summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorvrouvrea <vrouvrea@636b058d-ea47-450e-bf9e-a15bfbe3eedb>2016-10-14 08:51:18 +0000
committervrouvrea <vrouvrea@636b058d-ea47-450e-bf9e-a15bfbe3eedb>2016-10-14 08:51:18 +0000
commit1839d09009b10ce3c62770e082a4d7816d991e14 (patch)
tree2cb5681478b81a64af0f1255c0b57ea532dcc71b
parentb024f27b957920fc59375b0accc521855782248a (diff)
Fix Alpha complex UT for limit case
git-svn-id: svn+ssh://scm.gforge.inria.fr/svnroot/gudhi/trunk@1727 636b058d-ea47-450e-bf9e-a15bfbe3eedb Former-commit-id: 2c5c93e0a4d78fc2441de966aebac72ba9419da8
-rw-r--r--src/Alpha_complex/include/gudhi/Alpha_complex.h82
-rw-r--r--src/Alpha_complex/test/Alpha_complex_unit_test.cpp79
2 files changed, 94 insertions, 67 deletions
diff --git a/src/Alpha_complex/include/gudhi/Alpha_complex.h b/src/Alpha_complex/include/gudhi/Alpha_complex.h
index 1ce6267d..9d5a9bad 100644
--- a/src/Alpha_complex/include/gudhi/Alpha_complex.h
+++ b/src/Alpha_complex/include/gudhi/Alpha_complex.h
@@ -171,35 +171,58 @@ class Alpha_complex {
return vertex_handle_to_iterator_.at(vertex)->point();
}
+ /** \brief number_of_vertices returns the number of vertices (same as the number of points).
+ *
+ * @return The number of vertices.
+ */
+ const std::size_t number_of_vertices() const {
+ return vertex_handle_to_iterator_.size();
+ }
+
private:
template<typename InputPointRange >
void init_from_range(const InputPointRange& points) {
auto first = std::begin(points);
auto last = std::end(points);
- // point_dimension function initialization
- Point_Dimension point_dimension = kernel_.point_dimension_d_object();
-
- // Delaunay triangulation is point dimension.
- triangulation_ = new Delaunay_triangulation(point_dimension(*first));
-
- std::vector<Point_d> point_cloud(first, last);
- // Creates a vector {0, 1, ..., N-1}
- std::vector<std::ptrdiff_t> indices(boost::counting_iterator<std::ptrdiff_t>(0),
- boost::counting_iterator<std::ptrdiff_t>(point_cloud.size()));
-
- typedef boost::iterator_property_map<typename std::vector<Point_d>::iterator,
- CGAL::Identity_property_map<std::ptrdiff_t>> Point_property_map;
- typedef CGAL::Spatial_sort_traits_adapter_d<Kernel, Point_property_map> Search_traits_d;
-
- CGAL::spatial_sort(indices.begin(), indices.end(), Search_traits_d(std::begin(point_cloud)));
-
- typename Delaunay_triangulation::Full_cell_handle hint;
- for (auto index : indices) {
- typename Delaunay_triangulation::Vertex_handle pos = triangulation_->insert(point_cloud[index], hint);
- // Save index value as data to retrieve it after insertion
- pos->data() = index;
- hint = pos->full_cell();
+ if (first != last) {
+ // point_dimension function initialization
+ Point_Dimension point_dimension = kernel_.point_dimension_d_object();
+
+ // Delaunay triangulation is point dimension.
