summaryrefslogtreecommitdiff
path: root/include/gudhi/Persistence_heat_maps.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/gudhi/Persistence_heat_maps.h')
-rw-r--r--include/gudhi/Persistence_heat_maps.h919
1 files changed, 0 insertions, 919 deletions
diff --git a/include/gudhi/Persistence_heat_maps.h b/include/gudhi/Persistence_heat_maps.h
deleted file mode 100644
index 35e51e63..00000000
--- a/include/gudhi/Persistence_heat_maps.h
+++ /dev/null
@@ -1,919 +0,0 @@
-/* This file is part of the Gudhi Library. The Gudhi library
- * (Geometric Understanding in Higher Dimensions) is a generic C++
- * library for computational topology.
- *
- * Author(s): Pawel Dlotko
- *
- * Copyright (C) 2016 Inria
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
-
-#ifndef PERSISTENCE_HEAT_MAPS_H_
-#define PERSISTENCE_HEAT_MAPS_H_
-
-// gudhi include
-#include <gudhi/read_persistence_from_file.h>
-#include <gudhi/common_persistence_representations.h>
-
-// standard include
-#include <vector>
-#include <sstream>
-#include <iostream>
-#include <cmath>
-#include <limits>
-#include <algorithm>
-#include <utility>
-#include <string>
-#include <functional>
-
-namespace Gudhi {
-namespace Persistence_representations {
-
-/**
- * This is a simple procedure to create n by n (or 2*pixel_radius times 2*pixel_radius cubical approximation of a
- *Gaussian kernel.
-**/
-std::vector<std::vector<double> > create_Gaussian_filter(size_t pixel_radius, double sigma) {
- bool dbg = false;
- // we are computing the kernel mask to 2 standard deviations away from the center. We discretize it in a grid of a
- // size 2*pixel_radius times 2*pixel_radius.
-
- double r = 0;
- double sigma_sqr = sigma * sigma;
-
- // sum is for normalization
- double sum = 0;
-
- // initialization of a kernel:
- std::vector<std::vector<double> > kernel(2 * pixel_radius + 1);
- for (size_t i = 0; i != kernel.size(); ++i) {
- std::vector<double> v(2 * pixel_radius + 1, 0);
- kernel[i] = v;
- }
-
- if (dbg) {
- std::cerr << "Kernel initialize \n";
- std::cerr << "pixel_radius : " << pixel_radius << std::endl;
- std::cerr << "kernel.size() : " << kernel.size() << std::endl;
- getchar();
- }
-
- for (int x = -pixel_radius; x <= static_cast<int>(pixel_radius); x++) {
- for (int y = -pixel_radius; y <= static_cast<int>(pixel_radius); y++) {
- double real_x = 2 * sigma * x / pixel_radius;
- double real_y = 2 * sigma * y / pixel_radius;
- r = sqrt(real_x * real_x + real_y * real_y);
- kernel[x + pixel_radius][y + pixel_radius] = (exp(-(r * r) / sigma_sqr)) / (3.141592 * sigma_sqr);
- sum += kernel[x + pixel_radius][y + pixel_radius];
- }
- }
-
- // normalize the kernel
- for (size_t i = 0; i != kernel.size(); ++i) {
- for (size_t j = 0; j != kernel[i].size(); ++j) {
- kernel[i][j] /= sum;
- }
- }
-
- if (dbg) {
- std::cerr << "Here is the kernel : \n";
- for (size_t i = 0; i != kernel.size(); ++i) {
- for (size_t j = 0; j != kernel[i].size(); ++j) {
- std::cerr << kernel[i][j] << " ";
- }
- std::cerr << std::endl;
- }
- }
- return kernel;
-}
-
-/*
-* There are various options to scale the points depending on their location. One can for instance:
-* (1) do nothing (scale all of them with the weight 1), as in the function constant_function
-* (2) Scale them by the distance to the diagonal. This is implemented in function
-* (3) Scale them with the square of their distance to diagonal. This is implemented in function
-* (4) Scale them with
-*/
-
-/**
- * This is one of a scaling functions used to weight points depending on their persistence and/or location in the
- *diagram.
- * This particular functionality is a function which always assign value 1 to a point in the diagram.
-**/
-class constant_scaling_function {
- public:
- double operator()(const std::pair<double, double>& point_in_diagram) { return 1; }
-};
-
-/**
- * This is one of a scaling functions used to weight points depending on their persistence and/or location in the
- *diagram.
- * The scaling given by this function to a point (b,d) is Euclidean distance of (b,d) from diagonal.
