summaryrefslogtreecommitdiff
path: root/include/gudhi/Graph_matching.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/gudhi/Graph_matching.h')
-rw-r--r--include/gudhi/Graph_matching.h174
1 files changed, 174 insertions, 0 deletions
diff --git a/include/gudhi/Graph_matching.h b/include/gudhi/Graph_matching.h
new file mode 100644
index 00000000..f51e22e9
--- /dev/null
+++ b/include/gudhi/Graph_matching.h
@@ -0,0 +1,174 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author: Francois Godi
+ *
+ * Copyright (C) 2015 INRIA
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef GRAPH_MATCHING_H_
+#define GRAPH_MATCHING_H_
+
+#include <gudhi/Neighbors_finder.h>
+
+#include <vector>
+#include <unordered_set>
+#include <algorithm>
+
+namespace Gudhi {
+
+namespace persistence_diagram {
+
+/** \internal \brief Structure representing a graph matching. The graph is a Persistence_diagrams_graph.
+ *
+ * \ingroup bottleneck_distance
+ */
+class Graph_matching {
+ public:
+ /** \internal \brief Constructor constructing an empty matching. */
+ explicit Graph_matching(Persistence_graph &g);
+ /** \internal \brief Is the matching perfect ? */
+ bool perfect() const;
+ /** \internal \brief Augments the matching with a maximal set of edge-disjoint shortest augmenting paths. */
+ bool multi_augment();
+ /** \internal \brief Sets the maximum length of the edges allowed to be added in the matching, 0 initially. */
+ void set_r(double r);
+
+ private:
+ Persistence_graph* gp;
+ double r;
+ /** \internal \brief Given a point from V, provides its matched point in U, null_point_index() if there isn't. */
+ std::vector<int> v_to_u;
+ /** \internal \brief All the unmatched points in U. */
+ std::unordered_set<int> unmatched_in_u;
+
+ /** \internal \brief Provides a Layered_neighbors_finder dividing the graph in layers. Basically a BFS. */
+ Layered_neighbors_finder layering() const;
+ /** \internal \brief Augments the matching with a simple path no longer than max_depth. Basically a DFS. */
+ bool augment(Layered_neighbors_finder & layered_nf, int u_start_index, int max_depth);
+ /** \internal \brief Update the matching with the simple augmenting path given as parameter. */
+ void update(std::vector<int> & path);
+};
+
+inline Graph_matching::Graph_matching(Persistence_graph& g)
+ : gp(&g), r(0.), v_to_u(g.size(), null_point_index()), unmatched_in_u(g.size()) {
+ for (int u_point_index = 0; u_point_index < g.size(); ++u_point_index)
+ unmatched_in_u.insert(u_point_index);
+}
+
+inline bool Graph_matching::perfect() const {
+ return unmatched_in_u.empty();
+}
+
+inline bool Graph_matching::multi_augment() {
+ if (perfect())
+ return false;
+ Layered_neighbors_finder layered_nf(layering());
+ int max_depth = layered_nf.vlayers_number()*2 - 1;
+ double rn = sqrt(gp->size());
+ // verification of a necessary criterion in order to shortcut if possible
+ if (max_depth < 0 || (unmatched_in_u.size() > rn && max_depth >= rn))
+ return false;
+ bool successful = false;
+ std::vector<int> tries(unmatched_in_u.cbegin(), unmatched_in_u.cend());
+ for (auto it = tries.cbegin(); it != tries.cend(); it++)
+ // 'augment' has side-effects which have to be always executed, don't change order
+ successful = augment(layered_nf, *it, max_depth) || successful;
+ return successful;
+}
+
+inline void Graph_matching::set_r(double r) {
+ this->r = r;
+}
+
+inline bool Graph_matching::augment(Layered_neighbors_finder & layered_nf, int u_start_index, int max_depth) {
+ // V vertices have at most one successor, thus when we backtrack from U we can directly pop_back 2 vertices.
+ std::vector<int> path;
+ path.emplace_back(u_start_index);
+ do {
+ if (static_cast<int> (path.size()) > max_depth) {
+ path.pop_back();
+ path.pop_back();
+ }
+ if (path.empty())
+ return false;
+ path.emplace_back(layered_nf.pull_near(path.back(), static_cast<int> (path.size()) / 2));
+ while (path.back() == null_point_index()) {
+ path.pop_back();
+ path.pop_back();
+ if (path.empty())
+ return false;
+ path.pop_back();
+ path.emplace_back(layered_nf.pull_near(path.back(), path.size() / 2));
+ }
+ path.emplace_back(v_to_u.at(path.back()));
+ } while (path.back() != null_point_index());
+ // if v_to_u.at(path.back()) has no successor, path.back() is an exposed vertex
+ path.pop_back();
+ update(path);
+ return true;
+}
+
+inline Layered_neighbors_finder Graph_matching::layering() const {
+ std::vector<int> u_vertices(unmatched_in_u.cbegin(), unmatched_in_u.cend());
+ std::vector<int> v_vertices;
+ Neighbors_finder nf(*gp, r);
+ for (int v_point_index = 0; v_point_index < gp->size(); ++v_point_index)
+ nf.add(v_point_index);
+ Layered_neighbors_finder layered_nf(*gp, r);
+ for (int layer = 0; !u_vertices.empty(); layer++) {
+ // one layer is one step in the BFS
+ for (auto it1 = u_vertices.cbegin(); it1 != u_vertices.cend(); ++it1) {
+ std::vector<int> u_succ(nf.pull_all_near(*it1));
+ for (auto it2 = u_succ.begin(); it2 != u_succ.end(); ++it2) {
+ layered_nf.add(*it2, layer);
+ v_vertices.emplace_back(*it2);
+ }
+ }
+ // When the above for finishes, we have progress of one half-step (from U to V) in the BFS
+ u_vertices.clear();
+ bool end = false;
+ for (auto it = v_vertices.cbegin(); it != v_vertices.cend(); it++)
+ if (v_to_u.at(*it) == null_point_index())
+ // we stop when a nearest exposed V vertex (from U exposed vertices) has been found
+ end = true;
+ else
+ u_vertices.emplace_back(v_to_u.at(*it));
+ // When the above for finishes, we have progress of one half-step (from V to U) in the BFS
+ if (end)
+ return layered_nf;
+ v_vertices.clear();
+ }
+ return layered_nf;
+}
+
+inline void Graph_matching::update(std::vector<int>& path) {
+ // Must return 1.
+ unmatched_in_u.erase(path.front());
+ for (auto it = path.cbegin(); it != path.cend(); ++it) {
+ // Be careful, the iterator is incremented twice each time
+ int tmp = *it;
+ v_to_u[*(++it)] = tmp;
+ }
+}
+
+
+} // namespace persistence_diagram
+
+} // namespace Gudhi
+
+#endif // GRAPH_MATCHING_H_