summaryrefslogtreecommitdiff
path: root/include/gudhi/Miniball.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'include/gudhi/Miniball.hpp')
-rw-r--r--include/gudhi/Miniball.hpp523
1 files changed, 523 insertions, 0 deletions
diff --git a/include/gudhi/Miniball.hpp b/include/gudhi/Miniball.hpp
new file mode 100644
index 00000000..ce6cbb5b
--- /dev/null
+++ b/include/gudhi/Miniball.hpp
@@ -0,0 +1,523 @@
+// Copright (C) 1999-2013, Bernd Gaertner
+// $Rev: 3581 $
+//
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, either version 3 of the License, or
+// (at your option) any later version.
+
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+
+// You should have received a copy of the GNU General Public License
+// along with this program. If not, see <http://www.gnu.org/licenses/>.
+//
+// Contact:
+// --------
+// Bernd Gaertner
+// Institute of Theoretical Computer Science
+// ETH Zuerich
+// CAB G31.1
+// CH-8092 Zuerich, Switzerland
+// http://www.inf.ethz.ch/personal/gaertner
+
+#ifndef MINIBALL_HPP_
+#define MINIBALL_HPP_
+
+#include <cassert>
+#include <algorithm>
+#include <list>
+#include <ctime>
+#include <limits>
+
+namespace Gudhi {
+
+namespace Miniball {
+
+ // Global Functions
+ // ================
+ template <typename NT>
+ inline NT mb_sqr (NT r) {return r*r;}
+
+ // Functors
+ // ========
+
+ // functor to map a point iterator to the corresponding coordinate iterator;
+ // generic version for points whose coordinate containers have begin()
+ template < typename Pit_, typename Cit_ >
+ struct CoordAccessor {
+ typedef Pit_ Pit;
+ typedef Cit_ Cit;
+ inline Cit operator() (Pit it) const { return (*it).begin(); }
+ };
+
+ // partial specialization for points whose coordinate containers are arrays
+ template < typename Pit_, typename Cit_ >
+ struct CoordAccessor<Pit_, Cit_*> {
+ typedef Pit_ Pit;
+ typedef Cit_* Cit;
+ inline Cit operator() (Pit it) const { return *it; }
+ };
+
+ // Class Declaration
+ // =================
+
+ template <typename CoordAccessor>
+ class Miniball {
+ private:
+ // types
+ // The iterator type to go through the input points
+ typedef typename CoordAccessor::Pit Pit;
+ // The iterator type to go through the coordinates of a single point.
+ typedef typename CoordAccessor::Cit Cit;
+ // The coordinate type
+ typedef typename std::iterator_traits<Cit>::value_type NT;
+ // The iterator to go through the support points
+ typedef typename std::list<Pit>::iterator Sit;
+
+ // data members...
+ const int d; // dimension
+ Pit points_begin;
+ Pit points_end;
+ CoordAccessor coord_accessor;
+ double time;
+ const NT nt0; // NT(0)
+
+ //...for the algorithms
+ std::list<Pit> L;
+ Sit support_end;
+ int fsize; // number of forced points
+ int ssize; // number of support points
+
+ // ...for the ball updates
+ NT* current_c;
+ NT current_sqr_r;
+ NT** c;
+ NT* sqr_r;
+
+ // helper arrays
+ NT* q0;
+ NT* z;
+ NT* f;
+ NT** v;
+ NT** a;
+
+ public:
+ // The iterator type to go through the support points
+ typedef typename std::list<Pit>::const_iterator SupportPointIterator;
+
+ // PRE: [begin, end) is a nonempty range
+ // POST: computes the smallest enclosing ball of the points in the range
+ // [begin, end); the functor a maps a point iterator to an iterator
+ // through the d coordinates of the point
+ Miniball (int d_, Pit begin, Pit end, CoordAccessor ca = CoordAccessor());
+
+ // POST: returns a pointer to the first element of an array that holds
+ // the d coordinates of the center of the computed ball
+ const NT* center () const;
+
+ // POST: returns the squared radius of the computed ball
+ NT squared_radius () const;
+
+ // POST: returns the number of support points of the computed ball;
+ // the support points form a minimal set with the same smallest
+ // enclosing ball as the input set; in particular, the support
+ // points are on the boundary of the computed ball, and their
+ // number is at most d+1
+ int nr_support_points () const;
+
+ // POST: returns an iterator to the first support point
+ SupportPointIterator support_points_begin () const;
+
+ // POST: returns a past-the-end iterator for the range of support points
+ SupportPointIterator support_points_end () const;
+
+ // POST: returns the maximum excess of any input point w.r.t. the computed
+ // ball, divided by the squared radius of the computed ball. The
+ // excess of a point is the difference between its squared distance
+ // from the center and the squared radius; Ideally, the return value
+ // is 0. subopt is set to the absolute value of the most negative
+ // coefficient in the affine combination of the support points that
+ // yields the center. Ideally, this is a convex combination, and there
+ // is no negative coefficient in which case subopt is set to 0.