-**/
-class distance_from_diagonal_scaling {
- public:
- double operator()(const std::pair<double, double>& point_in_diagram) {
- // (point_in_diagram.first+point_in_diagram.second)/2.0
- return sqrt(pow((point_in_diagram.first - (point_in_diagram.first + point_in_diagram.second) / 2.0), 2) +
- pow((point_in_diagram.second - (point_in_diagram.first + point_in_diagram.second) / 2.0), 2));
- }
-};
-
-/**
- * This is one of a scaling functions used to weight points depending on their persistence and/or location in the
- *diagram.
- * The scaling given by this function to a point (b,d) is a square of Euclidean distance of (b,d) from diagonal.
-**/
-class squared_distance_from_diagonal_scaling {
- public:
- double operator()(const std::pair<double, double>& point_in_diagram) {
- return pow((point_in_diagram.first - (point_in_diagram.first + point_in_diagram.second) / 2.0), 2) +
- pow((point_in_diagram.second - (point_in_diagram.first + point_in_diagram.second) / 2.0), 2);
- }
-};
-
-/**
- * This is one of a scaling functions used to weight points depending on their persistence and/or location in the
- *diagram.
- * The scaling given by this function to a point (b,d) is an arctan of a persistence of a point (i.e. arctan( b-d ).
-**/
-class arc_tan_of_persistence_of_point {
- public:
- double operator()(const std::pair<double, double>& point_in_diagram) {
- return atan(point_in_diagram.second - point_in_diagram.first);
- }
-};
-
-/**
- * This is one of a scaling functions used to weight points depending on their persistence and/or location in the
- *diagram.
- * This scaling function do not only depend on a point (p,d) in the diagram, but it depends on the whole diagram.
- * The longest persistence pair get a scaling 1. Any other pair get a scaling belong to [0,1], which is proportional
- * to the persistence of that pair.
-**/
-class weight_by_setting_maximal_interval_to_have_length_one {
- public:
- weight_by_setting_maximal_interval_to_have_length_one(double len) : letngth_of_maximal_interval(len) {}
- double operator()(const std::pair<double, double>& point_in_diagram) {
- return (point_in_diagram.second - point_in_diagram.first) / this->letngth_of_maximal_interval;
- }
-
- private:
- double letngth_of_maximal_interval;
-};
-
-/**
- * \class Persistence_heat_maps Persistence_heat_maps.h gudhi/Persistence_heat_maps.h
- * \brief A class implementing persistence heat maps.
- *
- * \ingroup Persistence_representations
-**/
-
-// This class implements the following concepts: Vectorized_topological_data, Topological_data_with_distances,
-// Real_valued_topological_data, Topological_data_with_averages, Topological_data_with_scalar_product
-template <typename Scalling_of_kernels = constant_scaling_function>
-class Persistence_heat_maps {
- public:
- /**
- * The default constructor. A scaling function from the diagonal is set up to a constant function. The image is not
- *erased below the diagonal. The Gaussian have diameter 5.
- **/
- Persistence_heat_maps() {
- Scalling_of_kernels f;
- this->f = f;
- this->erase_below_diagonal = false;
- this->min_ = this->max_ = 0;
- this->set_up_parameters_for_basic_classes();
- }
-
- /**
- * Construction that takes at the input the following parameters:
- * (1) A vector of pairs of doubles (representing persistence intervals). All other parameters are optional. They are:
- * (2) a Gaussian filter generated by create_Gaussian_filter filter (the default value of this variable is a Gaussian
- *filter of a radius 5),
- * (3) a boolean value which determines if the area of image below diagonal should, or should not be erased (it will
- *be erased by default).
- * (4) a number of pixels in each direction (set to 1000 by default).
- * (5) a min x and y value of points that are to be taken into account. By default it is set to
- *std::numeric_limits<double>::max(), in which case the program compute the values based on the data,
- * (6) a max x and y value of points that are to be taken into account. By default it is set to
- *std::numeric_limits<double>::max(), in which case the program compute the values based on the data.
- **/
- Persistence_heat_maps(const std::vector<std::pair<double, double> >& interval,
- std::vector<std::vector<double> > filter = create_Gaussian_filter(5, 1),
- bool erase_below_diagonal = false, size_t number_of_pixels = 1000,
- double min_ = std::numeric_limits<double>::max(),
- double max_ = std::numeric_limits<double>::max());
-
- /**
- * Construction that takes at the input a name of a file with persistence intervals, a filter (radius 5 by
- *default), a scaling function (constant by default), a boolean value which determines if the area of image below
- *diagonal should, or should not be erased (should by default). The next parameter is the number of pixels in each
- *direction (set to 1000 by default) and min and max values of images (both set to std::numeric_limits<double>::max()
- *by default. If this is the case, the program will pick the right values based on the data).
