerLimit, kTestDataUpperLimit);
    PopulateVector(x_source, mt, dist);
    PopulateVector(y_source, mt, dist);
    PopulateVector(a_source, mt, dist);
    PopulateVector(b_source, mt, dist);
    PopulateVector(c_source, mt, dist);
    PopulateVector(ap_source, mt, dist);
    PopulateVector(scalar_source, mt, dist);

    // Creates the matrices on the device
    auto x_vec = Buffer<T>(context, args.x_size);
    auto y_vec = Buffer<T>(context, args.y_size);
    auto a_mat = Buffer<T>(context, args.a_size);
    auto b_mat = Buffer<T>(context, args.b_size);
    auto c_mat = Buffer<T>(context, args.c_size);
    auto ap_mat = Buffer<T>(context, args.ap_size);
    auto scalar = Buffer<T>(context, args.scalar_size);
    x_vec.Write(queue, args.x_size, x_source);
    y_vec.Write(queue, args.y_size, y_source);
    a_mat.Write(queue, args.a_size, a_source);
    b_mat.Write(queue, args.b_size, b_source);
    c_mat.Write(queue, args.c_size, c_source);
    ap_mat.Write(queue, args.ap_size, ap_source);
    scalar.Write(queue, args.scalar_size, scalar_source);
    auto buffers = Buffers<T>{x_vec, y_vec, a_mat, b_mat, c_mat, ap_mat, scalar};

    // Runs the routines and collects the timings
    auto timings = std::vector<std::pair<std::string, TimeResult>>();
    auto time_clblast = TimedExecution(args.num_runs, args, buffers, queue, run_routine_, "CLBlast");
    timings.push_back(std::pair<std::string, TimeResult>("CLBlast", time_clblast));
    if (args.compare_clblas) {
      auto time_clblas = TimedExecution(args.num_runs, args, buffers, queue, run_reference1_, "clBLAS");
      timings.push_back(std::pair<std::string, TimeResult>("clBLAS", time_clblas));
    }
    if (args.compare_cblas) {
      auto buffers_host = BuffersHost<T>();
      DeviceToHost(args, buffers, buffers_host, queue, buffers_in_);
      auto time_cblas = TimedExecution(args.num_runs, args, buffers_host, queue, run_reference2_, "CPU BLAS");
      HostToDevice(args, buffers, buffers_host, queue, buffers_out_);
      timings.push_back(std::pair<std::string, TimeResult>("CPU BLAS", time_cblas));
    }
    if (args.compare_cublas) {
      auto buffers_host = BuffersHost<T>();
      auto buffers_cuda = BuffersCUDA<T>();
      DeviceToHost(args, buffers, buffers_host, queue, buffers_in_);
      HostToCUDA(args, buffers_cuda, buffers_host, buffers_in_);
      TimeResult time_cublas;
      try {
        time_cublas = TimedExecution(args.num_runs, args, buffers_cuda, queue, run_reference3_, "cuBLAS");
      } catch (std::runtime_error e) { }
      CUDAToHost(args, buffers_cuda, buffers_host, buffers_out_);
      HostToDevice(args, buffers, buffers_host, queue, buffers_out_);
      timings.push_back(std::pair<std::string, TimeResult>("cuBLAS", time_cublas));
    }

    // Prints the performance of the tested libraries
    PrintTableRow(args, timings);

    // Makes the jump to the next step
    ++s;
    if (s >= args.num_steps) { break; }
    args.m += args.step;
    args.n += args.step;
    args.k += args.step;
    args.a_ld += args.step;
    args.b_ld += args.step;
    args.c_ld += args.step;
  }

  // Cleans-up and returns
  #ifdef CLBLAST_REF_CLBLAS
    if (args.compare_clblas) { clblasTeardown(); }
  #endif
  #ifdef CLBLAST_REF_CUBLAS
    if (args.compare_cublas) { cublasTeardown(args); }
  #endif
}

// =================================================================================================

// Creates a vector of timing results, filled with execution times of the 'main computation'. The
// timing is performed using the milliseconds chrono functions. The function returns the minimum
// value found in the vector of timing results. The return value is in milliseconds.
template <typename T, typename U>
template <typename BufferType, typename RoutineType>
typename Client<T,U>::TimeResult Client<T,U>::TimedExecution(const size_t num_runs, const Arguments<U> &args,
                                                             BufferType &buffers, Queue &queue,
                                                             RoutineType run_blas, const std::string &library_name) {
  auto status = StatusCode::kSuccess;

  // Do an optional warm-up to omit compilation times and initialisations from the measurements
  if (warm_up_) {
    try {
      status = run_blas(args, buffers, queue);
    } catch (...) { status = static_cast<StatusCode>(kUnknownError); }
    if (status != StatusCode::kSuccess) {
      throw std::runtime_error(library_name+" error: "+ToString(static_cast<int>(status)));
    }
  }