+ NT relative_error (NT& subopt) const;
+
+ // POST: return true if the relative error is at most tol, and the
+ // suboptimality is 0; the default tolerance is 10 times the
+ // coordinate type's machine epsilon
+ bool is_valid (NT tol = NT(10) * std::numeric_limits<NT>::epsilon()) const;
+
+ // POST: returns the time in seconds taken by the constructor call for
+ // computing the smallest enclosing ball
+ double get_time() const;
+
+ // POST: deletes dynamically allocated arrays
+ ~Miniball();
+
+ private:
+ void mtf_mb (Sit n);
+ void mtf_move_to_front (Sit j);
+ void pivot_mb (Pit n);
+ void pivot_move_to_front (Pit j);
+ NT excess (Pit pit) const;
+ void pop ();
+ bool push (Pit pit);
+ NT suboptimality () const;
+ void create_arrays();
+ void delete_arrays();
+ };
+
+ // Class Definition
+ // ================
+ template <typename CoordAccessor>
+ Miniball<CoordAccessor>::Miniball (int d_, Pit begin, Pit end,
+ CoordAccessor ca)
+ : d (d_),
+ points_begin (begin),
+ points_end (end),
+ coord_accessor (ca),
+ time (clock()),
+ nt0 (NT(0)),
+ L(),
+ support_end (L.begin()),
+ fsize(0),
+ ssize(0),
+ current_c (NULL),
+ current_sqr_r (NT(-1)),
+ c (NULL),
+ sqr_r (NULL),
+ q0 (NULL),
+ z (NULL),
+ f (NULL),
+ v (NULL),
+ a (NULL)
+ {
+ assert (points_begin != points_end);
+ create_arrays();
+
+ // set initial center
+ for (int j=0; j<d; ++j) c[0][j] = nt0;
+ current_c = c[0];
+
+ // compute miniball
+ pivot_mb (points_end);
+
+ // update time
+ time = (clock() - time) / CLOCKS_PER_SEC;
+ }
+
+ template <typename CoordAccessor>
+ Miniball<CoordAccessor>::~Miniball()
+ {
+ delete_arrays();
+ }
+
+ template <typename CoordAccessor>
+ void Miniball<CoordAccessor>::create_arrays()
+ {
+ c = new NT*[d+1];
+ v = new NT*[d+1];
+ a = new NT*[d+1];
+ for (int i=0; i<d+1; ++i) {
+ c[i] = new NT[d];
+ v[i] = new NT[d];
+ a[i] = new NT[d];
+ }
+ sqr_r = new NT[d+1];
+ q0 = new NT[d];
+ z = new NT[d+1];
+ f = new NT[d+1];
+ }
+
+ template <typename CoordAccessor>
+ void Miniball<CoordAccessor>::delete_arrays()
+ {
+ delete[] f;
+ delete[] z;
+ delete[] q0;
+ delete[] sqr_r;
+ for (int i=0; i<d+1; ++i) {
+ delete[] a[i];
+ delete[] v[i];
+ delete[] c[i];
+ }
+ delete[] a;
+ delete[] v;
+ delete[] c;
+ }
+
+ template <typename CoordAccessor>
+ const typename Miniball<CoordAccessor>::NT*
+ Miniball<CoordAccessor>::center () const
+ {
+ return current_c;
+ }
+
+ template <typename CoordAccessor>
+ typename Miniball<CoordAccessor>::NT
+ Miniball<CoordAccessor>::squared_radius () const
+ {
+ return current_sqr_r;
+ }
+
+ template <typename CoordAccessor>
+ int Miniball<CoordAccessor>::nr_support_points () const
+ {
+ assert (ssize < d+2);
+ return ssize;
+ }
+
+ template <typename CoordAccessor>
+ typename Miniball<CoordAccessor>::SupportPointIterator
+ Miniball<CoordAccessor>::support_points_begin () const
+ {
+ return L.begin();
+ }
+
+ template <typename CoordAccessor>