- **/
- /**
- * Construction that takes at the input the following parameters:
- * (1) A name of a file with persistence intervals. The file should be readable by the function
- *read_persistence_intervals_in_one_dimension_from_file. All other parameters are optional. They are:
- * (2) a Gaussian filter generated by create_Gaussian_filter filter (the default value of this variable is a Gaussian
- *filter of a radius 5),
- * (3) a boolean value which determines if the area of image below diagonal should, or should not be erased (it will
- *be erased by default).
- * (4) a number of pixels in each direction (set to 1000 by default).
- * (5) a min x and y value of points that are to be taken into account. By default it is set to
- *std::numeric_limits<double>::max(), in which case the program compute the values based on the data,
- * (6) a max x and y value of points that are to be taken into account. By default it is set to
- *std::numeric_limits<double>::max(), in which case the program compute the values based on the data.
- **/
- Persistence_heat_maps(const char* filename, std::vector<std::vector<double> > filter = create_Gaussian_filter(5, 1),
- bool erase_below_diagonal = false, size_t number_of_pixels = 1000,
- double min_ = std::numeric_limits<double>::max(),
- double max_ = std::numeric_limits<double>::max(),
- unsigned dimension = std::numeric_limits<unsigned>::max());
-
- /**
- * Compute a mean value of a collection of heat maps and store it in the current object. Note that all the persistence
- *maps send in a vector to this procedure need to have the same parameters.
- * If this is not the case, the program will throw an exception.
- **/
- void compute_mean(const std::vector<Persistence_heat_maps*>& maps);
-
- /**
- * Compute a median value of a collection of heat maps and store it in the current object. Note that all the
- *persistence maps send in a vector to this procedure need to have the same parameters.
- * If this is not the case, the program will throw an exception.
- **/
- void compute_median(const std::vector<Persistence_heat_maps*>& maps);
-
- /**
- * Compute a percentage of active (i.e) values above the cutoff of a collection of heat maps.
- **/
- void compute_percentage_of_active(const std::vector<Persistence_heat_maps*>& maps, size_t cutoff = 1);
-
- // put to file subroutine
- /**
- * The function outputs the persistence image to a text file. The format as follow:
- * In the first line, the values min and max of the image are stored
- * In the next lines, we have the persistence images in a form of a bitmap image.
- **/
- void print_to_file(const char* filename) const;
-
- /**
- * A function that load a heat map from file to the current object (and erase whatever was stored in the current
- *object before).
- **/
- void load_from_file(const char* filename);
-
- /**
- * The procedure checks if min_, max_ and this->heat_maps sizes are the same.
- **/
- inline bool check_if_the_same(const Persistence_heat_maps& second) const {
- bool dbg = false;
- if (this->heat_map.size() != second.heat_map.size()) {
- if (dbg)
- std::cerr << "this->heat_map.size() : " << this->heat_map.size()
- << " \n second.heat_map.size() : " << second.heat_map.size() << std::endl;
- return false;
- }
- if (this->min_ != second.min_) {
- if (dbg) std::cerr << "this->min_ : " << this->min_ << ", second.min_ : " << second.min_ << std::endl;
- return false;
- }
- if (this->max_ != second.max_) {
- if (dbg) std::cerr << "this->max_ : " << this->max_ << ", second.max_ : " << second.max_ << std::endl;
- return false;
- }
- // in the other case we may assume that the persistence images are defined on the same domain.
- return true;
- }
-
- /**
- * Return minimal range value of persistent image.
- **/
- inline double get_min() const { return this->min_; }
-
- /**
- * Return maximal range value of persistent image.
- **/
- inline double get_max() const { return this->max_; }
-
- /**
- * Operator == to check if to persistence heat maps are the same.
- **/
- bool operator==(const Persistence_heat_maps& rhs) const {
- bool dbg = false;
- if (!this->check_if_the_same(rhs)) {
- if (dbg) std::cerr << "The domains are not the same \n";
- return false; // in this case, the domains are not the same, so the maps cannot be the same.
- }
- for (size_t i = 0; i != this->heat_map.size(); ++i) {
- for (size_t j = 0; j != this->heat_map[i].size(); ++j) {
- if (!almost_equal(this->heat_map[i][j], rhs.heat_map[i][j])) {
- if (dbg) {
- std::cerr << "this->heat_map[" << i << "][" << j << "] = " << this->heat_map[i][j] << std::endl;
- std::cerr << "rhs.heat_map[" << i << "][" << j << "] = " << rhs.heat_map[i][j] << std::endl;
- }
- return false;
- }
- }
- }
- return true;
- }
-
- /**
- * Operator != to check if to persistence heat maps are different.
- **/
- bool operator!=(const Persistence_heat_maps& rhs) const { return !((*this) == rhs); }
-
- /**
- * A function to generate a gnuplot script to visualize the persistent image.
