summaryrefslogtreecommitdiff
path: root/include/gudhi/Bitmap_cubical_complex/counter.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/gudhi/Bitmap_cubical_complex/counter.h')
-rw-r--r--include/gudhi/Bitmap_cubical_complex/counter.h144
1 files changed, 144 insertions, 0 deletions
diff --git a/include/gudhi/Bitmap_cubical_complex/counter.h b/include/gudhi/Bitmap_cubical_complex/counter.h
new file mode 100644
index 00000000..4b072f10
--- /dev/null
+++ b/include/gudhi/Bitmap_cubical_complex/counter.h
@@ -0,0 +1,144 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Pawel Dlotko
+ *
+ * Copyright (C) 2015 INRIA Sophia-Saclay (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef BITMAP_CUBICAL_COMPLEX_COUNTER_H_
+#define BITMAP_CUBICAL_COMPLEX_COUNTER_H_
+
+#include <iostream>
+#include <vector>
+
+namespace Gudhi {
+
+namespace cubical_complex {
+
+/**
+ * @brief This is an implementation of a counter being a vector of integers.
+ * @details The constructor of the class takes as an input two vectors W and V.
+ * It assumes that W < V coordinatewise.
+ * If the initial counter W is not specified, it is assumed to be vector of zeros.
+ * The class allows to iterate between W and V by using increment() function.
+ * The increment() function returns a bool value.
+ * The current counter reach the end counter V if the value returned by the increment function is FALSE.
+ * This class is needed for the implementation of a bitmapCubicalComplex.
+ **/
+class counter {
+ public:
+ /**
+ * Constructor of a counter class. It takes only the parameter which is the end value of the counter.
+ * The default beginning value is a vector of the same length as the endd, filled-in with zeros.
+ **/
+ counter(const std::vector<unsigned>& endd) : begin(endd.size(), 0), end(endd), current(endd.size(), 0) { }
+
+ /**
+ * Constructor of a counter class. It takes as the input beginn and end vector.
+ * It assumes that begin vector is lexicographically below the end vector.
+ **/
+ counter(const std::vector< unsigned >& beginn, const std::vector< unsigned >& endd) : begin(beginn), end(endd), current(endd.size(), 0) {
+ if (beginn.size() != endd.size())
+ throw "In constructor of a counter, begin and end vectors do not have the same size. Program terminate";
+ }
+
+ /**
+ * Function to increment the counter. If the value returned by the function is true,
+ * then the incrementation process was successful.
+ * If the value of the function is false, that means, that the counter have reached its end-value.
+ **/
+ bool increment() {
+ size_t i = 0;
+ while ((i != this->end.size()) && (this->current[i] == this->end[i])) {
+ ++i;
+ }
+
+ if (i == this->end.size())return false;
+ ++this->current[i];
+ for (size_t j = 0; j != i; ++j) {
+ this->current[j] = this->begin[j];
+ }
+ return true;
+ }
+
+ /**
+ * Function to check if we are at the end of counter.
+ **/
+ bool isFinal() {
+ for (size_t i = 0; i != this->current.size(); ++i) {
+ if (this->current[i] == this->end[i])return true;
+ }
+ return false;
+ }
+
+ /**
+ * Function required in the implementation of bitmapCubicalComplexWPeriodicBoundaryCondition.
+ * Its aim is to find an counter corresponding to the element the following
+ * boundary element is identified with when periodic boundary conditions are imposed.
+ **/
+ std::vector< unsigned > find_opposite(const std::vector< bool >& directionsForPeriodicBCond) {
+ std::vector< unsigned > result;
+ for (size_t i = 0; i != this->current.size(); ++i) {
+ if ((this->current[i] == this->end[i]) && (directionsForPeriodicBCond[i] == true)) {
+ result.push_back(this->begin[i]);
+ } else {
+ result.push_back(this->current[i]);
+ }
+ }
+ return result;
+ }
+
+ /**
+ * Function checking at which positions the current value of a counter is the final value of the counter.
+ **/
+ std::vector< bool > directions_of_finals() {
+ std::vector< bool > result;
+ for (size_t i = 0; i != this->current.size(); ++i) {
+ if (this->current[i] == this->end[i]) {
+ result.push_back(true);
+ } else {
+ result.push_back(false);
+ }
+ }
+ return result;
+ }
+
+ /**
+ * Function to write counter to the stream.
+ **/
+ friend std::ostream& operator<<(std::ostream& out, const counter& c) {
+ // std::cerr << "c.current.size() : " << c.current.size() << endl;
+ for (size_t i = 0; i != c.current.size(); ++i) {
+ out << c.current[i] << " ";
+ }
+ return out;
+ }
+
+ private:
+ std::vector< unsigned > begin;
+ std::vector< unsigned > end;
+ std::vector< unsigned > current;
+};
+
+} // namespace cubical_complex
+
+namespace Cubical_complex = cubical_complex;
+
+} // namespace Gudhi
+
+#endif // BITMAP_CUBICAL_COMPLEX_COUNTER_H_