summaryrefslogtreecommitdiff
path: root/include/gudhi/Simplex_tree.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/gudhi/Simplex_tree.h')
-rw-r--r--include/gudhi/Simplex_tree.h1483
1 files changed, 0 insertions, 1483 deletions
diff --git a/include/gudhi/Simplex_tree.h b/include/gudhi/Simplex_tree.h
deleted file mode 100644
index 3ab23c12..00000000
--- a/include/gudhi/Simplex_tree.h
+++ /dev/null
@@ -1,1483 +0,0 @@
-/* This file is part of the Gudhi Library. The Gudhi library
- * (Geometric Understanding in Higher Dimensions) is a generic C++
- * library for computational topology.
- *
- * Author(s): Clément Maria
- *
- * Copyright (C) 2014 Inria
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
-
-#ifndef SIMPLEX_TREE_H_
-#define SIMPLEX_TREE_H_
-
-#include <gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h>
-#include <gudhi/Simplex_tree/Simplex_tree_siblings.h>
-#include <gudhi/Simplex_tree/Simplex_tree_iterators.h>
-#include <gudhi/Simplex_tree/indexing_tag.h>
-
-#include <gudhi/reader_utils.h>
-#include <gudhi/graph_simplicial_complex.h>
-#include <gudhi/Debug_utils.h>
-
-#include <boost/container/flat_map.hpp>
-#include <boost/iterator/transform_iterator.hpp>
-#include <boost/graph/adjacency_list.hpp>
-#include <boost/range/adaptor/reversed.hpp>
-
-#ifdef GUDHI_USE_TBB
-#include <tbb/parallel_sort.h>
-#endif
-
-#include <utility>
-#include <vector>
-#include <functional> // for greater<>
-#include <stdexcept>
-#include <limits> // Inf
-#include <initializer_list>
-#include <algorithm> // for std::max
-#include <cstdint> // for std::uint32_t
-#include <iterator> // for std::distance
-
-namespace Gudhi {
-
-struct Simplex_tree_options_full_featured;
-
-/**
- * \class Simplex_tree Simplex_tree.h gudhi/Simplex_tree.h
- * \brief Simplex Tree data structure for representing simplicial complexes.
- *
- * \details Every simplex \f$[v_0, \cdots ,v_d]\f$ admits a canonical orientation
- * induced by the order relation on vertices \f$ v_0 < \cdots < v_d \f$.
- *
- * Details may be found in \cite boissonnatmariasimplextreealgorithmica.
- *
- * \implements FilteredComplex
- *
- */
-
-template<typename SimplexTreeOptions = Simplex_tree_options_full_featured>
-class Simplex_tree {
- public:
- typedef SimplexTreeOptions Options;
- typedef typename Options::Indexing_tag Indexing_tag;
- /** \brief Type for the value of the filtration function.
- *
- * Must be comparable with <. */
- typedef typename Options::Filtration_value Filtration_value;
- /** \brief Key associated to each simplex.
- *
- * Must be an integer type. */
- typedef typename Options::Simplex_key Simplex_key;
- /** \brief Type for the vertex handle.
- *
- * Must be a signed integer type. It admits a total order <. */
- typedef typename Options::Vertex_handle Vertex_handle;
-
- /* Type of node in the simplex tree. */
- typedef Simplex_tree_node_explicit_storage<Simplex_tree> Node;
- /* Type of dictionary Vertex_handle -> Node for traversing the simplex tree. */
- // Note: this wastes space when Vertex_handle is 32 bits and Node is aligned on 64 bits. It would be better to use a
- // flat_set (with our own comparator) where we can control the layout of the struct (put Vertex_handle and
- // Simplex_key next to each other).
- typedef typename boost::container::flat_map<Vertex_handle, Node> Dictionary;
-
- /* \brief Set of nodes sharing a same parent in the simplex tree. */
- /* \brief Set of nodes sharing a same parent in the simplex tree. */
- typedef Simplex_tree_siblings<Simplex_tree, Dictionary> Siblings;
-
- struct Key_simplex_base_real {
- Key_simplex_base_real() : key_(-1) {}
- void assign_key(Simplex_key k) { key_ = k; }
- Simplex_key key() const { return key_; }
- private:
- Simplex_key key_;
- };
- struct Key_simplex_base_dummy {
- Key_simplex_base_dummy() {}
- // Undefined so it will not link
- void assign_key(Simplex_key);
- Simplex_key key() const;
- };
- typedef typename std::conditional<Options::store_key, Key_simplex_base_real, Key_simplex_base_dummy>::type
- Key_simplex_base;
-
- struct Filtration_simplex_base_real {
- Filtration_simplex_base_real() : filt_(0) {}
- void assign_filtration(Filtration_value f) { filt_ = f; }
- Filtration_value filtration() const { return filt_; }
- private:
- Filtration_value filt_;
- };
- struct Filtration_simplex_base_dummy {
- Filtration_simplex_base_dummy() {}
- void assign_filtration(Filtration_value GUDHI_CHECK_code(f)) { GUDHI_CHECK(f == 0, "filtration value specified for a complex that does not store them"); }
- Filtration_value filtration() const { return 0; }
- };
- typedef typename std::conditional<Options::store_filtration, Filtration_simplex_base_real,
- Filtration_simplex_base_dummy>::type Filtration_simplex_base;
-
- public:
- /** \brief Handle type to a simplex contained in the simplicial complex represented
- * by the simplex tree. */
- typedef typename Dictionary::iterator Simplex_handle;
-
- private:
- typedef typename Dictionary::iterator Dictionary_it;
- typedef typename Dictionary_it::value_type Dit_value_t;
-
- struct return_first {
- Vertex_handle operator()(const Dit_value_t& p_sh) const {
- return p_sh.first;
- }
- };
-
- public:
- /** \name Range and iterator types
- *
- * The naming convention is Container_content_(iterator/range). A Container_content_range is
- * essentially an object on which the methods begin() and end() can be called. They both return
- * an object of type Container_content_iterator, and allow the traversal of the range
- * [ begin();end() ).
- * @{ */
-
- /** \brief Iterator over the vertices of the simplicial complex.
- *
- * 'value_type' is Vertex_handle. */
- typedef boost::transform_iterator<return_first, Dictionary_it> Complex_vertex_iterator;
- /** \brief Range over the vertices of the simplicial complex. */
- typedef boost::iterator_range<Complex_vertex_iterator> Complex_vertex_range;
- /** \brief Iterator over the vertices of a simplex.
- *
- * 'value_type' is Vertex_handle. */
- typedef Simplex_tree_simplex_vertex_iterator<Simplex_tree> Simplex_vertex_iterator;
- /** \brief Range over the vertices of a simplex. */
- typedef boost::iterator_range<Simplex_vertex_iterator> Simplex_vertex_range;
- /** \brief Range over the cofaces of a simplex. */
- typedef std::vector<Simplex_handle> Cofaces_simplex_range;
- /** \brief Iterator over the simplices of the boundary of a simplex.
- *
- * 'value_type' is Simplex_handle. */
- typedef Simplex_tree_boundary_simplex_iterator<Simplex_tree> Boundary_simplex_iterator;
- /** \brief Range over the simplices of the boundary of a simplex. */
- typedef boost::iterator_range<Boundary_simplex_iterator> Boundary_simplex_range;
- /** \brief Iterator over the simplices of the simplicial complex.
- *
- * 'value_type' is Simplex_handle. */
- typedef Simplex_tree_complex_simplex_iterator<Simplex_tree> Complex_simplex_iterator;
- /** \brief Range over the simplices of the simplicial complex. */
- typedef boost::iterator_range<Complex_simplex_iterator> Complex_simplex_range;
- /** \brief Iterator over the simplices of the skeleton of the simplicial complex, for a given
- * dimension.