- **/
- void plot(const char* filename) const;
-
- template <typename Operation_type>
- friend Persistence_heat_maps operation_on_pair_of_heat_maps(const Persistence_heat_maps& first,
- const Persistence_heat_maps& second,
- Operation_type operation) {
- // first check if the heat maps are compatible
- if (!first.check_if_the_same(second)) {
- std::cerr << "Sizes of the heat maps are not compatible. The program will now terminate \n";
- throw "Sizes of the heat maps are not compatible. The program will now terminate \n";
- }
- Persistence_heat_maps result;
- result.min_ = first.min_;
- result.max_ = first.max_;
- result.heat_map.reserve(first.heat_map.size());
- for (size_t i = 0; i != first.heat_map.size(); ++i) {
- std::vector<double> v;
- v.reserve(first.heat_map[i].size());
- for (size_t j = 0; j != first.heat_map[i].size(); ++j) {
- v.push_back(operation(first.heat_map[i][j], second.heat_map[i][j]));
- }
- result.heat_map.push_back(v);
- }
- return result;
- } // operation_on_pair_of_heat_maps
-
- /**
- * Multiplication of Persistence_heat_maps by scalar (so that all values of the heat map gets multiplied by that
- *scalar).
- **/
- Persistence_heat_maps multiply_by_scalar(double scalar) const {
- Persistence_heat_maps result;
- result.min_ = this->min_;
- result.max_ = this->max_;
- result.heat_map.reserve(this->heat_map.size());
- for (size_t i = 0; i != this->heat_map.size(); ++i) {
- std::vector<double> v;
- v.reserve(this->heat_map[i].size());
- for (size_t j = 0; j != this->heat_map[i].size(); ++j) {
- v.push_back(this->heat_map[i][j] * scalar);
- }
- result.heat_map.push_back(v);
- }
- return result;
- }
-
- /**
- * This function computes a sum of two objects of a type Persistence_heat_maps.
- **/
- friend Persistence_heat_maps operator+(const Persistence_heat_maps& first, const Persistence_heat_maps& second) {
- return operation_on_pair_of_heat_maps(first, second, std::plus<double>());
- }
- /**
-* This function computes a difference of two objects of a type Persistence_heat_maps.
-**/
- friend Persistence_heat_maps operator-(const Persistence_heat_maps& first, const Persistence_heat_maps& second) {
- return operation_on_pair_of_heat_maps(first, second, std::minus<double>());
- }
- /**
-* This function computes a product of an object of a type Persistence_heat_maps with real number.
-**/
- friend Persistence_heat_maps operator*(double scalar, const Persistence_heat_maps& A) {
- return A.multiply_by_scalar(scalar);
- }
- /**
-* This function computes a product of an object of a type Persistence_heat_maps with real number.
-**/
- friend Persistence_heat_maps operator*(const Persistence_heat_maps& A, double scalar) {
- return A.multiply_by_scalar(scalar);
- }
- /**
-* This function computes a product of an object of a type Persistence_heat_maps with real number.
-**/
- Persistence_heat_maps operator*(double scalar) { return this->multiply_by_scalar(scalar); }
- /**
- * += operator for Persistence_heat_maps.
- **/
- Persistence_heat_maps operator+=(const Persistence_heat_maps& rhs) {
- *this = *this + rhs;
- return *this;
- }
- /**
- * -= operator for Persistence_heat_maps.
- **/
- Persistence_heat_maps operator-=(const Persistence_heat_maps& rhs) {
- *this = *this - rhs;
- return *this;
- }
- /**
- * *= operator for Persistence_heat_maps.
- **/
- Persistence_heat_maps operator*=(double x) {
- *this = *this * x;
- return *this;
- }
- /**
- * /= operator for Persistence_heat_maps.
- **/
- Persistence_heat_maps operator/=(double x) {
- if (x == 0) throw("In operator /=, division by 0. Program terminated.");
- *this = *this * (1 / x);
- return *this;
- }
-
- // Implementations of functions for various concepts.
-
- /**
- * This function produce a vector of doubles based on a persistence heat map. It is required in a concept
- * Vectorized_topological_data
- */
- std::vector<double> vectorize(int number_of_function) const;
- /**
- * This function return the number of functions that allows vectorization of persistence heat map. It is required
- *in a concept Vectorized_topological_data.
- **/
- size_t number_of_vectorize_functions() const { return this->number_of_functions_for_vectorization; }
-
- /**
- * This function is required by the Real_valued_topological_data concept. It returns various projections on the
- *persistence heat map to a real line.
- * At the moment this function is not tested, since it is quite likely to be changed in the future. Given this, when
- *using it, keep in mind that it
- * will be most likely changed in the next versions.
