summaryrefslogtreecommitdiff
path: root/include/gudhi/Simplex_tree.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/gudhi/Simplex_tree.h')
-rw-r--r--include/gudhi/Simplex_tree.h362
1 files changed, 279 insertions, 83 deletions
diff --git a/include/gudhi/Simplex_tree.h b/include/gudhi/Simplex_tree.h
index 37b3ea97..7456cb1f 100644
--- a/include/gudhi/Simplex_tree.h
+++ b/include/gudhi/Simplex_tree.h
@@ -49,6 +49,7 @@
#include <initializer_list>
#include <algorithm> // for std::max
#include <cstdint> // for std::uint32_t
+#include <iterator> // for std::distance
namespace Gudhi {
@@ -106,8 +107,9 @@ class Simplex_tree {
};
struct Key_simplex_base_dummy {
Key_simplex_base_dummy() {}
- void assign_key(Simplex_key) { }
- Simplex_key key() const { assert(false); return -1; }
+ // Undefined so it will not link
+ void assign_key(Simplex_key);
+ Simplex_key key() const;
};
typedef typename std::conditional<Options::store_key, Key_simplex_base_real, Key_simplex_base_dummy>::type
Key_simplex_base;
@@ -121,7 +123,7 @@ class Simplex_tree {
};
struct Filtration_simplex_base_dummy {
Filtration_simplex_base_dummy() {}
- void assign_filtration(Filtration_value f) { assert(f == 0); }
+ void assign_filtration(Filtration_value GUDHI_CHECK_code(f)) { GUDHI_CHECK(f == 0, "filtration value specified for a complex that does not store them"); }
Filtration_value filtration() const { return 0; }
};
typedef typename std::conditional<Options::store_filtration, Filtration_simplex_base_real,
@@ -391,13 +393,13 @@ class Simplex_tree {
return sh->second.key();
}
- /** \brief Returns the simplex associated to a key.
+ /** \brief Returns the simplex that has index idx in the filtration.
*
* The filtration must be initialized.
* \pre SimplexTreeOptions::store_key
*/
- Simplex_handle simplex(Simplex_key key) const {
- return filtration_vect_[key];
+ Simplex_handle simplex(Simplex_key idx) const {
+ return filtration_vect_[idx];
}
/** \brief Returns the filtration value of a simplex.
@@ -482,7 +484,17 @@ class Simplex_tree {
}
/** \brief Returns an upper bound on the dimension of the simplicial complex. */
- int dimension() const {
+ int upper_bound_dimension() const {
+ return dimension_;
+ }
+
+ /** \brief Returns the dimension of the simplicial complex.
+ \details This function is not constant time because it can recompute dimension if required (can be triggered by
+ `remove_maximal_simplex()` or `prune_above_filtration()`).
+ */
+ int dimension() {
+ if (dimension_to_be_lowered_)
+ lower_upper_bound_dimension();
return dimension_;
}
@@ -490,6 +502,7 @@ class Simplex_tree {
* sh has children.*/
template<class SimplexHandle>
bool has_children(SimplexHandle sh) const {
+ // Here we rely on the root using null_vertex(), which cannot match any real vertex.