- *
- * 'value_type' is Simplex_handle. */
- typedef Simplex_tree_skeleton_simplex_iterator<Simplex_tree> Skeleton_simplex_iterator;
- /** \brief Range over the simplices of the skeleton of the simplicial complex, for a given
- * dimension. */
- typedef boost::iterator_range<Skeleton_simplex_iterator> Skeleton_simplex_range;
- /** \brief Range over the simplices of the simplicial complex, ordered by the filtration. */
- typedef std::vector<Simplex_handle> Filtration_simplex_range;
- /** \brief Iterator over the simplices of the simplicial complex, ordered by the filtration.
- *
- * 'value_type' is Simplex_handle. */
- typedef typename Filtration_simplex_range::const_iterator Filtration_simplex_iterator;
-
- /* @} */ // end name range and iterator types
- /** \name Range and iterator methods
- * @{ */
-
- /** \brief Returns a range over the vertices of the simplicial complex.
- * The order is increasing according to < on Vertex_handles.*/
- Complex_vertex_range complex_vertex_range() {
- return Complex_vertex_range(
- boost::make_transform_iterator(root_.members_.begin(), return_first()),
- boost::make_transform_iterator(root_.members_.end(), return_first()));
- }
-
- /** \brief Returns a range over the simplices of the simplicial complex.
- *
- * In the Simplex_tree, the tree is traverse in a depth-first fashion.
- * Consequently, simplices are ordered according to lexicographic order on the list of
- * Vertex_handles of a simplex, read in increasing < order for Vertex_handles. */
- Complex_simplex_range complex_simplex_range() {
- return Complex_simplex_range(Complex_simplex_iterator(this),
- Complex_simplex_iterator());
- }
-
- /** \brief Returns a range over the simplices of the dim-skeleton of the simplicial complex.
- *
- * The \f$d\f$-skeleton of a simplicial complex \f$\mathbf{K}\f$ is the simplicial complex containing the
- * simplices of \f$\mathbf{K}\f$ of dimension at most \f$d\f$.
- *
- * @param[in] dim The maximal dimension of the simplices in the skeleton.
- *
- * The simplices are ordered according to lexicographic order on the list of
- * Vertex_handles of a simplex, read in increasing < order for Vertex_handles. */
- Skeleton_simplex_range skeleton_simplex_range(int dim) {
- return Skeleton_simplex_range(Skeleton_simplex_iterator(this, dim),
- Skeleton_simplex_iterator());
- }
-
- /** \brief Returns a range over the simplices of the simplicial complex,
- * in the order of the filtration.
- *
- * The filtration is a monotonic function \f$ f: \mathbf{K} \rightarrow \mathbb{R} \f$, i.e. if two simplices
- * \f$\tau\f$ and \f$\sigma\f$ satisfy \f$\tau \subseteq \sigma\f$ then
- * \f$f(\tau) \leq f(\sigma)\f$.
- *
- * The method returns simplices ordered according to increasing filtration values. Ties are
- * resolved by considering inclusion relation (subsimplices appear before their cofaces). If two
- * simplices have same filtration value but are not comparable w.r.t. inclusion, lexicographic
- * order is used.
- *
- * The filtration must be valid. If the filtration has not been initialized yet, the
- * method initializes it (i.e. order the simplices). If the complex has changed since the last time the filtration
- * was initialized, please call `initialize_filtration()` to recompute it. */
- Filtration_simplex_range const& filtration_simplex_range(Indexing_tag = Indexing_tag()) {
- if (filtration_vect_.empty()) {
- initialize_filtration();
- }
- return filtration_vect_;
- }
-
- /** \brief Returns a range over the vertices of a simplex.
- *
- * The order in which the vertices are visited is the decreasing order for < on Vertex_handles,
- * which is consequenlty
- * equal to \f$(-1)^{\text{dim} \sigma}\f$ the canonical orientation on the simplex.
- */
- Simplex_vertex_range simplex_vertex_range(Simplex_handle sh) {
- assert(sh != null_simplex()); // Empty simplex
- return Simplex_vertex_range(Simplex_vertex_iterator(this, sh),
- Simplex_vertex_iterator(this));
- }
-
- /** \brief Returns a range over the simplices of the boundary of a simplex.
- *
- * The boundary of a simplex is the set of codimension \f$1\f$ subsimplices of the simplex.
- * If the simplex is \f$[v_0, \cdots ,v_d]\f$, with canonical orientation
- * induced by \f$ v_0 < \cdots < v_d \f$, the iterator enumerates the
- * simplices of the boundary in the order:
- * \f$[v_0,\cdots,\widehat{v_i},\cdots,v_d]\f$ for \f$i\f$ from \f$0\f$ to \f$d\f$,
- * where \f$\widehat{v_i}\f$ means that the vertex \f$v_i\f$ is omitted.
- *
- * We note that the alternate sum of the simplices given by the iterator
- * gives \f$(-1)^{\text{dim} \sigma}\f$ the chains corresponding to the boundary
- * of the simplex.
- *
- * @param[in] sh Simplex for which the boundary is computed. */
- template<class SimplexHandle>
- Boundary_simplex_range boundary_simplex_range(SimplexHandle sh) {
- return Boundary_simplex_range(Boundary_simplex_iterator(this, sh),
- Boundary_simplex_iterator(this));
- }
-
- /** @} */ // end range and iterator methods
- /** \name Constructor/Destructor
- * @{ */
-
- /** \brief Constructs an empty simplex tree. */
- Simplex_tree()
- : null_vertex_(-1),
- root_(nullptr, null_vertex_),
- filtration_vect_(),
- dimension_(-1) { }
-
- /** \brief User-defined copy constructor reproduces the whole tree structure. */
- Simplex_tree(const Simplex_tree& simplex_source)
- : null_vertex_(simplex_source.null_vertex_),
- root_(nullptr, null_vertex_ , simplex_source.root_.members_),
- filtration_vect_(),
- dimension_(simplex_source.dimension_) {
- auto root_source = simplex_source.root_;
- rec_copy(&root_, &root_source);
- }
-
- /** \brief depth first search, inserts simplices when reaching a leaf. */
- void rec_copy(Siblings *sib, Siblings *sib_source) {
- for (auto sh = sib->members().begin(), sh_source = sib_source->members().begin();
- sh != sib->members().end(); ++sh, ++sh_source) {
- if (has_children(sh_source)) {
- Siblings * newsib = new Siblings(sib, sh_source->first);
- newsib->members_.reserve(sh_source->second.children()->members().size());
- for (auto & child : sh_source->second.children()->members())
- newsib->members_.emplace_hint(newsib->members_.end(), child.first, Node(newsib, child.second.filtration()));
- rec_copy(newsib, sh_source->second.children());
- sh->second.assign_children(newsib);
- }
- }
- }
-
- /** \brief User-defined move constructor moves the whole tree structure. */
- Simplex_tree(Simplex_tree && old)
- : null_vertex_(std::move(old.null_vertex_)),
- root_(std::move(old.root_)),
- filtration_vect_(std::move(old.filtration_vect_)),
- dimension_(std::move(old.dimension_)) {
- old.dimension_ = -1;
- old.root_ = Siblings(nullptr, null_vertex_);
- }
-
- /** \brief Destructor; deallocates the whole tree structure. */
- ~Simplex_tree() {
- for (auto sh = root_.members().begin(); sh != root_.members().end(); ++sh) {
- if (has_children(sh)) {
- rec_delete(sh->second.children());
- }
- }
- }
- /** @} */ // end constructor/destructor
- private:
- // Recursive deletion
- void rec_delete(Siblings * sib) {
- for (auto sh = sib->members().begin(); sh != sib->members().end(); ++sh) {
- if (has_children(sh)) {
- rec_delete(sh->second.children());
- }
- }
- delete sib;
- }
-
- public:
- /** \brief Checks if two simplex trees are equal. */
- bool operator==(Simplex_tree& st2) {
- if ((null_vertex_ != st2.null_vertex_) ||
- (dimension_ != st2.dimension_))
- return false;
- return rec_equal(&root_, &st2.root_);
- }
-
- /** \brief Checks if two simplex trees are different. */
- bool operator!=(Simplex_tree& st2) {
- return (!(*this == st2));
- }
-
- private:
- /** rec_equal: Checks recursively whether or not two simplex trees are equal, using depth first search. */
- bool rec_equal(Siblings* s1, Siblings* s2) {
- if (s1->members().size() != s2->members().size())
- return false;
- for (auto sh1 = s1->members().begin(), sh2 = s2->members().begin();
- (sh1 != s1->members().end() && sh2 != s2->members().end()); ++sh1, ++sh2) {
- if (sh1->first != sh2->first || sh1->second.filtration() != sh2->second.filtration())
- return false;
- if (has_children(sh1) != has_children(sh2))
- return false;
- // Recursivity on children only if both have children
- else if (has_children(sh1))
- if (!rec_equal(sh1->second.children(), sh2->second.children()))
- return false;
- }
- return true;
- }
-
- public:
- /** \brief Returns the key associated to a simplex.