- **/
- double project_to_R(int number_of_function) const;
- /**
- * The function gives the number of possible projections to R. This function is required by the
- *Real_valued_topological_data concept.
- **/
- size_t number_of_projections_to_R() const { return this->number_of_functions_for_projections_to_reals; }
-
- /**
- * A function to compute distance between persistence heat maps.
- * The parameter of this function is a const reference to an object of a class Persistence_heat_maps.
- * This function is required in Topological_data_with_distances concept.
-* For max norm distance, set power to std::numeric_limits<double>::max()
- **/
- double distance(const Persistence_heat_maps& second_, double power = 1) const;
-
- /**
- * A function to compute averaged persistence heat map, based on vector of persistence heat maps.
- * This function is required by Topological_data_with_averages concept.
- **/
- void compute_average(const std::vector<Persistence_heat_maps*>& to_average);
-
- /**
- * A function to compute scalar product of persistence heat maps.
- * The parameter of this function is a const reference to an object of a class Persistence_heat_maps.
- * This function is required in Topological_data_with_scalar_product concept.
- **/
- double compute_scalar_product(const Persistence_heat_maps& second_) const;
-
- // end of implementation of functions needed for concepts.
-
- /**
- * The x-range of the persistence heat map.
- **/
- std::pair<double, double> get_x_range() const { return std::make_pair(this->min_, this->max_); }
-
- /**
- * The y-range of the persistence heat map.
- **/
- std::pair<double, double> get_y_range() const { return this->get_x_range(); }
-
- protected:
- // private methods
- std::vector<std::vector<double> > check_and_initialize_maps(const std::vector<Persistence_heat_maps*>& maps);
- size_t number_of_functions_for_vectorization;
- size_t number_of_functions_for_projections_to_reals;
- void construct(const std::vector<std::pair<double, double> >& intervals_,
- std::vector<std::vector<double> > filter = create_Gaussian_filter(5, 1),
-
- bool erase_below_diagonal = false, size_t number_of_pixels = 1000,
- double min_ = std::numeric_limits<double>::max(), double max_ = std::numeric_limits<double>::max());
-
- void set_up_parameters_for_basic_classes() {
- this->number_of_functions_for_vectorization = 1;
- this->number_of_functions_for_projections_to_reals = 1;
- }
-
- // data
- Scalling_of_kernels f;
- bool erase_below_diagonal;
- double min_;
- double max_;
- std::vector<std::vector<double> > heat_map;
-};
-
-// if min_ == max_, then the program is requested to set up the values itself based on persistence intervals
-template <typename Scalling_of_kernels>
-void Persistence_heat_maps<Scalling_of_kernels>::construct(const std::vector<std::pair<double, double> >& intervals_,
- std::vector<std::vector<double> > filter,
- bool erase_below_diagonal, size_t number_of_pixels,
- double min_, double max_) {
- bool dbg = false;
- if (dbg) std::cerr << "Entering construct procedure \n";
- Scalling_of_kernels f;
- this->f = f;
-
- if (dbg) std::cerr << "min and max passed to construct() procedure: " << min_ << " " << max_ << std::endl;
-
- if (min_ == max_) {
- if (dbg) std::cerr << "min and max parameters will be determined based on intervals \n";
- // in this case, we want the program to set up the min_ and max_ values by itself.
- min_ = std::numeric_limits<int>::max();
- max_ = -std::numeric_limits<int>::max();
-
- for (size_t i = 0; i != intervals_.size(); ++i) {
- if (intervals_[i].first < min_) min_ = intervals_[i].first;
- if (intervals_[i].second > max_) max_ = intervals_[i].second;
- }
- // now we have the structure filled in, and moreover we know min_ and max_ values of the interval, so we know the
- // range.
-
- // add some more space:
- min_ -= fabs(max_ - min_) / 100;
- max_ += fabs(max_ - min_) / 100;
- }
-
- if (dbg) {
- std::cerr << "min_ : " << min_ << std::endl;
- std::cerr << "max_ : " << max_ << std::endl;
- std::cerr << "number_of_pixels : " << number_of_pixels << std::endl;
- getchar();
- }
-
- this->min_ = min_;
- this->max_ = max_;
-
- // initialization of the structure heat_map
- std::vector<std::vector<double> > heat_map_;
- for (size_t i = 0; i != number_of_pixels; ++i) {
- std::vector<double> v(number_of_pixels, 0);
- heat_map_.push_back(v);
- }
- this->heat_map = heat_map_;
-
- if (dbg) std::cerr << "Done creating of the heat map, now we will fill in the structure \n";
-
- for (size_t pt_nr = 0; pt_nr != intervals_.size(); ++pt_nr) {
- // compute the value of intervals_[pt_nr] in the grid:
- int x_grid =
- static_cast<int>((intervals_[pt_nr].first - this->min_) / (this->max_ - this->min_) * number_of_pixels);
- int y_grid =
- static_cast<int>((intervals_[pt_nr].second - this->min_) / (this->max_ - this->min_) * number_of_pixels);
-
- if (dbg) {
- std::cerr << "point : " << intervals_[pt_nr].first << " , " << intervals_[pt_nr].second << std::endl;
- std::cerr << "x_grid : " << x_grid << std::endl;
- std::cerr << "y_grid : " << y_grid << std::endl;
- }
-
- // x_grid and y_grid gives a center of the kernel. We want to have its lower left corner. To get this, we need to
- // shift x_grid and y_grid by a grid diameter.
