summaryrefslogtreecommitdiff
path: root/include/gudhi/Persistence_graph.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/gudhi/Persistence_graph.h')
-rw-r--r--include/gudhi/Persistence_graph.h188
1 files changed, 188 insertions, 0 deletions
diff --git a/include/gudhi/Persistence_graph.h b/include/gudhi/Persistence_graph.h
new file mode 100644
index 00000000..44f4b827
--- /dev/null
+++ b/include/gudhi/Persistence_graph.h
@@ -0,0 +1,188 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author: Francois Godi
+ *
+ * Copyright (C) 2015 INRIA
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef PERSISTENCE_GRAPH_H_
+#define PERSISTENCE_GRAPH_H_
+
+#include <gudhi/Internal_point.h>
+
+#ifdef GUDHI_USE_TBB
+#include <tbb/parallel_sort.h>
+#endif
+
+#include <vector>
+#include <algorithm>
+#include <limits> // for numeric_limits
+
+namespace Gudhi {
+
+namespace persistence_diagram {
+
+/** \internal \brief Structure representing an euclidean bipartite graph containing
+ * the points from the two persistence diagrams (including the projections).
+ *
+ * \ingroup bottleneck_distance
+ */
+class Persistence_graph {
+ public:
+ /** \internal \brief Constructor taking 2 PersistenceDiagrams (concept) as parameters. */
+ template<typename Persistence_diagram1, typename Persistence_diagram2>
+ Persistence_graph(const Persistence_diagram1& diag1, const Persistence_diagram2& diag2, double e);
+ /** \internal \brief Is the given point from U the projection of a point in V ? */
+ bool on_the_u_diagonal(int u_point_index) const;
+ /** \internal \brief Is the given point from V the projection of a point in U ? */
+ bool on_the_v_diagonal(int v_point_index) const;
+ /** \internal \brief Given a point from V, returns the corresponding (projection or projector) point in U. */
+ int corresponding_point_in_u(int v_point_index) const;
+ /** \internal \brief Given a point from U, returns the corresponding (projection or projector) point in V. */
+ int corresponding_point_in_v(int u_point_index) const;
+ /** \internal \brief Given a point from U and a point from V, returns the distance between those points. */
+ double distance(int u_point_index, int v_point_index) const;
+ /** \internal \brief Returns size = |U| = |V|. */
+ int size() const;
+ /** \internal \brief Is there as many infinite points (alive components) in both diagrams ? */
+ double bottleneck_alive() const;
+ /** \internal \brief Returns the O(n^2) sorted distances between the points. */
+ std::vector<double> sorted_distances() const;
+ /** \internal \brief Returns an upper bound for the diameter of the convex hull of all non infinite points */
+ double diameter_bound() const;
+ /** \internal \brief Returns the corresponding internal point */
+ Internal_point get_u_point(int u_point_index) const;
+ /** \internal \brief Returns the corresponding internal point */
+ Internal_point get_v_point(int v_point_index) const;
+
+ private:
+ std::vector<Internal_point> u;
+ std::vector<Internal_point> v;
+ double b_alive;
+};
+
+template<typename Persistence_diagram1, typename Persistence_diagram2>
+Persistence_graph::Persistence_graph(const Persistence_diagram1 &diag1,
+ const Persistence_diagram2 &diag2, double e)
+ : u(), v(), b_alive(0.) {
+ std::vector<double> u_alive;
+ std::vector<double> v_alive;
+ for (auto it = std::begin(diag1); it != std::end(diag1); ++it) {
+ if (std::get<1>(*it) == std::numeric_limits<double>::infinity())
+ u_alive.push_back(std::get<0>(*it));
+ else if (std::get<1>(*it) - std::get<0>(*it) > e)
+ u.push_back(Internal_point(std::get<0>(*it), std::get<1>(*it), u.size()));
+ }
+ for (auto it = std::begin(diag2); it != std::end(diag2); ++it) {
+ if (std::get<1>(*it) == std::numeric_limits<double>::infinity())
+ v_alive.push_back(std::get<0>(*it));
+ else if (std::get<1>(*it) - std::get<0>(*it) > e)
+ v.push_back(Internal_point(std::get<0>(*it), std::get<1>(*it), v.size()));
+ }
+ if (u.size() < v.size())
+ swap(u, v);
+ std::sort(u_alive.begin(), u_alive.end());
+ std::sort(v_alive.begin(), v_alive.end());
+ if (u_alive.size() != v_alive.size()) {
+ b_alive = std::numeric_limits<double>::infinity();
+ } else {
+ for (auto it_u = u_alive.cbegin(), it_v = v_alive.cbegin(); it_u != u_alive.cend(); ++it_u, ++it_v)
+ b_alive = std::max(b_alive, std::fabs(*it_u - *it_v));
+ }
+}
+
+inline bool Persistence_graph::on_the_u_diagonal(int u_point_index) const {
+ return u_point_index >= static_cast<int> (u.size());
+}
+
+inline bool Persistence_graph::on_the_v_diagonal(int v_point_index) const {
+ return v_point_index >= static_cast<int> (v.size());
+}
+
+inline int Persistence_graph::corresponding_point_in_u(int v_point_index) const {
+ return on_the_v_diagonal(v_point_index) ?