  // Start the timed part
  auto timings = std::vector<double>(num_runs);
  for (auto &timing: timings) {
    auto start_time = std::chrono::steady_clock::now();

    // Executes the main computation
    try {
      status = run_blas(args, buffers, queue);
    } catch (...) { status = static_cast<StatusCode>(kUnknownError); }
    if (status != StatusCode::kSuccess) {
      throw std::runtime_error(library_name+" error: "+ToString(static_cast<int>(status)));
    }

    // Records and stores the end-time
    auto elapsed_time = std::chrono::steady_clock::now() - start_time;
    timing = std::chrono::duration<double,std::milli>(elapsed_time).count();
  }

  // Compute statistics
  auto result = TimeResult();
  const auto sum = std::accumulate(timings.begin(), timings.end(), 0.0);
  const auto mean = sum / timings.size();
  std::vector<double> diff(timings.size());
  std::transform(timings.begin(), timings.end(), diff.begin(), [mean](double x) { return x - mean; });
  const auto sq_sum = std::inner_product(diff.begin(), diff.end(), diff.begin(), 0.0);
  result.mean = mean;
  result.standard_deviation = std::sqrt(sq_sum / timings.size());
  result.minimum = *std::min_element(timings.begin(), timings.end());
  result.maximum = *std::max_element(timings.begin(), timings.end());
  return result;
}

// =================================================================================================

// Prints the header of the performance table
template <typename T, typename U>
void Client<T,U>::PrintTableHeader(const Arguments<U>& args) {

  // First line (optional)
  if (!args.silent) {
    for (auto i=size_t{0}; i<options_.size(); ++i) { fprintf(stdout, "%9s ", ""); }
    if (args.full_statistics) {
      fprintf(stdout, " | <--            CLBlast            -->");
      if (args.compare_clblas) { fprintf(stdout, " | <--            clBLAS             -->"); }
      if (args.compare_cblas) { fprintf(stdout, " | <--           CPU BLAS            -->"); }
      if (args.compare_cublas) { fprintf(stdout, " | <--            cuBLAS             -->"); }
    }
    else {
      fprintf(stdout, " | <--       CLBlast       -->");
      if (args.compare_clblas) { fprintf(stdout, " | <--       clBLAS        -->"); }
      if (args.compare_cblas) { fprintf(stdout, " | <--      CPU BLAS       -->"); }
      if (args.compare_cublas) { fprintf(stdout, " | <--       cuBLAS        -->"); }
    }
    fprintf(stdout, " |\n");
  }

  // Second line
  for (auto &option: options_) { fprintf(stdout, "%9s;", option.c_str()); }
  if (args.full_statistics) {
    fprintf(stdout, "%9s;%9s;%9s;%9s", "min_ms_1", "max_ms_1", "mean_1", "stddev_1");
    if (args.compare_clblas) { fprintf(stdout, ";%9s;%9s;%9s;%9s", "min_ms_2", "max_ms_2", "mean_2", "stddev_2"); }
    if (args.compare_cblas) { fprintf(stdout, ";%9s;%9s;%9s;%9s", "min_ms_3", "max_ms_3", "mean_3", "stddev_3"); }
    if (args.compare_cublas) { fprintf(stdout, ";%9s;%9s;%9s;%9s", "min_ms_4", "max_ms_4", "mean_4", "stddev_4"); }
  }
  else {
    fprintf(stdout, "%9s;%9s;%9s", "ms_1", "GFLOPS_1", "GBs_1");
    if (args.compare_clblas) { fprintf(stdout, ";%9s;%9s;%9s", "ms_2", "GFLOPS_2", "GBs_2"); }
    if (args.compare_cblas) { fprintf(stdout, ";%9s;%9s;%9s", "ms_3", "GFLOPS_3", "GBs_3"); }
    if (args.compare_cublas) { fprintf(stdout, ";%9s;%9s;%9s", "ms_4", "GFLOPS_4", "GBs_4"); }
  }
  fprintf(stdout, "\n");
}

// Print a performance-result row
template <typename T, typename U>
void Client<T,U>::PrintTableRow(const Arguments<U>& args,
                                const std::vector<std::pair<std::string, TimeResult>>& timings) {