+ typename Miniball<CoordAccessor>::SupportPointIterator
+ Miniball<CoordAccessor>::support_points_end () const
+ {
+ return support_end;
+ }
+
+ template <typename CoordAccessor>
+ typename Miniball<CoordAccessor>::NT
+ Miniball<CoordAccessor>::relative_error (NT& subopt) const
+ {
+ NT e, max_e = nt0;
+ // compute maximum absolute excess of support points
+ for (SupportPointIterator it = support_points_begin();
+ it != support_points_end(); ++it) {
+ e = excess (*it);
+ if (e < nt0) e = -e;
+ if (e > max_e) {
+ max_e = e;
+ }
+ }
+ // compute maximum excess of any point
+ for (Pit i = points_begin; i != points_end; ++i)
+ if ((e = excess (i)) > max_e)
+ max_e = e;
+
+ subopt = suboptimality();
+ assert (current_sqr_r > nt0 || max_e == nt0);
+ return (current_sqr_r == nt0 ? nt0 : max_e / current_sqr_r);
+ }
+
+ template <typename CoordAccessor>
+ bool Miniball<CoordAccessor>::is_valid (NT tol) const
+ {
+ NT suboptimality;
+ return ( (relative_error (suboptimality) <= tol) && (suboptimality == 0) );
+ }
+
+ template <typename CoordAccessor>
+ double Miniball<CoordAccessor>::get_time() const
+ {
+ return time;
+ }
+
+ template <typename CoordAccessor>
+ void Miniball<CoordAccessor>::mtf_mb (Sit n)
+ {
+ // Algorithm 1: mtf_mb (L_{n-1}, B), where L_{n-1} = [L.begin, n)
+ // B: the set of forced points, defining the current ball
+ // S: the superset of support points computed by the algorithm
+ // --------------------------------------------------------------
+ // from B. Gaertner, Fast and Robust Smallest Enclosing Balls, ESA 1999,
+ // http://www.inf.ethz.ch/personal/gaertner/texts/own_work/esa99_final.pdf
+
+ // PRE: B = S
+ assert (fsize == ssize);
+
+ support_end = L.begin();
+ if ((fsize) == d+1) return;
+
+ // incremental construction
+ for (Sit i = L.begin(); i != n;)
+ {
+ // INV: (support_end - L.begin() == |S|-|B|)
+ assert (std::distance (L.begin(), support_end) == ssize - fsize);
+
+ Sit j = i++;
+ if (excess(*j) > nt0)
+ if (push(*j)) { // B := B + p_i
+ mtf_mb (j); // mtf_mb (L_{i-1}, B + p_i)
+ pop(); // B := B - p_i
+ mtf_move_to_front(j);
+ }
+ }
+ // POST: the range [L.begin(), support_end) stores the set S\B
+ }
+
+ template <typename CoordAccessor>
+ void Miniball<CoordAccessor>::mtf_move_to_front (Sit j)
+ {
+ if (support_end == j)
+ support_end++;
+ L.splice (L.begin(), L, j);
+ }
+
+ template <typename CoordAccessor>
+ void Miniball<CoordAccessor>::pivot_mb (Pit n)
+ {
+ // Algorithm 2: pivot_mb (L_{n-1}), where L_{n-1} = [L.begin, n)
+ // --------------------------------------------------------------
+ // from B. Gaertner, Fast and Robust Smallest Enclosing Balls, ESA 1999,
+ // http://www.inf.ethz.ch/personal/gaertner/texts/own_work/esa99_final.pdf
+ NT old_sqr_r;
+ const NT* c;
+ Pit pivot, k;
+ NT e, max_e, sqr_r;
+ Cit p;
+ do {
+ old_sqr_r = current_sqr_r;
+ sqr_r = current_sqr_r;
+
+ pivot = points_begin;
+ max_e = nt0;
+ for (k = points_begin; k != n; ++k) {