- *
- * The filtration must be initialized.
- * \pre SimplexTreeOptions::store_key
- */
- static Simplex_key key(Simplex_handle sh) {
- return sh->second.key();
- }
-
- /** \brief Returns the simplex that has index idx in the filtration.
- *
- * The filtration must be initialized.
- * \pre SimplexTreeOptions::store_key
- */
- Simplex_handle simplex(Simplex_key idx) const {
- return filtration_vect_[idx];
- }
-
- /** \brief Returns the filtration value of a simplex.
- *
- * Called on the null_simplex, it returns infinity.
- * If SimplexTreeOptions::store_filtration is false, returns 0.
- */
- static Filtration_value filtration(Simplex_handle sh) {
- if (sh != null_simplex()) {
- return sh->second.filtration();
- } else {
- return std::numeric_limits<Filtration_value>::infinity();
- }
- }
-
- /** \brief Sets the filtration value of a simplex.
- * \exception std::invalid_argument In debug mode, if sh is a null_simplex.
- */
- void assign_filtration(Simplex_handle sh, Filtration_value fv) {
- GUDHI_CHECK(sh != null_simplex(),
- std::invalid_argument("Simplex_tree::assign_filtration - cannot assign filtration on null_simplex"));
- sh->second.assign_filtration(fv);
- }
-
- /** \brief Returns a Simplex_handle different from all Simplex_handles
- * associated to the simplices in the simplicial complex.
- *
- * One can call filtration(null_simplex()). */
- static Simplex_handle null_simplex() {
- return Dictionary_it(nullptr);
- }
-
- /** \brief Returns a key different for all keys associated to the
- * simplices of the simplicial complex. */
- static Simplex_key null_key() {
- return -1;
- }
-
- /** \brief Returns a Vertex_handle different from all Vertex_handles associated
- * to the vertices of the simplicial complex. */
- Vertex_handle null_vertex() const {
- return null_vertex_;
- }
-
- /** \brief Returns the number of vertices in the complex. */
- size_t num_vertices() const {
- return root_.members_.size();
- }
-
- public:
- /** \brief returns the number of simplices in the simplex_tree. */
- size_t num_simplices() {
- return num_simplices(&root_);
- }
-
- private:
- /** \brief returns the number of simplices in the simplex_tree. */
- size_t num_simplices(Siblings * sib) {
- auto sib_begin = sib->members().begin();
- auto sib_end = sib->members().end();
- size_t simplices_number = sib_end - sib_begin;
- for (auto sh = sib_begin; sh != sib_end; ++sh) {
- if (has_children(sh)) {
- simplices_number += num_simplices(sh->second.children());
- }
- }
- return simplices_number;
- }
-
- public:
- /** \brief Returns the dimension of a simplex.
- *
- * Must be different from null_simplex().*/
- int dimension(Simplex_handle sh) {
- Siblings * curr_sib = self_siblings(sh);
- int dim = 0;
- while (curr_sib != nullptr) {
- ++dim;
- curr_sib = curr_sib->oncles();
- }
- return dim - 1;
- }
-
- /** \brief Returns an upper bound on the dimension of the simplicial complex. */
- int upper_bound_dimension() const {
- return dimension_;
- }
-
- /** \brief Returns the dimension of the simplicial complex.
- \details This function is not constant time because it can recompute dimension if required (can be triggered by
- `remove_maximal_simplex()` or `prune_above_filtration()`).
- */
- int dimension() {
- if (dimension_to_be_lowered_)
- lower_upper_bound_dimension();
- return dimension_;
- }
-
- /** \brief Returns true if the node in the simplex tree pointed by
- * sh has children.*/
- template<class SimplexHandle>
- bool has_children(SimplexHandle sh) const {
- // Here we rely on the root using null_vertex(), which cannot match any real vertex.
- return (sh->second.children()->parent() == sh->first);
- }
-
- /** \brief Given a range of Vertex_handles, returns the Simplex_handle
- * of the simplex in the simplicial complex containing the corresponding
- * vertices. Return null_simplex() if the simplex is not in the complex.
- *
- * The type InputVertexRange must be a range of <CODE>Vertex_handle</CODE>
- * on which we can call std::begin() function
- */
- template<class InputVertexRange = std::initializer_list<Vertex_handle>>
- Simplex_handle find(const InputVertexRange & s) {
- auto first = std::begin(s);
- auto last = std::end(s);
-
- if (first == last)
- return null_simplex(); // ----->>
-
- // Copy before sorting
- std::vector<Vertex_handle> copy(first, last);
- std::sort(std::begin(copy), std::end(copy));
- return find_simplex(copy);
- }
-
- private:
- /** Find function, with a sorted range of vertices. */
- Simplex_handle find_simplex(const std::vector<Vertex_handle> & simplex) {
- Siblings * tmp_sib = &root_;
- Dictionary_it tmp_dit;
- auto vi = simplex.begin();
- if (Options::contiguous_vertices) {
- // Equivalent to the first iteration of the normal loop
- GUDHI_CHECK(contiguous_vertices(), "non-contiguous vertices");
- Vertex_handle v = *vi++;
- if(v < 0 || v >= static_cast<Vertex_handle>(root_.members_.size()))
- return null_simplex();
- tmp_dit = root_.members_.begin() + v;
- if (vi == simplex.end())
- return tmp_dit;
- if (!has_children(tmp_dit))
- return null_simplex();
- tmp_sib = tmp_dit->second.children();
- }
- for (;;) {
- tmp_dit = tmp_sib->members_.find(*vi++);
- if (tmp_dit == tmp_sib->members_.end())
- return null_simplex();
- if (vi == simplex.end())
- return tmp_dit;
- if (!has_children(tmp_dit))
- return null_simplex();
- tmp_sib = tmp_dit->second.children();
- }
- }
-
- /** \brief Returns the Simplex_handle corresponding to the 0-simplex
- * representing the vertex with Vertex_handle v. */
- Simplex_handle find_vertex(Vertex_handle v) {
- if (Options::contiguous_vertices) {
- assert(contiguous_vertices());
- return root_.members_.begin() + v;
- } else {
- return root_.members_.find(v);
- }
- }
-
- public:
- /** \private \brief Test if the vertices have contiguous numbering: 0, 1, etc. */
- bool contiguous_vertices() const {
- if (root_.members_.empty()) return true;
- if (root_.members_.begin()->first != 0) return false;
- if (std::prev(root_.members_.end())->first != static_cast<Vertex_handle>(root_.members_.size() - 1)) return false;
- return true;
- }
-
- private:
- /** \brief Inserts a simplex represented by a vector of vertex.
- * @param[in] simplex vector of Vertex_handles, representing the vertices of the new simplex. The vector must be
- * sorted by increasing vertex handle order.
- * @param[in] filtration the filtration value assigned to the new simplex.