return (sh->second.children()->parent() == sh->first);
}
@@ -519,18 +532,30 @@ class Simplex_tree {
Simplex_handle find_simplex(const std::vector<Vertex_handle> & simplex) {
Siblings * tmp_sib = &root_;
Dictionary_it tmp_dit;
- Vertex_handle last = simplex.back();
- for (auto v : simplex) {
- tmp_dit = tmp_sib->members_.find(v);
- if (tmp_dit == tmp_sib->members_.end()) {
+ auto vi = simplex.begin();
+ if (Options::contiguous_vertices) {
+ // Equivalent to the first iteration of the normal loop
+ GUDHI_CHECK(contiguous_vertices(), "non-contiguous vertices");
+ Vertex_handle v = *vi++;
+ if(v < 0 || v >= static_cast<Vertex_handle>(root_.members_.size()))
return null_simplex();
- }
- if (!has_children(tmp_dit) && v != last) {
+ tmp_dit = root_.members_.begin() + v;
+ if (vi == simplex.end())
+ return tmp_dit;
+ if (!has_children(tmp_dit))
+ return null_simplex();
+ tmp_sib = tmp_dit->second.children();
+ }
+ for (;;) {
+ tmp_dit = tmp_sib->members_.find(*vi++);
+ if (tmp_dit == tmp_sib->members_.end())
+ return null_simplex();
+ if (vi == simplex.end())
+ return tmp_dit;
+ if (!has_children(tmp_dit))
return null_simplex();
- }
tmp_sib = tmp_dit->second.children();
}
- return tmp_dit;
}
/** \brief Returns the Simplex_handle corresponding to the 0-simplex
@@ -574,12 +599,14 @@ class Simplex_tree {
std::pair<Simplex_handle, bool> res_insert;
auto vi = simplex.begin();
for (; vi != simplex.end() - 1; ++vi) {
+ GUDHI_CHECK(*vi != null_vertex(), "cannot use the dummy null_vertex() as a real vertex");
res_insert = curr_sib->members_.emplace(*vi, Node(curr_sib, filtration));
if (!(has_children(res_insert.first))) {
res_insert.first->second.assign_children(new Siblings(curr_sib, *vi));
}
curr_sib = res_insert.first->second.children();
}
+ GUDHI_CHECK(*vi != null_vertex(), "cannot use the dummy null_vertex() as a real vertex");
res_insert = curr_sib->members_.emplace(*vi, Node(curr_sib, filtration));
if (!res_insert.second) {
// if already in the complex
@@ -591,7 +618,11 @@ class Simplex_tree {
// if filtration value unchanged
return std::pair<Simplex_handle, bool>(null_simplex(), false);
}
- // otherwise the insertion has succeeded
+ // otherwise the insertion has succeeded - size is a size_type
+ if (static_cast<int>(simplex.size()) - 1 > dimension_) {
+ // Update dimension if needed
+ dimension_ = static_cast<int>(simplex.size()) - 1;
+ }
return res_insert;
}
@@ -650,71 +681,67 @@ class Simplex_tree {
*/
template<class InputVertexRange = std::initializer_list<Vertex_handle>>
std::pair<Simplex_handle, bool> insert_simplex_and_subfaces(const InputVertexRange& Nsimplex,
- Filtration_value filtration = 0) {
+ Filtration_value filtration = 0) {
auto first = std::begin(Nsimplex);
auto last = std::end(Nsimplex);
if (first == last)
- return std::pair<Simplex_handle, bool>(null_simplex(), true); // ----->>
+ return { null_simplex(), true }; // ----->>
// Copy before sorting
- std::vector<Vertex_handle> copy(first, last);
+ thread_local std::vector<Vertex_handle> copy;
+ copy.clear();
+ copy.insert(copy.end(), first, last);
std::sort(std::begin(copy), std::end(copy));
+ GUDHI_CHECK_code(
+ for (Vertex_handle v : copy)
+ GUDHI_CHECK(v != null_vertex(), "cannot use the dummy null_vertex() as a real vertex");
+ )
- std::vector<std::vector<Vertex_handle>> to_be_inserted;
- std::vector<std::vector<Vertex_handle>> to_be_propagated;
- return rec_insert_simplex_and_subfaces(copy, to_be_inserted, to_be_propagated, filtration);
+ return insert_simplex_and_subfaces_sorted(copy, filtration);
}
private:
- std::pair<Simplex_handle, bool> rec_insert_simplex_and_subfaces(std::vector<Vertex_handle>& the_simplex,
- std::vector<std::vector<Vertex_handle>>& to_be_inserted,
- std::vector<std::vector<Vertex_handle>>& to_be_propagated,
- Filtration_value filtration = 0.0) {
- std::pair<Simplex_handle, bool> insert_result;
- if (the_simplex.size() > 1) {
- // Get and remove last vertex
- Vertex_handle last_vertex = the_simplex.back();
- the_simplex.pop_back();
- // Recursive call after last vertex removal