+ triangulation_ = new Delaunay_triangulation(point_dimension(*first));
+
+ std::vector<Point_d> point_cloud(first, last);
+
+ // Creates a vector {0, 1, ..., N-1}
+ std::vector<std::ptrdiff_t> indices(boost::counting_iterator<std::ptrdiff_t>(0),
+ boost::counting_iterator<std::ptrdiff_t>(point_cloud.size()));
+
+ typedef boost::iterator_property_map<typename std::vector<Point_d>::iterator,
+ CGAL::Identity_property_map<std::ptrdiff_t>> Point_property_map;
+ typedef CGAL::Spatial_sort_traits_adapter_d<Kernel, Point_property_map> Search_traits_d;
+
+ CGAL::spatial_sort(indices.begin(), indices.end(), Search_traits_d(std::begin(point_cloud)));
+
+ typename Delaunay_triangulation::Full_cell_handle hint;
+ for (auto index : indices) {
+ typename Delaunay_triangulation::Vertex_handle pos = triangulation_->insert(point_cloud[index], hint);
+ // Save index value as data to retrieve it after insertion
+ pos->data() = index;
+ hint = pos->full_cell();
+ }
+ // --------------------------------------------------------------------------------------------
+ // double map to retrieve simplex tree vertex handles from CGAL vertex iterator and vice versa
+ // Loop on triangulation vertices list
+ for (CGAL_vertex_iterator vit = triangulation_->vertices_begin(); vit != triangulation_->vertices_end(); ++vit) {
+ if (!triangulation_->is_infinite(*vit)) {
+#ifdef DEBUG_TRACES
+ std::cout << "Vertex insertion - " << vit->data() << " -> " << vit->point() << std::endl;
+#endif // DEBUG_TRACES
+ vertex_handle_to_iterator_.emplace(vit->data(), vit);
+ }
+ }
+ // --------------------------------------------------------------------------------------------
}
}
@@ -248,19 +271,6 @@ class Alpha_complex {
complex.set_dimension(triangulation_->maximal_dimension());
// --------------------------------------------------------------------------------------------
- // double map to retrieve simplex tree vertex handles from CGAL vertex iterator and vice versa
- // Loop on triangulation vertices list
- for (CGAL_vertex_iterator vit = triangulation_->vertices_begin(); vit != triangulation_->vertices_end(); ++vit) {
- if (!triangulation_->is_infinite(*vit)) {
-#ifdef DEBUG_TRACES
- std::cout << "Vertex insertion - " << vit->data() << " -> " << vit->point() << std::endl;
-#endif // DEBUG_TRACES
- vertex_handle_to_iterator_.emplace(vit->data(), vit);
- }
- }
- // --------------------------------------------------------------------------------------------
-
- // --------------------------------------------------------------------------------------------
// Simplex_tree construction from loop on triangulation finite full cells list
if (triangulation_->number_of_vertices() > 0) {
for (auto cit = triangulation_->finite_full_cells_begin(); cit != triangulation_->finite_full_cells_end(); ++cit) {
diff --git a/src/Alpha_complex/test/Alpha_complex_unit_test.cpp b/src/Alpha_complex/test/Alpha_complex_unit_test.cpp
index c3be0715..7380547f 100644
--- a/src/Alpha_complex/test/Alpha_complex_unit_test.cpp
+++ b/src/Alpha_complex/test/Alpha_complex_unit_test.cpp
@@ -36,12 +36,17 @@
// to construct a simplex_tree from Delaunay_triangulation
#include <gudhi/graph_simplicial_complex.h>
#include <gudhi/Simplex_tree.h>
+#include <boost/mpl/list.hpp>
// Use dynamic_dimension_tag for the user to be able to set dimension
typedef CGAL::Epick_d< CGAL::Dynamic_dimension_tag > Kernel_d;
+// Use static dimension_tag for the user not to be able to set dimension
+typedef CGAL::Epick_d< CGAL::Dimension_tag<2> > Kernel_s;
// The triangulation uses the default instantiation of the TriangulationDataStructure template parameter
-BOOST_AUTO_TEST_CASE(ALPHA_DOC_OFF_file) {
+typedef boost::mpl::list<Kernel_d, Kernel_s> list_of_kernel_variants;
+