- * @return If the new simplex is inserted successfully (i.e. it was not in the
- * simplicial complex yet) the bool is set to true and the Simplex_handle is the handle assigned
- * to the new simplex.
- * If the insertion fails (the simplex is already there), the bool is set to false. If the insertion
- * fails and the simplex already in the complex has a filtration value strictly bigger than 'filtration',
- * we assign this simplex with the new value 'filtration', and set the Simplex_handle field of the
- * output pair to the Simplex_handle of the simplex. Otherwise, we set the Simplex_handle part to
- * null_simplex.
- *
- */
- std::pair<Simplex_handle, bool> insert_vertex_vector(const std::vector<Vertex_handle>& simplex,
- Filtration_value filtration) {
- Siblings * curr_sib = &root_;
- std::pair<Simplex_handle, bool> res_insert;
- auto vi = simplex.begin();
- for (; vi != simplex.end() - 1; ++vi) {
- GUDHI_CHECK(*vi != null_vertex(), "cannot use the dummy null_vertex() as a real vertex");
- res_insert = curr_sib->members_.emplace(*vi, Node(curr_sib, filtration));
- if (!(has_children(res_insert.first))) {
- res_insert.first->second.assign_children(new Siblings(curr_sib, *vi));
- }
- curr_sib = res_insert.first->second.children();
- }
- GUDHI_CHECK(*vi != null_vertex(), "cannot use the dummy null_vertex() as a real vertex");
- res_insert = curr_sib->members_.emplace(*vi, Node(curr_sib, filtration));
- if (!res_insert.second) {
- // if already in the complex
- if (res_insert.first->second.filtration() > filtration) {
- // if filtration value modified
- res_insert.first->second.assign_filtration(filtration);
- return res_insert;
- }
- // if filtration value unchanged
- return std::pair<Simplex_handle, bool>(null_simplex(), false);
- }
- // otherwise the insertion has succeeded - size is a size_type
- if (static_cast<int>(simplex.size()) - 1 > dimension_) {
- // Update dimension if needed
- dimension_ = static_cast<int>(simplex.size()) - 1;
- }
- return res_insert;
- }
-
- public:
- /** \brief Insert a simplex, represented by a range of Vertex_handles, in the simplicial complex.
- *
- * @param[in] simplex range of Vertex_handles, representing the vertices of the new simplex
- * @param[in] filtration the filtration value assigned to the new simplex.
- * @return If the new simplex is inserted successfully (i.e. it was not in the
- * simplicial complex yet) the bool is set to true and the Simplex_handle is the handle assigned
- * to the new simplex.
- * If the insertion fails (the simplex is already there), the bool is set to false. If the insertion
- * fails and the simplex already in the complex has a filtration value strictly bigger than 'filtration',
- * we assign this simplex with the new value 'filtration', and set the Simplex_handle field of the
- * output pair to the Simplex_handle of the simplex. Otherwise, we set the Simplex_handle part to
- * null_simplex.
- *
- * All subsimplices do not necessary need to be already in the simplex tree to proceed to an
- * insertion. However, the property of being a simplicial complex will be violated. This allows
- * us to insert a stream of simplices contained in a simplicial complex without considering any
- * order on them.
- *
- * The filtration value
- * assigned to the new simplex must preserve the monotonicity of the filtration.
- *
- * The type InputVertexRange must be a range for which .begin() and
- * .end() return input iterators, with 'value_type' Vertex_handle. */
- template<class InputVertexRange = std::initializer_list<Vertex_handle>>
- std::pair<Simplex_handle, bool> insert_simplex(const InputVertexRange & simplex,
- Filtration_value filtration = 0) {
- auto first = std::begin(simplex);
- auto last = std::end(simplex);
-
- if (first == last)
- return std::pair<Simplex_handle, bool>(null_simplex(), true); // ----->>
-
- // Copy before sorting
- std::vector<Vertex_handle> copy(first, last);
- std::sort(std::begin(copy), std::end(copy));
- return insert_vertex_vector(copy, filtration);
- }
-
- /** \brief Insert a N-simplex and all his subfaces, from a N-simplex represented by a range of
- * Vertex_handles, in the simplicial complex.
- *
- * @param[in] Nsimplex range of Vertex_handles, representing the vertices of the new N-simplex
- * @param[in] filtration the filtration value assigned to the new N-simplex.
- * @return If the new simplex is inserted successfully (i.e. it was not in the
- * simplicial complex yet) the bool is set to true and the Simplex_handle is the handle assigned
- * to the new simplex.
- * If the insertion fails (the simplex is already there), the bool is set to false. If the insertion
- * fails and the simplex already in the complex has a filtration value strictly bigger than 'filtration',
- * we assign this simplex with the new value 'filtration', and set the Simplex_handle field of the
- * output pair to the Simplex_handle of the simplex. Otherwise, we set the Simplex_handle part to
- * null_simplex.
- */
- template<class InputVertexRange = std::initializer_list<Vertex_handle>>
- std::pair<Simplex_handle, bool> insert_simplex_and_subfaces(const InputVertexRange& Nsimplex,
- Filtration_value filtration = 0) {
- auto first = std::begin(Nsimplex);
- auto last = std::end(Nsimplex);
-
- if (first == last)
- return { null_simplex(), true }; // ----->>
-
- // Copy before sorting
- // Thread local is not available on XCode version < V.8 - It will slow down computation
-#ifdef GUDHI_CAN_USE_CXX11_THREAD_LOCAL
- thread_local
-#endif // GUDHI_CAN_USE_CXX11_THREAD_LOCAL
- std::vector<Vertex_handle> copy;
- copy.clear();
- copy.insert(copy.end(), first, last);
- std::sort(std::begin(copy), std::end(copy));
- GUDHI_CHECK_code(
- for (Vertex_handle v : copy)
- GUDHI_CHECK(v != null_vertex(), "cannot use the dummy null_vertex() as a real vertex");
- )
-
- return insert_simplex_and_subfaces_sorted(copy, filtration);
- }
-
- private:
- /// Same as insert_simplex_and_subfaces but assumes that the range of vertices is sorted
- template<class ForwardVertexRange = std::initializer_list<Vertex_handle>>
- std::pair<Simplex_handle, bool> insert_simplex_and_subfaces_sorted(const ForwardVertexRange& Nsimplex, Filtration_value filt = 0) {
- auto first = std::begin(Nsimplex);
- auto last = std::end(Nsimplex);
- if (first == last)
- return { null_simplex(), true }; // FIXME: false would make more sense to me.
- GUDHI_CHECK(std::is_sorted(first, last), "simplex vertices listed in unsorted order");
- // Update dimension if needed. We could wait to see if the insertion succeeds, but I doubt there is much to gain.
- dimension_ = (std::max)(dimension_, static_cast<int>(std::distance(first, last)) - 1);
- return rec_insert_simplex_and_subfaces_sorted(root(), first, last, filt);
- }
- // To insert {1,2,3,4}, we insert {2,3,4} twice, once at the root, and once below 1.
- template<class ForwardVertexIterator>
- std::pair<Simplex_handle, bool> rec_insert_simplex_and_subfaces_sorted(Siblings* sib, ForwardVertexIterator first, ForwardVertexIterator last, Filtration_value filt) {
- // An alternative strategy would be:
- // - try to find the complete simplex, if found (and low filtration) exit
- // - insert all the vertices at once in sib
- // - loop over those (new or not) simplices, with a recursive call(++first, last)
- Vertex_handle vertex_one = *first;
- auto&& dict = sib->members();
- auto insertion_result = dict.emplace(vertex_one, Node(sib, filt));
- Simplex_handle simplex_one = insertion_result.first;
- bool one_is_new = insertion_result.second;
- if (!one_is_new) {
- if (filtration(simplex_one) > filt) {
- assign_filtration(simplex_one, filt);
- } else {
- // FIXME: this interface makes no sense, and it doesn't seem to be tested.