- insert_result = rec_insert_simplex_and_subfaces(the_simplex, to_be_inserted, to_be_propagated, filtration);
-
- // Concatenation of to_be_inserted and to_be_propagated
- to_be_inserted.insert(to_be_inserted.begin(), to_be_propagated.begin(), to_be_propagated.end());
- to_be_propagated = to_be_inserted;
-
- // to_be_inserted treatment
- for (auto& simplex_tbi : to_be_inserted) {
- simplex_tbi.push_back(last_vertex);
- }
- std::vector<Vertex_handle> last_simplex(1, last_vertex);
- to_be_inserted.insert(to_be_inserted.begin(), last_simplex);
- // i.e. (0,1,2) =>
- // [to_be_inserted | to_be_propagated] = [(1) (0,1) | (0)]
- // [to_be_inserted | to_be_propagated] = [(2) (0,2) (1,2) (0,1,2) | (0) (1) (0,1)]
- // N.B. : it is important the last inserted to be the highest in dimension
- // in order to return the "last" insert_simplex result
-
- // insert all to_be_inserted
- for (auto& simplex_tbi : to_be_inserted) {
- insert_result = insert_vertex_vector(simplex_tbi, filtration);
- }
- } else if (the_simplex.size() == 1) {
- // When reaching the end of recursivity, vector of simplices shall be empty and filled on back recursive
- if ((to_be_inserted.size() != 0) || (to_be_propagated.size() != 0)) {
- std::cerr << "Simplex_tree::rec_insert_simplex_and_subfaces - Error vector not empty\n";
- exit(-1);
+ /// Same as insert_simplex_and_subfaces but assumes that the range of vertices is sorted
+ template<class ForwardVertexRange = std::initializer_list<Vertex_handle>>
+ std::pair<Simplex_handle, bool> insert_simplex_and_subfaces_sorted(const ForwardVertexRange& Nsimplex, Filtration_value filt = 0) {
+ auto first = std::begin(Nsimplex);
+ auto last = std::end(Nsimplex);
+ if (first == last)
+ return { null_simplex(), true }; // FIXME: false would make more sense to me.
+ GUDHI_CHECK(std::is_sorted(first, last), "simplex vertices listed in unsorted order");
+ // Update dimension if needed. We could wait to see if the insertion succeeds, but I doubt there is much to gain.
+ dimension_ = (std::max)(dimension_, static_cast<int>(std::distance(first, last)) - 1);
+ return rec_insert_simplex_and_subfaces_sorted(root(), first, last, filt);
+ }
+ // To insert {1,2,3,4}, we insert {2,3,4} twice, once at the root, and once below 1.
+ template<class ForwardVertexIterator>
+ std::pair<Simplex_handle, bool> rec_insert_simplex_and_subfaces_sorted(Siblings* sib, ForwardVertexIterator first, ForwardVertexIterator last, Filtration_value filt) {
+ // An alternative strategy would be:
+ // - try to find the complete simplex, if found (and low filtration) exit
+ // - insert all the vertices at once in sib
+ // - loop over those (new or not) simplices, with a recursive call(++first, last)
+ Vertex_handle vertex_one = *first;
+ auto&& dict = sib->members();
+ auto insertion_result = dict.emplace(vertex_one, Node(sib, filt));
+ Simplex_handle simplex_one = insertion_result.first;
+ bool one_is_new = insertion_result.second;
+ if (!one_is_new) {
+ if (filtration(simplex_one) > filt) {
+ assign_filtration(simplex_one, filt);
+ } else {
+ // FIXME: this interface makes no sense, and it doesn't seem to be tested.
+ insertion_result.first = null_simplex();
}
- std::vector<Vertex_handle> first_simplex(1, the_simplex.back());
- // i.e. (0,1,2) => [to_be_inserted | to_be_propagated] = [(0) | ]
- to_be_inserted.push_back(first_simplex);
-
- insert_result = insert_vertex_vector(first_simplex, filtration);
- } else {
- std::cerr << "Simplex_tree::rec_insert_simplex_and_subfaces - Recursivity error\n";
- exit(-1);
}
- return insert_result;
+ if (++first == last) return insertion_result;
+ if (!has_children(simplex_one))
+ // TODO: have special code here, we know we are building the whole subtree from scratch.
+ simplex_one->second.assign_children(new Siblings(sib, vertex_one));
+ auto res = rec_insert_simplex_and_subfaces_sorted(simplex_one->second.children(), first, last, filt);
+ // No need to continue if the full simplex was already there with a low enough filtration value.