+BOOST_AUTO_TEST_CASE_TEMPLATE(Alpha_complex_from_OFF_file, TestedKernel, list_of_kernel_variants) {
// ----------------------------------------------------------------------------
//
// Init of an alpha-complex from a OFF file
@@ -52,7 +57,11 @@ BOOST_AUTO_TEST_CASE(ALPHA_DOC_OFF_file) {
std::cout << "========== OFF FILE NAME = " << off_file_name << " - alpha²=" <<
max_alpha_square_value << "==========" << std::endl;
- Gudhi::alpha_complex::Alpha_complex<Kernel_d> alpha_complex_from_file(off_file_name);
+ Gudhi::alpha_complex::Alpha_complex<TestedKernel> alpha_complex_from_file(off_file_name);
+
+ std::cout << "alpha_complex_from_points.number_of_vertices()=" << alpha_complex_from_file.number_of_vertices()
+ << std::endl;
+ BOOST_CHECK(alpha_complex_from_file.number_of_vertices() == 7);
Gudhi::Simplex_tree<> simplex_tree_60;
BOOST_CHECK(alpha_complex_from_file.create_complex(simplex_tree_60, max_alpha_square_value));
@@ -60,6 +69,10 @@ BOOST_AUTO_TEST_CASE(ALPHA_DOC_OFF_file) {
std::cout << "simplex_tree_60.dimension()=" << simplex_tree_60.dimension() << std::endl;
BOOST_CHECK(simplex_tree_60.dimension() == 2);
+ std::cout << "alpha_complex_from_points.number_of_vertices()=" << alpha_complex_from_file.number_of_vertices()
+ << std::endl;
+ BOOST_CHECK(alpha_complex_from_file.number_of_vertices() == 7);
+
std::cout << "simplex_tree_60.num_vertices()=" << simplex_tree_60.num_vertices() << std::endl;
BOOST_CHECK(simplex_tree_60.num_vertices() == 7);
@@ -87,13 +100,12 @@ bool are_almost_the_same(float a, float b) {
return std::fabs(a - b) < std::numeric_limits<float>::epsilon();
}
-// Use dynamic_dimension_tag for the user to be able to set dimension
-typedef CGAL::Epick_d< CGAL::Dimension_tag<4> > Kernel_s;
-typedef Kernel_s::Point_d Point;
-typedef std::vector<Point> Vector_of_points;
-
+// Use static dimension_tag for the user not to be able to set dimension
+typedef CGAL::Epick_d< CGAL::Dimension_tag<4> > Kernel_4;
+typedef Kernel_4::Point_d Point_4;
+typedef std::vector<Point_4> Vector_4_Points;
-bool is_point_in_list(Vector_of_points points_list, Point point) {
+bool is_point_in_list(Vector_4_Points points_list, Point_4 point) {
for (auto& point_in_list : points_list) {
if (point_in_list == point) {
return true; // point found
@@ -106,26 +118,30 @@ BOOST_AUTO_TEST_CASE(Alpha_complex_from_points) {
// ----------------------------------------------------------------------------
// Init of a list of points
// ----------------------------------------------------------------------------
- Vector_of_points points;
+ Vector_4_Points points;
std::vector<double> coords = { 0.0, 0.0, 0.0, 1.0 };
- points.push_back(Point(coords.begin(), coords.end()));
+ points.push_back(Point_4(coords.begin(), coords.end()));
coords = { 0.0, 0.0, 1.0, 0.0 };
- points.push_back(Point(coords.begin(), coords.end()));
+ points.push_back(Point_4(coords.begin(), coords.end()));
coords = { 0.0, 1.0, 0.0, 0.0 };
- points.push_back(Point(coords.begin(), coords.end()));
+ points.push_back(Point_4(coords.begin(), coords.end()));
coords = { 1.0, 0.0, 0.0, 0.0 };
- points.push_back(Point(coords.begin(), coords.end()));
+ points.push_back(Point_4(coords.begin(), coords.end()));
// ----------------------------------------------------------------------------
// Init of an alpha complex from the list of points
// ----------------------------------------------------------------------------
- Gudhi::alpha_complex::Alpha_complex<Kernel_s> alpha_complex_from_points(points);
+ Gudhi::alpha_complex::Alpha_complex<Kernel_4> alpha_complex_from_points(points);
std::cout << "========== Alpha_complex_from_points ==========" << std::endl;
Gudhi::Simplex_tree<> simplex_tree;
BOOST_CHECK(alpha_complex_from_points.create_complex(simplex_tree));