- insertion_result.first = null_simplex();
- }
- }
- if (++first == last) return insertion_result;
- if (!has_children(simplex_one))
- // TODO: have special code here, we know we are building the whole subtree from scratch.
- simplex_one->second.assign_children(new Siblings(sib, vertex_one));
- auto res = rec_insert_simplex_and_subfaces_sorted(simplex_one->second.children(), first, last, filt);
- // No need to continue if the full simplex was already there with a low enough filtration value.
- if (res.first != null_simplex()) rec_insert_simplex_and_subfaces_sorted(sib, first, last, filt);
- return res;
- }
-
- public:
- /** \brief Assign a value 'key' to the key of the simplex
- * represented by the Simplex_handle 'sh'. */
- void assign_key(Simplex_handle sh, Simplex_key key) {
- sh->second.assign_key(key);
- }
-
- /** Returns the two Simplex_handle corresponding to the endpoints of
- * and edge. sh must point to a 1-dimensional simplex. This is an
- * optimized version of the boundary computation. */
- std::pair<Simplex_handle, Simplex_handle> endpoints(Simplex_handle sh) {
- assert(dimension(sh) == 1);
- return { find_vertex(sh->first), find_vertex(self_siblings(sh)->parent()) };
- }
-
- /** Returns the Siblings containing a simplex.*/
- template<class SimplexHandle>
- Siblings* self_siblings(SimplexHandle sh) {
- if (sh->second.children()->parent() == sh->first)
- return sh->second.children()->oncles();
- else
- return sh->second.children();
- }
-
- public:
- /** Returns a pointer to the root nodes of the simplex tree. */
- Siblings * root() {
- return &root_;
- }
-
- /** \brief Set a dimension for the simplicial complex.
- * \details This function must be used with caution because it disables dimension recomputation when required
- * (this recomputation can be triggered by `remove_maximal_simplex()` or `prune_above_filtration()`).
- */
- void set_dimension(int dimension) {
- dimension_to_be_lowered_ = false;
- dimension_ = dimension;
- }
-
- public:
- /** \brief Initializes the filtrations, i.e. sort the
- * simplices according to their order in the filtration and initializes all Simplex_keys.
- *
- * After calling this method, filtration_simplex_range() becomes valid, and each simplex is
- * assigned a Simplex_key corresponding to its order in the filtration (from 0 to m-1 for a
- * simplicial complex with m simplices).
- *
- * Will be automatically called when calling filtration_simplex_range()
- * if the filtration has never been initialized yet. */
- void initialize_filtration() {
- filtration_vect_.clear();
- filtration_vect_.reserve(num_simplices());
- for (Simplex_handle sh : complex_simplex_range())
- filtration_vect_.push_back(sh);
-
- /* We use stable_sort here because with libstdc++ it is faster than sort.
- * is_before_in_filtration is now a total order, but we used to call
- * stable_sort for the following heuristic:
- * The use of a depth-first traversal of the simplex tree, provided by
- * complex_simplex_range(), combined with a stable sort is meant to
- * optimize the order of simplices with same filtration value. The
- * heuristic consists in inserting the cofaces of a simplex as soon as
- * possible.
- */
-#ifdef GUDHI_USE_TBB
- tbb::parallel_sort(filtration_vect_.begin(), filtration_vect_.end(), is_before_in_filtration(this));
-#else
- std::stable_sort(filtration_vect_.begin(), filtration_vect_.end(), is_before_in_filtration(this));
-#endif
- }
-
- private:
- /** Recursive search of cofaces
- * This function uses DFS
- *\param vertices contains a list of vertices, which represent the vertices of the simplex not found yet.
- *\param curr_nbVertices represents the number of vertices of the simplex we reached by going through the tree.
- *\param cofaces contains a list of Simplex_handle, representing all the cofaces asked.
- *\param star true if we need the star of the simplex
- *\param nbVertices number of vertices of the cofaces we search
- * Prefix actions : When the bottom vertex matches with the current vertex in the tree, we remove the bottom vertex from vertices.
- * Infix actions : Then we call or not the recursion.
- * Postfix actions : Finally, we add back the removed vertex into vertices, and remove this vertex from curr_nbVertices so that we didn't change the parameters.
- * If the vertices list is empty, we need to check if curr_nbVertices matches with the dimension of the cofaces asked.
- */
- void rec_coface(std::vector<Vertex_handle> &vertices, Siblings *curr_sib, int curr_nbVertices,
- std::vector<Simplex_handle>& cofaces, bool star, int nbVertices) {
- if (!(star || curr_nbVertices <= nbVertices)) // dimension of actual simplex <= nbVertices
- return;
- for (Simplex_handle simplex = curr_sib->members().begin(); simplex != curr_sib->members().end(); ++simplex) {
- if (vertices.empty()) {
- // If we reached the end of the vertices, and the simplex has more vertices than the given simplex
- // => we found a coface
-
- // Add a coface if we wan't the star or if the number of vertices of the current simplex matches with nbVertices
- bool addCoface = (star || curr_nbVertices == nbVertices);
- if (addCoface)
- cofaces.push_back(simplex);
- if ((!addCoface || star) && has_children(simplex)) // Rec call
- rec_coface(vertices, simplex->second.children(), curr_nbVertices + 1, cofaces, star, nbVertices);
- } else {
- if (simplex->first == vertices.back()) {
- // If curr_sib matches with the top vertex
- bool equalDim = (star || curr_nbVertices == nbVertices); // dimension of actual simplex == nbVertices
- bool addCoface = vertices.size() == 1 && equalDim;
- if (addCoface)
- cofaces.push_back(simplex);
- if ((!addCoface || star) && has_children(simplex)) {
- // Rec call
- Vertex_handle tmp = vertices.back();
- vertices.pop_back();
- rec_coface(vertices, simplex->second.children(), curr_nbVertices + 1, cofaces, star, nbVertices);
- vertices.push_back(tmp);
- }
- } else if (simplex->first > vertices.back()) {
- return;
- } else {
- // (simplex->first < vertices.back()
- if (has_children(simplex))
- rec_coface(vertices, simplex->second.children(), curr_nbVertices + 1, cofaces, star, nbVertices);
- }
- }
- }
- }
-
- public:
- /** \brief Compute the star of a n simplex
- * \param simplex represent the simplex of which we search the star
- * \return Vector of Simplex_handle, empty vector if no cofaces found.
- */
-
- Cofaces_simplex_range star_simplex_range(const Simplex_handle simplex) {
- return cofaces_simplex_range(simplex, 0);
- }
-
- /** \brief Compute the cofaces of a n simplex
- * \param simplex represent the n-simplex of which we search the n+codimension cofaces
- * \param codimension The function returns the n+codimension-cofaces of the n-simplex. If codimension = 0,
- * return all cofaces (equivalent of star function)
- * \return Vector of Simplex_handle, empty vector if no cofaces found.
- */
-
- Cofaces_simplex_range cofaces_simplex_range(const Simplex_handle simplex, int codimension) {
- Cofaces_simplex_range cofaces;
- // codimension must be positive or null integer
- assert(codimension >= 0);
- Simplex_vertex_range rg = simplex_vertex_range(simplex);
- std::vector<Vertex_handle> copy(rg.begin(), rg.end());
- if (codimension + static_cast<int>(copy.size()) > dimension_ + 1 ||
- (codimension == 0 && static_cast<int>(copy.size()) > dimension_)) // n+codimension greater than dimension_
- return cofaces;
- // must be sorted in decreasing order
- assert(std::is_sorted(copy.begin(), copy.end(), std::greater<Vertex_handle>()));
- bool star = codimension == 0;
- rec_coface(copy, &root_, 1, cofaces, star, codimension + static_cast<int>(copy.size()));
- return cofaces;
- }
-
- private:
- /** \brief Returns true iff the list of vertices of sh1
- * is smaller than the list of vertices of sh2 w.r.t.