+ if (res.first != null_simplex()) rec_insert_simplex_and_subfaces_sorted(sib, first, last, filt);
+ return res;
}
public:
@@ -747,8 +774,12 @@ class Simplex_tree {
return &root_;
}
- /** Set a dimension for the simplicial complex. */
+ /** \brief Set a dimension for the simplicial complex.
+ * \details This function must be used with caution because it disables dimension recomputation when required
+ * (this recomputation can be triggered by `remove_maximal_simplex()` or `prune_above_filtration()`).
+ */
void set_dimension(int dimension) {
+ dimension_to_be_lowered_ = false;
dimension_ = dimension;
}
@@ -923,8 +954,9 @@ class Simplex_tree {
* called.
*
* Inserts all vertices and edges given by a OneSkeletonGraph.
- * OneSkeletonGraph must be a model of boost::AdjacencyGraph,
- * boost::EdgeListGraph and boost::PropertyGraph.
+ * OneSkeletonGraph must be a model of
+ * <a href="http://www.boost.org/doc/libs/1_65_1/libs/graph/doc/EdgeListGraph.html">boost::EdgeListGraph</a>
+ * and <a href="http://www.boost.org/doc/libs/1_65_1/libs/graph/doc/PropertyGraph.html">boost::PropertyGraph</a>.
*
* The vertex filtration value is accessible through the property tag
* vertex_filtration_t.
@@ -934,7 +966,10 @@ class Simplex_tree {
* boost::graph_traits<OneSkeletonGraph>::vertex_descriptor
* must be Vertex_handle.
* boost::graph_traits<OneSkeletonGraph>::directed_category
- * must be undirected_tag. */
+ * must be undirected_tag.
+ *
+ * If an edge appears with multiplicity, the function will arbitrarily pick
+ * one representative to read the filtration value. */
template<class OneSkeletonGraph>
void insert_graph(const OneSkeletonGraph& skel_graph) {
// the simplex tree must be empty
@@ -965,18 +1000,22 @@ class Simplex_tree {
++e_it) {
auto u = source(*e_it, skel_graph);
auto v = target(*e_it, skel_graph);
- if (u < v) {
- // count edges only once { std::swap(u,v); } // u < v
- auto sh = find_vertex(u);
- if (!has_children(sh)) {
- sh->second.assign_children(new Siblings(&root_, sh->first));
- }
-
- sh->second.children()->members().emplace(
- v,
- Node(sh->second.children(),
- boost::get(edge_filtration_t(), skel_graph, *e_it)));
+ if (u == v) throw "Self-loops are not simplicial";
+ // We cannot skip edges with the wrong orientation and expect them to
+ // come a second time with the right orientation, that does not always
+ // happen in practice. emplace() should be a NOP when an element with the
+ // same key is already there, so seeing the same edge multiple times is
+ // ok.
+ // Should we actually forbid multiple edges? That would be consistent
+ // with rejecting self-loops.
+ if (v < u) std::swap(u, v);
+ auto sh = find_vertex(u);
+ if (!has_children(sh)) {
+ sh->second.assign_children(new Siblings(&root_, sh->first));
}
+
+ sh->second.children()->members().emplace(v,
+ Node(sh->second.children(), boost::get(edge_filtration_t(), skel_graph, *e_it)));
}
}
@@ -1067,6 +1106,120 @@ class Simplex_tree {
}
public:
+ /** \brief Expands a simplex tree containing only a graph. Simplices corresponding to cliques in the graph are added
+ * incrementally, faces before cofaces, unless the simplex has dimension larger than `max_dim` or `block_simplex`
+ * returns true for this simplex.
+ *
+ * @param[in] max_dim Expansion maximal dimension value.
+ * @param[in] block_simplex Blocker oracle. Its concept is <CODE>bool block_simplex(Simplex_handle sh)</CODE>
+ *
+ * The function identifies a candidate simplex whose faces are all already in the complex, inserts
+ * it with a filtration value corresponding to the maximum of the filtration values of the faces, then calls
+ * `block_simplex` on a `Simplex_handle` for this new simplex. If `block_simplex` returns true, the simplex is
+ * removed, otherwise it is kept. Note that the evaluation of `block_simplex` is a good time to update the
+ * filtration value of the simplex if you want a customized value. The algorithm then proceeds with the next
+ * candidate.