+ std::cout << "alpha_complex_from_points.number_of_vertices()=" << alpha_complex_from_points.number_of_vertices()
+ << std::endl;
+ BOOST_CHECK(alpha_complex_from_points.number_of_vertices() == points.size());
+
// Another way to check num_simplices
std::cout << "Iterator on alpha complex simplices in the filtration order, with [filtration value]:" << std::endl;
int num_simplices = 0;
@@ -167,22 +183,22 @@ BOOST_AUTO_TEST_CASE(Alpha_complex_from_points) {
}
}
- Point p0 = alpha_complex_from_points.get_point(0);
+ Point_4 p0 = alpha_complex_from_points.get_point(0);
std::cout << "alpha_complex_from_points.get_point(0)=" << p0 << std::endl;
BOOST_CHECK(4 == p0.dimension());
BOOST_CHECK(is_point_in_list(points, p0));
- Point p1 = alpha_complex_from_points.get_point(1);
+ Point_4 p1 = alpha_complex_from_points.get_point(1);
std::cout << "alpha_complex_from_points.get_point(1)=" << p1 << std::endl;
BOOST_CHECK(4 == p1.dimension());
BOOST_CHECK(is_point_in_list(points, p1));
- Point p2 = alpha_complex_from_points.get_point(2);
+ Point_4 p2 = alpha_complex_from_points.get_point(2);
std::cout << "alpha_complex_from_points.get_point(2)=" << p2 << std::endl;
BOOST_CHECK(4 == p2.dimension());
BOOST_CHECK(is_point_in_list(points, p2));
- Point p3 = alpha_complex_from_points.get_point(3);
+ Point_4 p3 = alpha_complex_from_points.get_point(3);
std::cout << "alpha_complex_from_points.get_point(3)=" << p3 << std::endl;
BOOST_CHECK(4 == p3.dimension());
BOOST_CHECK(is_point_in_list(points, p3));
@@ -236,34 +252,35 @@ BOOST_AUTO_TEST_CASE(Alpha_complex_from_points) {
}
-// This test crashes on Windows (32 and 64))
-#ifndef _WIN32
-BOOST_AUTO_TEST_CASE(Alpha_complex_from_empty_points) {
+BOOST_AUTO_TEST_CASE_TEMPLATE(Alpha_complex_from_empty_points, TestedKernel, list_of_kernel_variants) {
+ std::cout << "========== Alpha_complex_from_empty_points ==========" << std::endl;
+
// ----------------------------------------------------------------------------
- // Init of a list of points
+ // Init of an empty list of points
// ----------------------------------------------------------------------------
- Vector_of_points points;
+ std::vector<typename TestedKernel::Point_d> points;
// ----------------------------------------------------------------------------
// Init of an alpha complex from the list of points
// ----------------------------------------------------------------------------
- Gudhi::alpha_complex::Alpha_complex<Kernel_s> alpha_complex_from_points(points);
+ Gudhi::alpha_complex::Alpha_complex<TestedKernel> alpha_complex_from_points(points);
- std::cout << "========== Alpha_complex_from_empty_points ==========" << std::endl;
+ // Test to the limit
+ BOOST_CHECK_THROW (alpha_complex_from_points.get_point(0), std::out_of_range);
Gudhi::Simplex_tree<> simplex_tree;
- BOOST_CHECK(alpha_complex_from_points.create_complex(simplex_tree));
+ BOOST_CHECK(!alpha_complex_from_points.create_complex(simplex_tree));
+ std::cout << "alpha_complex_from_points.number_of_vertices()=" << alpha_complex_from_points.number_of_vertices()
+ << std::endl;
+ BOOST_CHECK(alpha_complex_from_points.number_of_vertices() == points.size());
+
std::cout << "simplex_tree.num_simplices()=" << simplex_tree.num_simplices() << std::endl;
BOOST_CHECK(simplex_tree.num_simplices() == 0);
std::cout << "simplex_tree.dimension()=" << simplex_tree.dimension() << std::endl;
- BOOST_CHECK(simplex_tree.dimension() == 4);
+ BOOST_CHECK(simplex_tree.dimension() == -1);
std::cout << "simplex_tree.num_vertices()=" << simplex_tree.num_vertices() << std::endl;
BOOST_CHECK(simplex_tree.num_vertices() == 0);
-
- // Test to the limit
- BOOST_CHECK_THROW (alpha_complex_from_points.get_point(0), std::out_of_range);
}
-#endif