  // Creates a vector of relevant variables
  auto integers = std::vector<size_t>{};
  for (auto &o: options_) {
    if      (o == kArgM) {        integers.push_back(args.m); }
    else if (o == kArgN) {        integers.push_back(args.n); }
    else if (o == kArgK) {        integers.push_back(args.k); }
    else if (o == kArgKU) {       integers.push_back(args.ku); }
    else if (o == kArgKL) {       integers.push_back(args.kl); }
    else if (o == kArgLayout) {   integers.push_back(static_cast<size_t>(args.layout)); }
    else if (o == kArgSide) {     integers.push_back(static_cast<size_t>(args.side)); }
    else if (o == kArgTriangle) { integers.push_back(static_cast<size_t>(args.triangle)); }
    else if (o == kArgATransp) {  integers.push_back(static_cast<size_t>(args.a_transpose)); }
    else if (o == kArgBTransp) {  integers.push_back(static_cast<size_t>(args.b_transpose)); }
    else if (o == kArgDiagonal) { integers.push_back(static_cast<size_t>(args.diagonal)); }
    else if (o == kArgXInc) {     integers.push_back(args.x_inc); }
    else if (o == kArgYInc) {     integers.push_back(args.y_inc); }
    else if (o == kArgXOffset) {  integers.push_back(args.x_offset); }
    else if (o == kArgYOffset) {  integers.push_back(args.y_offset); }
    else if (o == kArgALeadDim) { integers.push_back(args.a_ld); }
    else if (o == kArgBLeadDim) { integers.push_back(args.b_ld); }
    else if (o == kArgCLeadDim) { integers.push_back(args.c_ld); }
    else if (o == kArgAOffset) {  integers.push_back(args.a_offset); }
    else if (o == kArgBOffset) {  integers.push_back(args.b_offset); }
    else if (o == kArgCOffset) {  integers.push_back(args.c_offset); }
    else if (o == kArgAPOffset) { integers.push_back(args.ap_offset); }
    else if (o == kArgDotOffset) {integers.push_back(args.dot_offset); }
    else if (o == kArgNrm2Offset){integers.push_back(args.nrm2_offset); }
    else if (o == kArgAsumOffset){integers.push_back(args.asum_offset); }
    else if (o == kArgImaxOffset){integers.push_back(args.imax_offset); }
    else if (o == kArgBatchCount){integers.push_back(args.batch_count); }
    else if (o == kArgKernelMode){integers.push_back(static_cast<size_t>(args.kernel_mode)); }
    else if (o == kArgChannels)  {integers.push_back(args.channels); }
    else if (o == kArgHeight)    {integers.push_back(args.height); }
    else if (o == kArgWidth)     {integers.push_back(args.width); }
    else if (o == kArgKernelH)   {integers.push_back(args.kernel_h); }
    else if (o == kArgKernelW)   {integers.push_back(args.kernel_w); }
    else if (o == kArgPadH)      {integers.push_back(args.pad_h); }
    else if (o == kArgPadW)      {integers.push_back(args.pad_w); }
    else if (o == kArgStrideH)   {integers.push_back(args.stride_h); }
    else if (o == kArgStrideW)   {integers.push_back(args.stride_w); }
    else if (o == kArgDilationH) {integers.push_back(args.dilation_h); }
    else if (o == kArgDilationW) {integers.push_back(args.dilation_w); }
    else if (o == kArgNumKernels){integers.push_back(args.num_kernels); }
  }
  auto strings = std::vector<std::string>{};
  for (auto &o: options_) {
    if      (o == kArgAlpha) {    strings.push_back(ToString(args.alpha)); }
    else if (o == kArgBeta) {     strings.push_back(ToString(args.beta)); }
  }

  // Outputs the argument values
  for (auto &argument: integers) {
    if (!args.no_abbrv && argument >= 1024*1024 && IsMultiple(argument, 1024*1024)) {
      fprintf(stdout, "%8zuM;", argument/(1024*1024));
    }
    else if (!args.no_abbrv && argument >= 1024 && IsMultiple(argument, 1024)) {
      fprintf(stdout, "%8zuK;", argument/1024);
    }
    else {
      fprintf(stdout, "%9zu;", argument);
    }
  }
  for (auto &argument: strings) {
    fprintf(stdout, "%9s;", argument.c_str());
  }

  // Loops over all tested libraries
  for (const auto& timing : timings) {
    const auto library_name = timing.first;
    const auto minimum_ms = timing.second.minimum;
    if (library_name != "CLBlast") { fprintf(stdout, ";"); }

    // Either output full statistics
    if (args.full_statistics) {
      const auto maximum_ms = timing.second.maximum;
      const auto mean_ms = timing.second.mean;
      const auto standard_deviation = timing.second.standard_deviation;
      fprintf(stdout, "%9.3lf;%9.3lf;%9.3lf;%9.3lf", minimum_ms, maximum_ms, mean_ms, standard_deviation);
    }

    // ... or outputs minimum time and the GFLOPS and GB/s metrics
    else {
      const auto flops = get_flops_(args);
      const auto bytes = get_bytes_(args);
      const auto gflops = (minimum_ms != 0.0) ? (flops*1e-6)/minimum_ms : 0;
      const auto gbs = (minimum_ms != 0.0) ? (bytes*1e-6)/minimum_ms : 0;
      fprintf(stdout, "%9.2lf;%9.1lf;%9.1lf", minimum_ms, gflops, gbs);
    }
  }
  fprintf(stdout, "\n");
}

// =================================================================================================

// Compiles the templated class
template class Client<half,half>;
template class Client<float,float>;
template class Client<double,double>;
template class Client<float2,float2>;
template class Client<double2,double2>;
template class Client<float2,float>;
template class Client<double2,double>;

// =================================================================================================
} // namespace clblast