+ p = coord_accessor(k);
+ e = -sqr_r;
+ c = current_c;
+ for (int j=0; j<d; ++j)
+ e += mb_sqr<NT>(*p++-*c++);
+ if (e > max_e) {
+ max_e = e;
+ pivot = k;
+ }
+ }
+
+ if (max_e > nt0) {
+ // check if the pivot is already contained in the support set
+ if (std::find(L.begin(), support_end, pivot) == support_end) {
+ assert (fsize == 0);
+ if (push (pivot)) {
+ mtf_mb(support_end);
+ pop();
+ pivot_move_to_front(pivot);
+ }
+ }
+ }
+ } while (old_sqr_r < current_sqr_r);
+ }
+
+ template <typename CoordAccessor>
+ void Miniball<CoordAccessor>::pivot_move_to_front (Pit j)
+ {
+ L.push_front(j);
+ if (std::distance(L.begin(), support_end) == d+2)
+ support_end--;
+ }
+
+ template <typename CoordAccessor>
+ inline typename Miniball<CoordAccessor>::NT
+ Miniball<CoordAccessor>::excess (Pit pit) const
+ {
+ Cit p = coord_accessor(pit);
+ NT e = -current_sqr_r;
+ NT* c = current_c;
+ for (int k=0; k<d; ++k){
+ e += mb_sqr<NT>(*p++-*c++);
+ }
+ return e;
+ }
+
+ template <typename CoordAccessor>
+ void Miniball<CoordAccessor>::pop ()
+ {
+ --fsize;
+ }
+
+ template <typename CoordAccessor>
+ bool Miniball<CoordAccessor>::push (Pit pit)
+ {
+ int i, j;
+ NT eps = mb_sqr<NT>(std::numeric_limits<NT>::epsilon());
+
+ Cit cit = coord_accessor(pit);
+ Cit p = cit;
+
+ if (fsize==0) {
+ for (i=0; i<d; ++i)
+ q0[i] = *p++;
+ for (i=0; i<d; ++i)
+ c[0][i] = q0[i];
+ sqr_r[0] = nt0;
+ }
+ else {
+ // set v_fsize to Q_fsize
+ for (i=0; i<d; ++i)
+ //v[fsize][i] = p[i]-q0[i];
+ v[fsize][i] = *p++-q0[i];
+
+ // compute the a_{fsize,i}, i< fsize
+ for (i=1; i<fsize; ++i) {
+ a[fsize][i] = nt0;
+ for (j=0; j<d; ++j)
+ a[fsize][i] += v[i][j] * v[fsize][j];
+ a[fsize][i]*=(2/z[i]);
+ }
+
+ // update v_fsize to Q_fsize-\bar{Q}_fsize
+ for (i=1; i<fsize; ++i) {
+ for (j=0; j<d; ++j)
+ v[fsize][j] -= a[fsize][i]*v[i][j];
+ }
+
+ // compute z_fsize
+ z[fsize]=nt0;
+ for (j=0; j<d; ++j)
+ z[fsize] += mb_sqr<NT>(v[fsize][j]);
+ z[fsize]*=2;
+
+ // reject push if z_fsize too small
+ if (z[fsize]<eps*current_sqr_r) {
+ return false;
+ }
+
+ // update c, sqr_r
+ p=cit;
+ NT e = -sqr_r[fsize-1];
+ for (i=0; i<d; ++i)
+ e += mb_sqr<NT>(*p++-c[fsize-1][i]);
+ f[fsize]=e/z[fsize];
+
+ for (i=0; i<d; ++i)
+ c[fsize][i] = c[fsize-1][i]+f[fsize]*v[fsize][i];
+ sqr_r[fsize] = sqr_r[fsize-1] + e*f[fsize]/2;
+ }
+ current_c = c[fsize];
+ current_sqr_r = sqr_r[fsize];
+ ssize = ++fsize;
+ return true;
+ }
+
+ template <typename CoordAccessor>
+ typename Miniball<CoordAccessor>::NT
+ Miniball<CoordAccessor>::suboptimality () const
+ {
+ NT* l = new NT[d+1];
+ NT min_l = nt0;
+ l[0] = NT(1);
+ for (int i=ssize-1; i>0; --i) {
+ l[i] = f[i];
+ for (int k=ssize-1; k>i; --k)
+ l[i]-=a[k][i]*l[k];
+ if (l[i] < min_l) min_l = l[i];
+ l[0] -= l[i];
+ }
+ if (l[0] < min_l) min_l = l[0];
+ delete[] l;
+ if (min_l < nt0)
+ return -min_l;
+ return nt0;
+ }
+} // namespace Miniball
+
+} // namespace Gudhi
+
+#endif // MINIBALL_HPP_