+ *
+ * @warning several candidates of the same dimension may be inserted simultaneously before calling `block_simplex`,
+ * so if you examine the complex in `block_simplex`, you may hit a few simplices of the same dimension that have not
+ * been vetted by `block_simplex` yet, or have already been rejected but not yet removed.
+ */
+ template< typename Blocker >
+ void expansion_with_blockers(int max_dim, Blocker block_simplex) {
+ // Loop must be from the end to the beginning, as higher dimension simplex are always on the left part of the tree
+ for (auto& simplex : boost::adaptors::reverse(root_.members())) {
+ if (has_children(&simplex)) {
+ siblings_expansion_with_blockers(simplex.second.children(), max_dim, max_dim - 1, block_simplex);
+ }
+ }
+ }
+
+ private:
+ /** \brief Recursive expansion with blockers of the simplex tree.*/
+ template< typename Blocker >
+ void siblings_expansion_with_blockers(Siblings* siblings, int max_dim, int k, Blocker block_simplex) {
+ if (dimension_ < max_dim - k) {
+ dimension_ = max_dim - k;
+ }
+ if (k == 0)
+ return;
+ // No need to go deeper
+ if (siblings->members().size() < 2)
+ return;
+ // Reverse loop starting before the last one for 'next' to be the last one
+ for (auto simplex = siblings->members().rbegin() + 1; simplex != siblings->members().rend(); simplex++) {
+ std::vector<std::pair<Vertex_handle, Node> > intersection;
+ for(auto next = siblings->members().rbegin(); next != simplex; next++) {
+ bool to_be_inserted = true;
+ Filtration_value filt = simplex->second.filtration();
+ // If all the boundaries are present, 'next' needs to be inserted
+ for (Simplex_handle border : boundary_simplex_range(simplex)) {
+ Simplex_handle border_child = find_child(border, next->first);
+ if (border_child == null_simplex()) {
+ to_be_inserted=false;
+ break;
+ }
+ filt = (std::max)(filt, filtration(border_child));
+ }
+ if (to_be_inserted) {
+ intersection.emplace_back(next->first, Node(nullptr, filt));
+ }
+ }
+ if (intersection.size() != 0) {
+ // Reverse the order to insert
+ Siblings * new_sib = new Siblings(siblings, // oncles
+ simplex->first, // parent
+ boost::adaptors::reverse(intersection)); // boost::container::ordered_unique_range_t
+ std::vector<Vertex_handle> blocked_new_sib_vertex_list;
+ // As all intersections are inserted, we can call the blocker function on all new_sib members
+ for (auto new_sib_member = new_sib->members().begin();
+ new_sib_member != new_sib->members().end();
+ new_sib_member++) {
+ bool blocker_result = block_simplex(new_sib_member);
+ // new_sib member has been blocked by the blocker function
+ // add it to the list to be removed - do not perform it while looping on it
+ if (blocker_result) {
+ blocked_new_sib_vertex_list.push_back(new_sib_member->first);
+ }
+ }
+ if (blocked_new_sib_vertex_list.size() == new_sib->members().size()) {
+ // Specific case where all have to be deleted
+ delete new_sib;
+ // ensure the children property
+ simplex->second.assign_children(siblings);
+ } else {
+ for (auto& blocked_new_sib_member : blocked_new_sib_vertex_list) {
+ new_sib->members().erase(blocked_new_sib_member);
+ }
+ // ensure recursive call
+ simplex->second.assign_children(new_sib);
+ siblings_expansion_with_blockers(new_sib, max_dim, k - 1, block_simplex);
+ }
+ } else {
+ // ensure the children property
+ simplex->second.assign_children(siblings);
+ }
+ }
+ }
+
+ /* \private Returns the Simplex_handle composed of the vertex list (from the Simplex_handle), plus the given
+ * Vertex_handle if the Vertex_handle is found in the Simplex_handle children list.
+ * Returns null_simplex() if it does not exist
+ */
+ Simplex_handle find_child(Simplex_handle sh, Vertex_handle vh) const {
+ if (!has_children(sh))
+ return null_simplex();
+
+ Simplex_handle child = sh->second.children()->find(vh);
+ // Specific case of boost::flat_map does not find, returns boost::flat_map::end()
+ // in simplex tree we want a null_simplex()
+ if (child == sh->second.children()->members().end())
+ return null_simplex();
+
+ return child;
+ }
+
+ public:
/** \brief Write the hasse diagram of the simplicial complex in os.