+ v_point_index - static_cast<int> (v.size()) : v_point_index + static_cast<int> (u.size());
+}
+
+inline int Persistence_graph::corresponding_point_in_v(int u_point_index) const {
+ return on_the_u_diagonal(u_point_index) ?
+ u_point_index - static_cast<int> (u.size()) : u_point_index + static_cast<int> (v.size());
+}
+
+inline double Persistence_graph::distance(int u_point_index, int v_point_index) const {
+ if (on_the_u_diagonal(u_point_index) && on_the_v_diagonal(v_point_index))
+ return 0.;
+ Internal_point p_u = get_u_point(u_point_index);
+ Internal_point p_v = get_v_point(v_point_index);
+ return std::max(std::fabs(p_u.x() - p_v.x()), std::fabs(p_u.y() - p_v.y()));
+}
+
+inline int Persistence_graph::size() const {
+ return static_cast<int> (u.size() + v.size());
+}
+
+inline double Persistence_graph::bottleneck_alive() const {
+ return b_alive;
+}
+
+inline std::vector<double> Persistence_graph::sorted_distances() const {
+ std::vector<double> distances;
+ distances.push_back(0.); // for empty diagrams
+ for (int u_point_index = 0; u_point_index < size(); ++u_point_index) {
+ distances.push_back(distance(u_point_index, corresponding_point_in_v(u_point_index)));
+ for (int v_point_index = 0; v_point_index < size(); ++v_point_index)
+ distances.push_back(distance(u_point_index, v_point_index));
+ }
+#ifdef GUDHI_USE_TBB
+ tbb::parallel_sort(distances.begin(), distances.end());
+#else
+ std::sort(distances.begin(), distances.end());
+#endif
+ return distances;
+}
+
+inline Internal_point Persistence_graph::get_u_point(int u_point_index) const {
+ if (!on_the_u_diagonal(u_point_index))
+ return u.at(u_point_index);
+ Internal_point projector = v.at(corresponding_point_in_v(u_point_index));
+ double m = (projector.x() + projector.y()) / 2.;
+ return Internal_point(m, m, u_point_index);
+}
+
+inline Internal_point Persistence_graph::get_v_point(int v_point_index) const {
+ if (!on_the_v_diagonal(v_point_index))
+ return v.at(v_point_index);
+ Internal_point projector = u.at(corresponding_point_in_u(v_point_index));
+ double m = (projector.x() + projector.y()) / 2.;
+ return Internal_point(m, m, v_point_index);
+}
+
+inline double Persistence_graph::diameter_bound() const {
+ double max = 0.;
+ for (auto it = u.cbegin(); it != u.cend(); it++)
+ max = std::max(max, it->y());
+ for (auto it = v.cbegin(); it != v.cend(); it++)
+ max = std::max(max, it->y());
+ return max;
+}
+
+} // namespace persistence_diagram
+
+} // namespace Gudhi
+
+#endif // PERSISTENCE_GRAPH_H_