- * lexicographic order on the lists read in reverse.
- *
- * It defines a StrictWeakOrdering on simplices. The Simplex_vertex_iterators
- * must traverse the Vertex_handle in decreasing order. Reverse lexicographic order satisfy
- * the property that a subsimplex of a simplex is always strictly smaller with this order. */
- bool reverse_lexicographic_order(Simplex_handle sh1, Simplex_handle sh2) {
- Simplex_vertex_range rg1 = simplex_vertex_range(sh1);
- Simplex_vertex_range rg2 = simplex_vertex_range(sh2);
- Simplex_vertex_iterator it1 = rg1.begin();
- Simplex_vertex_iterator it2 = rg2.begin();
- while (it1 != rg1.end() && it2 != rg2.end()) {
- if (*it1 == *it2) {
- ++it1;
- ++it2;
- } else {
- return *it1 < *it2;
- }
- }
- return ((it1 == rg1.end()) && (it2 != rg2.end()));
- }
-
- /** \brief StrictWeakOrdering, for the simplices, defined by the filtration.
- *
- * It corresponds to the partial order
- * induced by the filtration values, with ties resolved using reverse lexicographic order.
- * Reverse lexicographic order has the property to always consider the subsimplex of a simplex
- * to be smaller. The filtration function must be monotonic. */
- struct is_before_in_filtration {
- explicit is_before_in_filtration(Simplex_tree * st)
- : st_(st) { }
-
- bool operator()(const Simplex_handle sh1, const Simplex_handle sh2) const {
- // Not using st_->filtration(sh1) because it uselessly tests for null_simplex.
- if (sh1->second.filtration() != sh2->second.filtration()) {
- return sh1->second.filtration() < sh2->second.filtration();
- }
- // is sh1 a proper subface of sh2
- return st_->reverse_lexicographic_order(sh1, sh2);
- }
-
- Simplex_tree * st_;
- };
-
- public:
- /** \brief Inserts a 1-skeleton in an empty Simplex_tree.
- *
- * The Simplex_tree must contain no simplex when the method is
- * called.
- *
- * Inserts all vertices and edges given by a OneSkeletonGraph.
- * OneSkeletonGraph must be a model of
- * <a href="http://www.boost.org/doc/libs/1_65_1/libs/graph/doc/EdgeListGraph.html">boost::EdgeListGraph</a>
- * and <a href="http://www.boost.org/doc/libs/1_65_1/libs/graph/doc/PropertyGraph.html">boost::PropertyGraph</a>.
- *
- * The vertex filtration value is accessible through the property tag
- * vertex_filtration_t.
- * The edge filtration value is accessible through the property tag
- * edge_filtration_t.
- *
- * boost::graph_traits<OneSkeletonGraph>::vertex_descriptor
- * must be Vertex_handle.
- * boost::graph_traits<OneSkeletonGraph>::directed_category
- * must be undirected_tag.
- *
- * If an edge appears with multiplicity, the function will arbitrarily pick
- * one representative to read the filtration value. */
- template<class OneSkeletonGraph>
- void insert_graph(const OneSkeletonGraph& skel_graph) {
- // the simplex tree must be empty
- assert(num_simplices() == 0);
-
- if (boost::num_vertices(skel_graph) == 0) {
- return;
- }
- if (num_edges(skel_graph) == 0) {
- dimension_ = 0;
- } else {
- dimension_ = 1;
- }
-
- root_.members_.reserve(boost::num_vertices(skel_graph));
-
- typename boost::graph_traits<OneSkeletonGraph>::vertex_iterator v_it,
- v_it_end;
- for (std::tie(v_it, v_it_end) = boost::vertices(skel_graph); v_it != v_it_end;
- ++v_it) {
- root_.members_.emplace_hint(
- root_.members_.end(), *v_it,
- Node(&root_, boost::get(vertex_filtration_t(), skel_graph, *v_it)));
- }
- typename boost::graph_traits<OneSkeletonGraph>::edge_iterator e_it,
- e_it_end;
- for (std::tie(e_it, e_it_end) = boost::edges(skel_graph); e_it != e_it_end;
- ++e_it) {
- auto u = source(*e_it, skel_graph);
- auto v = target(*e_it, skel_graph);
- if (u == v) throw "Self-loops are not simplicial";
- // We cannot skip edges with the wrong orientation and expect them to
- // come a second time with the right orientation, that does not always
- // happen in practice. emplace() should be a NOP when an element with the
- // same key is already there, so seeing the same edge multiple times is
- // ok.
- // Should we actually forbid multiple edges? That would be consistent
- // with rejecting self-loops.
- if (v < u) std::swap(u, v);
- auto sh = find_vertex(u);
- if (!has_children(sh)) {
- sh->second.assign_children(new Siblings(&root_, sh->first));
- }
-
- sh->second.children()->members().emplace(v,
- Node(sh->second.children(), boost::get(edge_filtration_t(), skel_graph, *e_it)));
- }
- }
-
- /** \brief Expands the Simplex_tree containing only its one skeleton
- * until dimension max_dim.
- *
- * The expanded simplicial complex until dimension \f$d\f$
- * attached to a graph \f$G\f$ is the maximal simplicial complex of
- * dimension at most \f$d\f$ admitting the graph \f$G\f$ as \f$1\f$-skeleton.
- * The filtration value assigned to a simplex is the maximal filtration
- * value of one of its edges.
- *
- * The Simplex_tree must contain no simplex of dimension bigger than
- * 1 when calling the method. */
- void expansion(int max_dim) {
- dimension_ = max_dim;
- for (Dictionary_it root_it = root_.members_.begin();
- root_it != root_.members_.end(); ++root_it) {
- if (has_children(root_it)) {
- siblings_expansion(root_it->second.children(), max_dim - 1);
- }
- }
- dimension_ = max_dim - dimension_;
- }
-
- private:
- /** \brief Recursive expansion of the simplex tree.*/
- void siblings_expansion(Siblings * siblings, // must contain elements
- int k) {
- if (dimension_ > k) {
- dimension_ = k;
- }
- if (k == 0)
- return;
- Dictionary_it next = siblings->members().begin();
- ++next;
-
-#ifdef GUDHI_CAN_USE_CXX11_THREAD_LOCAL
- thread_local
-#endif // GUDHI_CAN_USE_CXX11_THREAD_LOCAL
- std::vector<std::pair<Vertex_handle, Node> > inter;
- for (Dictionary_it s_h = siblings->members().begin();
- s_h != siblings->members().end(); ++s_h, ++next) {
- Simplex_handle root_sh = find_vertex(s_h->first);
- if (has_children(root_sh)) {
- intersection(
- inter, // output intersection
- next, // begin
- siblings->members().end(), // end
- root_sh->second.children()->members().begin(),
- root_sh->second.children()->members().end(),
- s_h->second.filtration());
- if (inter.size() != 0) {
- Siblings * new_sib = new Siblings(siblings, // oncles
- s_h->first, // parent
- inter); // boost::container::ordered_unique_range_t
- inter.clear();
- s_h->second.assign_children(new_sib);
- siblings_expansion(new_sib, k - 1);
- } else {
- // ensure the children property
- s_h->second.assign_children(siblings);
- inter.clear();
- }
- }
- }
- }
-
- /** \brief Intersects Dictionary 1 [begin1;end1) with Dictionary 2 [begin2,end2)
- * and assigns the maximal possible Filtration_value to the Nodes. */
- static void intersection(std::vector<std::pair<Vertex_handle, Node> >& intersection,
- Dictionary_it begin1, Dictionary_it end1,
- Dictionary_it begin2, Dictionary_it end2,
- Filtration_value filtration_) {
- if (begin1 == end1 || begin2 == end2)
- return; // ----->>
- while (true) {
- if (begin1->first == begin2->first) {
- Filtration_value filt = (std::max)({begin1->second.filtration(), begin2->second.filtration(), filtration_});
- intersection.emplace_back(begin1->first, Node(nullptr, filt));
- if (++begin1 == end1 || ++begin2 == end2)
- return; // ----->>
- } else if (begin1->first < begin2->first) {
- if (++begin1 == end1)
- return;
- } else /* begin1->first > begin2->first */ {
- if (++begin2 == end2)
- return; // ----->>
- }
- }
- }
-
- public:
- /** \brief Expands a simplex tree containing only a graph. Simplices corresponding to cliques in the graph are added
- * incrementally, faces before cofaces, unless the simplex has dimension larger than `max_dim` or `block_simplex`
- * returns true for this simplex.
