summaryrefslogtreecommitdiff
path: root/example/Bitmap_cubical_complex/Bitmap_cubical_complex.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'example/Bitmap_cubical_complex/Bitmap_cubical_complex.cpp')
-rw-r--r--example/Bitmap_cubical_complex/Bitmap_cubical_complex.cpp72
1 files changed, 72 insertions, 0 deletions
diff --git a/example/Bitmap_cubical_complex/Bitmap_cubical_complex.cpp b/example/Bitmap_cubical_complex/Bitmap_cubical_complex.cpp
new file mode 100644
index 00000000..e6bc6648
--- /dev/null
+++ b/example/Bitmap_cubical_complex/Bitmap_cubical_complex.cpp
@@ -0,0 +1,72 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Pawel Dlotko
+ *
+ * Copyright (C) 2015 INRIA Saclay (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+
+#include <gudhi/reader_utils.h>
+#include <gudhi/Bitmap_cubical_complex.h>
+#include <gudhi/Persistent_cohomology.h>
+
+// standard stuff
+#include <iostream>
+#include <sstream>
+#include <vector>
+
+int main(int argc, char** argv) {
+ std::cout << "This program computes persistent homology, by using bitmap_cubical_complex class, of cubical " <<
+ "complexes provided in text files in Perseus style (the only numbered in the first line is a dimension D of a" <<
+ "bitmap. In the lines I between 2 and D+1 there are numbers of top dimensional cells in the direction I. Let " <<
+ "N denote product of the numbers in the lines between 2 and D. In the lines D+2 to D+2+N there are " <<
+ "filtrations of top dimensional cells. We assume that the cells are in the lexicographical order. See " <<
+ "CubicalOneSphere.txt or CubicalTwoSphere.txt for example.\n" << std::endl;
+
+ int p = 2;
+ double min_persistence = 0;
+
+ if (argc != 2) {
+ std::cerr << "Wrong number of parameters. Please provide the name of a file with a Perseus style bitmap at " <<
+ "the input. The program will now terminate.\n";
+ return 1;
+ }
+
+ typedef Gudhi::cubical_complex::Bitmap_cubical_complex_base<double> Bitmap_cubical_complex_base;
+ typedef Gudhi::cubical_complex::Bitmap_cubical_complex<Bitmap_cubical_complex_base> Bitmap_cubical_complex;
+ typedef Gudhi::persistent_cohomology::Field_Zp Field_Zp;
+ typedef Gudhi::persistent_cohomology::Persistent_cohomology<Bitmap_cubical_complex, Field_Zp> Persistent_cohomology;
+
+ Bitmap_cubical_complex b(argv[1]);
+
+ // Compute the persistence diagram of the complex
+ Persistent_cohomology pcoh(b);
+ pcoh.init_coefficients(p); // initializes the coefficient field for homology
+ pcoh.compute_persistent_cohomology(min_persistence);
+
+ std::stringstream ss;
+ ss << argv[1] << "_persistence";
+ std::ofstream out(ss.str().c_str());
+ pcoh.output_diagram(out);
+ out.close();
+
+ std::cout << "Result in file: " << ss.str().c_str() << "\n";
+
+ return 0;
+}
+