- x_grid -= filter.size() / 2;
- y_grid -= filter.size() / 2;
- // note that the numbers x_grid and y_grid may be negative.
-
- if (dbg) {
- std::cerr << "After shift : \n";
- std::cerr << "x_grid : " << x_grid << std::endl;
- std::cerr << "y_grid : " << y_grid << std::endl;
- }
-
- double scaling_value = this->f(intervals_[pt_nr]);
-
- for (size_t i = 0; i != filter.size(); ++i) {
- for (size_t j = 0; j != filter.size(); ++j) {
- // if the point (x_grid+i,y_grid+j) is the correct point in the grid.
- if (((x_grid + i) >= 0) && (x_grid + i < this->heat_map.size()) && ((y_grid + j) >= 0) &&
- (y_grid + j < this->heat_map.size())) {
- if (dbg) {
- std::cerr << y_grid + j << " " << x_grid + i << std::endl;
- }
- this->heat_map[y_grid + j][x_grid + i] += scaling_value * filter[i][j];
- if (dbg) {
- std::cerr << "Position : (" << x_grid + i << "," << y_grid + j
- << ") got increased by the value : " << filter[i][j] << std::endl;
- }
- }
- }
- }
- }
-
- // now it remains to cut everything below diagonal if the user wants us to.
- if (erase_below_diagonal) {
- for (size_t i = 0; i != this->heat_map.size(); ++i) {
- for (size_t j = i; j != this->heat_map.size(); ++j) {
- this->heat_map[i][j] = 0;
- }
- }
- }
-} // construct
-
-template <typename Scalling_of_kernels>
-Persistence_heat_maps<Scalling_of_kernels>::Persistence_heat_maps(
- const std::vector<std::pair<double, double> >& interval, std::vector<std::vector<double> > filter,
- bool erase_below_diagonal, size_t number_of_pixels, double min_, double max_) {
- this->construct(interval, filter, erase_below_diagonal, number_of_pixels, min_, max_);
- this->set_up_parameters_for_basic_classes();
-}
-
-template <typename Scalling_of_kernels>
-Persistence_heat_maps<Scalling_of_kernels>::Persistence_heat_maps(const char* filename,
- std::vector<std::vector<double> > filter,
- bool erase_below_diagonal, size_t number_of_pixels,
- double min_, double max_, unsigned dimension) {
- std::vector<std::pair<double, double> > intervals_;
- if (dimension == std::numeric_limits<unsigned>::max()) {
- intervals_ = read_persistence_intervals_in_one_dimension_from_file(filename);
- } else {
- intervals_ = read_persistence_intervals_in_one_dimension_from_file(filename, dimension);
- }
- this->construct(intervals_, filter, erase_below_diagonal, number_of_pixels, min_, max_);
- this->set_up_parameters_for_basic_classes();
-}
-
-template <typename Scalling_of_kernels>
-std::vector<std::vector<double> > Persistence_heat_maps<Scalling_of_kernels>::check_and_initialize_maps(
- const std::vector<Persistence_heat_maps*>& maps) {
- // checking if all the heat maps are of the same size:
- for (size_t i = 0; i != maps.size(); ++i) {
- if (maps[i]->heat_map.size() != maps[0]->heat_map.size()) {
- std::cerr << "Sizes of Persistence_heat_maps are not compatible. The program will terminate now \n";
- throw "Sizes of Persistence_heat_maps are not compatible. The program will terminate now \n";
- }
- if (maps[i]->heat_map[0].size() != maps[0]->heat_map[0].size()) {
- std::cerr << "Sizes of Persistence_heat_maps are not compatible. The program will terminate now \n";
- throw "Sizes of Persistence_heat_maps are not compatible. The program will terminate now \n";
- }
- }
- std::vector<std::vector<double> > heat_maps(maps[0]->heat_map.size());
- for (size_t i = 0; i != maps[0]->heat_map.size(); ++i) {
- std::vector<double> v(maps[0]->heat_map[0].size(), 0);
- heat_maps[i] = v;
- }
- return heat_maps;
-}
-
-template <typename Scalling_of_kernels>
-void Persistence_heat_maps<Scalling_of_kernels>::compute_median(const std::vector<Persistence_heat_maps*>& maps) {
- std::vector<std::vector<double> > heat_maps = this->check_and_initialize_maps(maps);