- *
- * @param[in] max_dim Expansion maximal dimension value.
- * @param[in] block_simplex Blocker oracle. Its concept is <CODE>bool block_simplex(Simplex_handle sh)</CODE>
- *
- * The function identifies a candidate simplex whose faces are all already in the complex, inserts
- * it with a filtration value corresponding to the maximum of the filtration values of the faces, then calls
- * `block_simplex` on a `Simplex_handle` for this new simplex. If `block_simplex` returns true, the simplex is
- * removed, otherwise it is kept. Note that the evaluation of `block_simplex` is a good time to update the
- * filtration value of the simplex if you want a customized value. The algorithm then proceeds with the next
- * candidate.
- *
- * @warning several candidates of the same dimension may be inserted simultaneously before calling `block_simplex`,
- * so if you examine the complex in `block_simplex`, you may hit a few simplices of the same dimension that have not
- * been vetted by `block_simplex` yet, or have already been rejected but not yet removed.
- */
- template< typename Blocker >
- void expansion_with_blockers(int max_dim, Blocker block_simplex) {
- // Loop must be from the end to the beginning, as higher dimension simplex are always on the left part of the tree
- for (auto& simplex : boost::adaptors::reverse(root_.members())) {
- if (has_children(&simplex)) {
- siblings_expansion_with_blockers(simplex.second.children(), max_dim, max_dim - 1, block_simplex);
- }
- }
- }
-
- private:
- /** \brief Recursive expansion with blockers of the simplex tree.*/
- template< typename Blocker >
- void siblings_expansion_with_blockers(Siblings* siblings, int max_dim, int k, Blocker block_simplex) {
- if (dimension_ < max_dim - k) {
- dimension_ = max_dim - k;
- }
- if (k == 0)
- return;
- // No need to go deeper
- if (siblings->members().size() < 2)
- return;
- // Reverse loop starting before the last one for 'next' to be the last one
- for (auto simplex = siblings->members().rbegin() + 1; simplex != siblings->members().rend(); simplex++) {
- std::vector<std::pair<Vertex_handle, Node> > intersection;
- for(auto next = siblings->members().rbegin(); next != simplex; next++) {
- bool to_be_inserted = true;
- Filtration_value filt = simplex->second.filtration();
- // If all the boundaries are present, 'next' needs to be inserted
- for (Simplex_handle border : boundary_simplex_range(simplex)) {
- Simplex_handle border_child = find_child(border, next->first);
- if (border_child == null_simplex()) {
- to_be_inserted=false;
- break;
- }
- filt = (std::max)(filt, filtration(border_child));
- }
- if (to_be_inserted) {
- intersection.emplace_back(next->first, Node(nullptr, filt));
- }
- }
- if (intersection.size() != 0) {
- // Reverse the order to insert
- Siblings * new_sib = new Siblings(siblings, // oncles
- simplex->first, // parent
- boost::adaptors::reverse(intersection)); // boost::container::ordered_unique_range_t
- std::vector<Vertex_handle> blocked_new_sib_vertex_list;
- // As all intersections are inserted, we can call the blocker function on all new_sib members
- for (auto new_sib_member = new_sib->members().begin();
- new_sib_member != new_sib->members().end();
- new_sib_member++) {
- bool blocker_result = block_simplex(new_sib_member);
- // new_sib member has been blocked by the blocker function
- // add it to the list to be removed - do not perform it while looping on it
- if (blocker_result) {
- blocked_new_sib_vertex_list.push_back(new_sib_member->first);
- }
- }
- if (blocked_new_sib_vertex_list.size() == new_sib->members().size()) {
- // Specific case where all have to be deleted
- delete new_sib;
- // ensure the children property
- simplex->second.assign_children(siblings);
- } else {
- for (auto& blocked_new_sib_member : blocked_new_sib_vertex_list) {
- new_sib->members().erase(blocked_new_sib_member);
- }
- // ensure recursive call
- simplex->second.assign_children(new_sib);
- siblings_expansion_with_blockers(new_sib, max_dim, k - 1, block_simplex);
- }
- } else {
- // ensure the children property
- simplex->second.assign_children(siblings);
- }
- }
- }
-
- /* \private Returns the Simplex_handle composed of the vertex list (from the Simplex_handle), plus the given
- * Vertex_handle if the Vertex_handle is found in the Simplex_handle children list.
- * Returns null_simplex() if it does not exist
- */
- Simplex_handle find_child(Simplex_handle sh, Vertex_handle vh) const {
- if (!has_children(sh))
- return null_simplex();
-
- Simplex_handle child = sh->second.children()->find(vh);
- // Specific case of boost::flat_map does not find, returns boost::flat_map::end()
- // in simplex tree we want a null_simplex()
- if (child == sh->second.children()->members().end())
- return null_simplex();
-
- return child;
- }
-
- public:
- /** \brief Write the hasse diagram of the simplicial complex in os.
- *
- * Each row in the file correspond to a simplex. A line is written:
- * dim idx_1 ... idx_k fil where dim is the dimension of the simplex,
- * idx_1 ... idx_k are the row index (starting from 0) of the simplices of the boundary
- * of the simplex, and fil is its filtration value. */
- void print_hasse(std::ostream& os) {
- os << num_simplices() << " " << std::endl;
- for (auto sh : filtration_simplex_range()) {
- os << dimension(sh) << " ";
- for (auto b_sh : boundary_simplex_range(sh)) {
- os << key(b_sh) << " ";
- }
- os << filtration(sh) << " \n";
- }
- }
-
- public:
- /** \brief This function ensures that each simplex has a higher filtration value than its faces by increasing the
- * filtration values.
- * @return The filtration modification information.
- * \post Some simplex tree functions require the filtration to be valid. `make_filtration_non_decreasing()`
- * function is not launching `initialize_filtration()` but returns the filtration modification information. If the
- * complex has changed , please call `initialize_filtration()` to recompute it.
- */
- bool make_filtration_non_decreasing() {
- bool modified = false;
- // Loop must be from the end to the beginning, as higher dimension simplex are always on the left part of the tree
- for (auto& simplex : boost::adaptors::reverse(root_.members())) {
- if (has_children(&simplex)) {
- modified |= rec_make_filtration_non_decreasing(simplex.second.children());
- }
- }
- return modified;
- }
-
- private:
- /** \brief Recursively Browse the simplex tree to ensure the filtration is not decreasing.
- * @param[in] sib Siblings to be parsed.
- * @return The filtration modification information in order to trigger initialize_filtration.
- */
- bool rec_make_filtration_non_decreasing(Siblings * sib) {
- bool modified = false;
-
- // Loop must be from the end to the beginning, as higher dimension simplex are always on the left part of the tree
- for (auto& simplex : boost::adaptors::reverse(sib->members())) {
- // Find the maximum filtration value in the border
- Boundary_simplex_range boundary = boundary_simplex_range(&simplex);
- Boundary_simplex_iterator max_border = std::max_element(std::begin(boundary), std::end(boundary),
- [](Simplex_handle sh1, Simplex_handle sh2) {
- return filtration(sh1) < filtration(sh2);
- });
-
- Filtration_value max_filt_border_value = filtration(*max_border);
- if (simplex.second.filtration() < max_filt_border_value) {
- // Store the filtration modification information
- modified = true;
- simplex.second.assign_filtration(max_filt_border_value);
- }
- if (has_children(&simplex)) {
- modified |= rec_make_filtration_non_decreasing(simplex.second.children());
- }
- }
- // Make the modified information to be traced by upper call
- return modified;
- }
-
- public:
- /** \brief Prune above filtration value given as parameter.