*
* Each row in the file correspond to a simplex. A line is written:
@@ -1142,6 +1295,9 @@ class Simplex_tree {
* \post Some simplex tree functions require the filtration to be valid. `prune_above_filtration()`
* function is not launching `initialize_filtration()` but returns the filtration modification information. If the
* complex has changed , please call `initialize_filtration()` to recompute it.
+ * \post Note that the dimension of the simplicial complex may be lower after calling `prune_above_filtration()`
+ * than it was before. However, `upper_bound_dimension()` will return the old value, which remains a valid upper
+ * bound. If you care, you can call `dimension()` to recompute the exact dimension.
*/
bool prune_above_filtration(Filtration_value filtration) {
return rec_prune_above_filtration(root(), filtration);
@@ -1153,6 +1309,8 @@ class Simplex_tree {
auto last = std::remove_if(list.begin(), list.end(), [=](Dit_value_t& simplex) {
if (simplex.second.filtration() <= filt) return false;
if (has_children(&simplex)) rec_delete(simplex.second.children());
+ // dimension may need to be lowered
+ dimension_to_be_lowered_ = true;
return true;
});
@@ -1161,6 +1319,8 @@ class Simplex_tree {
// Removing the whole siblings, parent becomes a leaf.
sib->oncles()->members()[sib->parent()].assign_children(sib->oncles());
delete sib;
+ // dimension may need to be lowered
+ dimension_to_be_lowered_ = true;
return true;
} else {
// Keeping some elements of siblings. Remove the others, and recurse in the remaining ones.
@@ -1172,12 +1332,45 @@ class Simplex_tree {
return modified;
}
+ private:
+ /** \brief Deep search simplex tree dimension recompute.
+ * @return True if the dimension was modified, false otherwise.
+ * \pre Be sure the simplex tree has not a too low dimension value as the deep search stops when the former dimension
+ * has been reached (cf. `upper_bound_dimension()` and `set_dimension()` methods).
+ */
+ bool lower_upper_bound_dimension() {
+ // reset automatic detection to recompute
+ dimension_to_be_lowered_ = false;
+ int new_dimension = -1;
+ // Browse the tree from the left to the right as higher dimension cells are more likely on the left part of the tree
+ for (Simplex_handle sh : complex_simplex_range()) {
+#ifdef DEBUG_TRACES
+ for (auto vertex : simplex_vertex_range(sh)) {
+ std::cout << " " << vertex;
+ }
+ std::cout << std::endl;
+#endif // DEBUG_TRACES
+
+ int sh_dimension = dimension(sh);
+ if (sh_dimension >= dimension_)
+ // Stop browsing as soon as the dimension is reached, no need to go furter
+ return false;
+ new_dimension = (std::max)(new_dimension, sh_dimension);
+ }
+ dimension_ = new_dimension;
+ return true;
+ }
+
+
public:
/** \brief Remove a maximal simplex.
* @param[in] sh Simplex handle on the maximal simplex to remove.
* \pre Please check the simplex has no coface before removing it.
* \exception std::invalid_argument In debug mode, if sh has children.
* \post Be aware that removing is shifting data in a flat_map (initialize_filtration to be done).
+ * \post Note that the dimension of the simplicial complex may be lower after calling `remove_maximal_simplex()`
+ * than it was before. However, `upper_bound_dimension()` will return the old value, which remains a valid upper
+ * bound. If you care, you can call `dimension()` to recompute the exact dimension.
*/
void remove_maximal_simplex(Simplex_handle sh) {
// Guarantee the simplex has no children
@@ -1195,6 +1388,8 @@ class Simplex_tree {
// Sibling is emptied : must be deleted, and its parent must point on his own Sibling
child->oncles()->members().at(child->parent()).assign_children(child->oncles());
delete child;
+ // dimension may need to be lowered
+ dimension_to_be_lowered_ = true;
}
}
@@ -1207,6 +1402,7 @@ class Simplex_tree {
std::vector<Simplex_handle> filtration_vect_;
/** \brief Upper bound on the dimension of the simplicial complex.*/
int dimension_;
+ bool dimension_to_be_lowered_ = false;
};
// Print a Simplex_tree in os.