-
- std::vector<double> to_compute_median(maps.size());
- for (size_t i = 0; i != heat_maps.size(); ++i) {
- for (size_t j = 0; j != heat_maps[i].size(); ++j) {
- for (size_t map_no = 0; map_no != maps.size(); ++map_no) {
- to_compute_median[map_no] = maps[map_no]->heat_map[i][j];
- }
- std::nth_element(to_compute_median.begin(), to_compute_median.begin() + to_compute_median.size() / 2,
- to_compute_median.end());
- heat_maps[i][j] = to_compute_median[to_compute_median.size() / 2];
- }
- }
- this->heat_map = heat_maps;
- this->min_ = maps[0]->min_;
- this->max_ = maps[0]->max_;
-}
-
-template <typename Scalling_of_kernels>
-void Persistence_heat_maps<Scalling_of_kernels>::compute_mean(const std::vector<Persistence_heat_maps*>& maps) {
- std::vector<std::vector<double> > heat_maps = this->check_and_initialize_maps(maps);
- for (size_t i = 0; i != heat_maps.size(); ++i) {
- for (size_t j = 0; j != heat_maps[i].size(); ++j) {
- double mean = 0;
- for (size_t map_no = 0; map_no != maps.size(); ++map_no) {
- mean += maps[map_no]->heat_map[i][j];
- }
- heat_maps[i][j] = mean / static_cast<double>(maps.size());
- }
- }
- this->heat_map = heat_maps;
- this->min_ = maps[0]->min_;
- this->max_ = maps[0]->max_;
-}
-
-template <typename Scalling_of_kernels>
-void Persistence_heat_maps<Scalling_of_kernels>::compute_percentage_of_active(
- const std::vector<Persistence_heat_maps*>& maps, size_t cutoff) {
- std::vector<std::vector<double> > heat_maps = this->check_and_initialize_maps(maps);
-
- for (size_t i = 0; i != heat_maps.size(); ++i) {
- for (size_t j = 0; j != heat_maps[i].size(); ++j) {
- size_t number_of_active_levels = 0;
- for (size_t map_no = 0; map_no != maps.size(); ++map_no) {
- if (maps[map_no]->heat_map[i][j]) number_of_active_levels++;
- }
- if (number_of_active_levels > cutoff) {
- heat_maps[i][j] = number_of_active_levels;
- } else {
- heat_maps[i][j] = 0;
- }
- }
- }
- this->heat_map = heat_maps;
- this->min_ = maps[0]->min_;
- this->max_ = maps[0]->max_;
-}
-
-template <typename Scalling_of_kernels>
-void Persistence_heat_maps<Scalling_of_kernels>::plot(const char* filename) const {
- std::ofstream out;
- std::stringstream gnuplot_script;
- gnuplot_script << filename << "_GnuplotScript";
-
- out.open(gnuplot_script.str().c_str());
- out << "plot '-' matrix with image" << std::endl;
- for (size_t i = 0; i != this->heat_map.size(); ++i) {
- for (size_t j = 0; j != this->heat_map[i].size(); ++j) {
- out << this->heat_map[i][j] << " ";
- }
- out << std::endl;
- }
- out.close();
- std::cout << "To visualize, install gnuplot and type the command: gnuplot -persist -e \"load \'"
- << gnuplot_script.str().c_str() << "\'\"" << std::endl;
-}
-
-template <typename Scalling_of_kernels>
-void Persistence_heat_maps<Scalling_of_kernels>::print_to_file(const char* filename) const {
- std::ofstream out;
- out.open(filename);
-
- // First we store this->min_ and this->max_ values:
- out << this->min_ << " " << this->max_ << std::endl;
- for (size_t i = 0; i != this->heat_map.size(); ++i) {
- for (size_t j = 0; j != this->heat_map[i].size(); ++j) {
- out << this->heat_map[i][j] << " ";
- }
- out << std::endl;
- }
- out.close();
-}
-
-template <typename Scalling_of_kernels>
-void Persistence_heat_maps<Scalling_of_kernels>::load_from_file(const char* filename) {
- bool dbg = false;
-
- std::ifstream in;
- in.open(filename);
-
- // checking if the file exist / if it was open.
- if (!in.good()) {
- std::cerr << "The file : " << filename << " do not exist. The program will now terminate \n";
- throw "The persistence landscape file do not exist. The program will now terminate \n";
- }
-
- // now we read the file one by one.