- * @param[in] filtration Maximum threshold value.
- * @return The filtration modification information.
- * \post Some simplex tree functions require the filtration to be valid. `prune_above_filtration()`
- * function is not launching `initialize_filtration()` but returns the filtration modification information. If the
- * complex has changed , please call `initialize_filtration()` to recompute it.
- * \post Note that the dimension of the simplicial complex may be lower after calling `prune_above_filtration()`
- * than it was before. However, `upper_bound_dimension()` will return the old value, which remains a valid upper
- * bound. If you care, you can call `dimension()` to recompute the exact dimension.
- */
- bool prune_above_filtration(Filtration_value filtration) {
- return rec_prune_above_filtration(root(), filtration);
- }
-
- private:
- bool rec_prune_above_filtration(Siblings* sib, Filtration_value filt) {
- auto&& list = sib->members();
- auto last = std::remove_if(list.begin(), list.end(), [=](Dit_value_t& simplex) {
- if (simplex.second.filtration() <= filt) return false;
- if (has_children(&simplex)) rec_delete(simplex.second.children());
- // dimension may need to be lowered
- dimension_to_be_lowered_ = true;
- return true;
- });
-
- bool modified = (last != list.end());
- if (last == list.begin() && sib != root()) {
- // Removing the whole siblings, parent becomes a leaf.
- sib->oncles()->members()[sib->parent()].assign_children(sib->oncles());
- delete sib;
- // dimension may need to be lowered
- dimension_to_be_lowered_ = true;
- return true;
- } else {
- // Keeping some elements of siblings. Remove the others, and recurse in the remaining ones.
- list.erase(last, list.end());
- for (auto&& simplex : list)
- if (has_children(&simplex))
- modified |= rec_prune_above_filtration(simplex.second.children(), filt);
- }
- return modified;
- }
-
- private:
- /** \brief Deep search simplex tree dimension recompute.
- * @return True if the dimension was modified, false otherwise.
- * \pre Be sure the simplex tree has not a too low dimension value as the deep search stops when the former dimension
- * has been reached (cf. `upper_bound_dimension()` and `set_dimension()` methods).
- */
- bool lower_upper_bound_dimension() {
- // reset automatic detection to recompute
- dimension_to_be_lowered_ = false;
- int new_dimension = -1;
- // Browse the tree from the left to the right as higher dimension cells are more likely on the left part of the tree
- for (Simplex_handle sh : complex_simplex_range()) {
-#ifdef DEBUG_TRACES
- for (auto vertex : simplex_vertex_range(sh)) {
- std::cout << " " << vertex;
- }
- std::cout << std::endl;
-#endif // DEBUG_TRACES
-
- int sh_dimension = dimension(sh);
- if (sh_dimension >= dimension_)
- // Stop browsing as soon as the dimension is reached, no need to go furter
- return false;
- new_dimension = (std::max)(new_dimension, sh_dimension);
- }
- dimension_ = new_dimension;
- return true;
- }
-
-
- public:
- /** \brief Remove a maximal simplex.
- * @param[in] sh Simplex handle on the maximal simplex to remove.
- * \pre Please check the simplex has no coface before removing it.
- * \exception std::invalid_argument In debug mode, if sh has children.
- * \post Be aware that removing is shifting data in a flat_map (initialize_filtration to be done).
- * \post Note that the dimension of the simplicial complex may be lower after calling `remove_maximal_simplex()`
- * than it was before. However, `upper_bound_dimension()` will return the old value, which remains a valid upper
- * bound. If you care, you can call `dimension()` to recompute the exact dimension.
- */
- void remove_maximal_simplex(Simplex_handle sh) {
- // Guarantee the simplex has no children
- GUDHI_CHECK(!has_children(sh),
- std::invalid_argument("Simplex_tree::remove_maximal_simplex - argument has children"));
-
- // Simplex is a leaf, it means the child is the Siblings owning the leaf
- Siblings* child = sh->second.children();
-
- if ((child->size() > 1) || (child == root())) {
- // Not alone, just remove it from members
- // Special case when child is the root of the simplex tree, just remove it from members
- child->erase(sh);
- } else {
- // Sibling is emptied : must be deleted, and its parent must point on his own Sibling
- child->oncles()->members().at(child->parent()).assign_children(child->oncles());
- delete child;
- // dimension may need to be lowered
- dimension_to_be_lowered_ = true;
- }
- }
-
- private:
- Vertex_handle null_vertex_;
- /** \brief Total number of simplices in the complex, without the empty simplex.*/
- /** \brief Set of simplex tree Nodes representing the vertices.*/
- Siblings root_;
- /** \brief Simplices ordered according to a filtration.*/
- std::vector<Simplex_handle> filtration_vect_;
- /** \brief Upper bound on the dimension of the simplicial complex.*/
- int dimension_;
- bool dimension_to_be_lowered_ = false;
-};
-
-// Print a Simplex_tree in os.
-template<typename...T>
-std::ostream& operator<<(std::ostream & os, Simplex_tree<T...> & st) {
- for (auto sh : st.filtration_simplex_range()) {
- os << st.dimension(sh) << " ";
- for (auto v : st.simplex_vertex_range(sh)) {
- os << v << " ";
- }
- os << st.filtration(sh) << "\n"; // TODO(VR): why adding the key ?? not read ?? << " " << st.key(sh) << " \n";
- }
- return os;
-}
-
-template<typename...T>
-std::istream& operator>>(std::istream & is, Simplex_tree<T...> & st) {
- typedef Simplex_tree<T...> ST;
- std::vector<typename ST::Vertex_handle> simplex;
- typename ST::Filtration_value fil;
- int max_dim = -1;
- while (read_simplex(is, simplex, fil)) {
- // read all simplices in the file as a list of vertices
- // Warning : simplex_size needs to be casted in int - Can be 0
- int dim = static_cast<int> (simplex.size() - 1);
- if (max_dim < dim) {
- max_dim = dim;
- }
- // insert every simplex in the simplex tree
- st.insert_simplex(simplex, fil);
- simplex.clear();
- }
- st.set_dimension(max_dim);
-
- return is;
-}
-
-/** Model of SimplexTreeOptions.
- *
- * Maximum number of simplices to compute persistence is <CODE>std::numeric_limits<std::uint32_t>::max()</CODE>
- * (about 4 billions of simplices). */
-struct Simplex_tree_options_full_featured {
- typedef linear_indexing_tag Indexing_tag;
- typedef int Vertex_handle;
- typedef double Filtration_value;
- typedef std::uint32_t Simplex_key;
- static const bool store_key = true;
- static const bool store_filtration = true;
- static const bool contiguous_vertices = false;
-};
-
-/** Model of SimplexTreeOptions, faster than `Simplex_tree_options_full_featured` but note the unsafe
- * `contiguous_vertices` option.
- *
- * Maximum number of simplices to compute persistence is <CODE>std::numeric_limits<std::uint32_t>::max()</CODE>
- * (about 4 billions of simplices). */
-
-struct Simplex_tree_options_fast_persistence {
- typedef linear_indexing_tag Indexing_tag;
- typedef int Vertex_handle;
- typedef float Filtration_value;
- typedef std::uint32_t Simplex_key;
- static const bool store_key = true;
- static const bool store_filtration = true;
- static const bool contiguous_vertices = true;
-};
-
-/** @} */ // end defgroup simplex_tree
-
-} // namespace Gudhi
-
-#endif // SIMPLEX_TREE_H_