-
- in >> this->min_ >> this->max_;
- if (dbg) {
- std::cerr << "Reading the following values of min and max : " << this->min_ << " , " << this->max_ << std::endl;
- }
-
- std::string temp;
- std::getline(in, temp);
- while (in.good()) {
- std::getline(in, temp);
- std::stringstream lineSS;
- lineSS << temp;
-
- std::vector<double> line_of_heat_map;
- while (lineSS.good()) {
- double point;
-
- lineSS >> point;
- line_of_heat_map.push_back(point);
- if (dbg) {
- std::cout << point << " ";
- }
- }
- if (dbg) {
- std::cout << std::endl;
- getchar();
- }
-
- if (in.good()) this->heat_map.push_back(line_of_heat_map);
- }
- in.close();
- if (dbg) std::cout << "Done \n";
-}
-
-// Concretizations of virtual methods:
-template <typename Scalling_of_kernels>
-std::vector<double> Persistence_heat_maps<Scalling_of_kernels>::vectorize(int number_of_function) const {
- // convert this->heat_map into one large vector:
- size_t size_of_result = 0;
- for (size_t i = 0; i != this->heat_map.size(); ++i) {
- size_of_result += this->heat_map[i].size();
- }
-
- std::vector<double> result;
- result.reserve(size_of_result);
-
- for (size_t i = 0; i != this->heat_map.size(); ++i) {
- for (size_t j = 0; j != this->heat_map[i].size(); ++j) {
- result.push_back(this->heat_map[i][j]);
- }
- }
-
- return result;
-}
-
-template <typename Scalling_of_kernels>
-double Persistence_heat_maps<Scalling_of_kernels>::distance(const Persistence_heat_maps& second, double power) const {
- // first we need to check if (*this) and second are defined on the same domain and have the same dimensions:
- if (!this->check_if_the_same(second)) {
- std::cerr << "The persistence images are of non compatible sizes. We cannot therefore compute distance between "
- "them. The program will now terminate";
- throw "The persistence images are of non compatible sizes. The program will now terminate";
- }
-
- // if we are here, we know that the two persistence images are defined on the same domain, so we can start computing
- // their distances:
-
- double distance = 0;
- if (power < std::numeric_limits<double>::max()) {
- for (size_t i = 0; i != this->heat_map.size(); ++i) {
- for (size_t j = 0; j != this->heat_map[i].size(); ++j) {
- distance += pow(fabs(this->heat_map[i][j] - second.heat_map[i][j]), power);
- }
- }
- } else {
- // in this case, we compute max norm distance
- for (size_t i = 0; i != this->heat_map.size(); ++i) {
- for (size_t j = 0; j != this->heat_map[i].size(); ++j) {
- if (distance < fabs(this->heat_map[i][j] - second.heat_map[i][j])) {
- distance = fabs(this->heat_map[i][j] - second.heat_map[i][j]);
- }
- }
- }
- }
- return distance;
-}
-
-template <typename Scalling_of_kernels>
-double Persistence_heat_maps<Scalling_of_kernels>::project_to_R(int number_of_function) const {
- double result = 0;
- for (size_t i = 0; i != this->heat_map.size(); ++i) {
- for (size_t j = 0; j != this->heat_map[i].size(); ++j) {
- result += this->heat_map[i][j];
- }
- }
- return result;
-}
-
-template <typename Scalling_of_kernels>
-void Persistence_heat_maps<Scalling_of_kernels>::compute_average(
- const std::vector<Persistence_heat_maps*>& to_average) {
- this->compute_mean(to_average);
-}
-
-template <typename Scalling_of_kernels>
-double Persistence_heat_maps<Scalling_of_kernels>::compute_scalar_product(const Persistence_heat_maps& second) const {
- // first we need to check if (*this) and second are defined on the same domain and have the same dimensions:
- if (!this->check_if_the_same(second)) {
- std::cerr << "The persistence images are of non compatible sizes. We cannot therefore compute distance between "
- "them. The program will now terminate";
- throw "The persistence images are of non compatible sizes. The program will now terminate";
- }
-
- // if we are here, we know that the two persistence images are defined on the same domain, so we can start computing
- // their scalar product:
- double scalar_prod = 0;
- for (size_t i = 0; i != this->heat_map.size(); ++i) {
- for (size_t j = 0; j != this->heat_map[i].size(); ++j) {
- scalar_prod += this->heat_map[i][j] * second.heat_map[i][j];
- }
- }
- return scalar_prod;
-}
-
-} // namespace Persistence_representations
-} // namespace Gudhi
-
-#endif // PERSISTENCE_HEAT_MAPS_H_