summaryrefslogtreecommitdiff
path: root/include/gudhi_patches/CGAL/Triangulation.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/gudhi_patches/CGAL/Triangulation.h')
-rw-r--r--include/gudhi_patches/CGAL/Triangulation.h1424
1 files changed, 1424 insertions, 0 deletions
diff --git a/include/gudhi_patches/CGAL/Triangulation.h b/include/gudhi_patches/CGAL/Triangulation.h
new file mode 100644
index 00000000..906df92e
--- /dev/null
+++ b/include/gudhi_patches/CGAL/Triangulation.h
@@ -0,0 +1,1424 @@
+// Copyright (c) 2009-2014 INRIA Sophia-Antipolis (France).
+// All rights reserved.
+//
+// This file is part of CGAL (www.cgal.org).
+// You can redistribute it and/or modify it under the terms of the GNU
+// General Public License as published by the Free Software Foundation,
+// either version 3 of the License, or (at your option) any later version.
+//
+// Licensees holding a valid commercial license may use this file in
+// accordance with the commercial license agreement provided with the software.
+//
+// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
+// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
+//
+// $URL$
+// $Id$
+//
+// Author(s) : Samuel Hornus
+
+#ifndef CGAL_TRIANGULATION_H
+#define CGAL_TRIANGULATION_H
+
+#include <CGAL/internal/Triangulation/utilities.h>
+#include <CGAL/Triangulation_data_structure.h>
+#include <CGAL/Triangulation_full_cell.h>
+#include <CGAL/Triangulation_vertex.h>
+#include <CGAL/Iterator_project.h>
+#include <CGAL/spatial_sort.h>
+#include <CGAL/Dimension.h>
+#include <CGAL/iterator.h>
+#include <CGAL/Default.h>
+#include <CGAL/Random.h>
+
+#include <boost/iterator/filter_iterator.hpp>
+#include <boost/iterator/transform_iterator.hpp>
+
+namespace CGAL {
+
+// Iterator which iterates over vertex_handle's, but returns a point when
+// dereferenced. If the current
+// vertex_handle vh == vh_where_point_should_be_substituted, it returns
+// "subtitute_point", otherwise, it returns vh->point()
+template<class VertexHandleConstIter>
+class Substitute_point_in_vertex_iterator
+{
+ typedef typename std::iterator_traits<VertexHandleConstIter>::value_type Vertex_handle;
+ typedef typename Vertex_handle::value_type Vertex;
+ typedef typename Vertex::Point Point;
+
+public:
+ typedef Point const& result_type; // For result_of
+
+ Substitute_point_in_vertex_iterator(
+ Vertex_handle vh_where_point_should_be_substituted,
+ Point const *subtitute_point)
+ : vh_where_point_should_be_substituted_(vh_where_point_should_be_substituted)
+ , subtitute_point_(subtitute_point)
+ {}
+
+ result_type operator()(Vertex_handle vh) const
+ {
+ if (vh == vh_where_point_should_be_substituted_)
+ return *subtitute_point_;
+ else
+ return vh->point();
+ }
+
+private:
+ Vertex_handle vh_where_point_should_be_substituted_;
+ Point const *subtitute_point_;
+
+};
+
+
+template < class TriangulationTraits, class TDS_ = Default >
+class Triangulation
+{
+ typedef typename TriangulationTraits::Dimension Maximal_dimension_;
+ typedef typename Default::Get<TDS_, Triangulation_data_structure
+ < Maximal_dimension_,
+ Triangulation_vertex<TriangulationTraits>,
+ Triangulation_full_cell<TriangulationTraits> >
+ >::type TDS;
+ typedef Triangulation<TriangulationTraits, TDS_> Self;
+
+protected:
+ typedef typename TriangulationTraits::Flat_orientation_d Flat_orientation_d;
+ typedef typename TriangulationTraits::Construct_flat_orientation_d Construct_flat_orientation_d;
+ typedef typename TriangulationTraits::In_flat_orientation_d In_flat_orientation_d;
+
+ // Wrapper
+ struct Coaffine_orientation_d
+ {
+ boost::optional<Flat_orientation_d>* fop;
+ Construct_flat_orientation_d cfo;
+ In_flat_orientation_d ifo;
+
+ Coaffine_orientation_d(
+ boost::optional<Flat_orientation_d>& x,
+ Construct_flat_orientation_d const&y,
+ In_flat_orientation_d const&z)
+ : fop(&x), cfo(y), ifo(z) {}
+
+ template<class Iter>
+ CGAL::Orientation operator()(Iter a, Iter b) const
+ {
+ if (*fop)
+ return ifo(fop->get(),a,b);
+ *fop = cfo(a,b);
+ CGAL_assertion(ifo(fop->get(),a,b) == CGAL::POSITIVE);
+ return CGAL::POSITIVE;
+ }
+ };
+
+ void reset_flat_orientation()
+ {
+ if (current_dimension() == preset_flat_orientation_.first)
+ {
+ CGAL_assertion(preset_flat_orientation_.second != NULL);
+ flat_orientation_ = *preset_flat_orientation_.second;
+ }
+ else
+ flat_orientation_ = boost::none;
+ }
+
+ typedef typename TriangulationTraits::Orientation_d
+ Orientation_d;
+
+public:
+
+ typedef TriangulationTraits Geom_traits;
+ typedef TDS Triangulation_ds;
+
+ typedef typename TDS::Vertex Vertex;
+ typedef typename TDS::Full_cell Full_cell;
+ typedef typename TDS::Facet Facet;
+ typedef typename TDS::Face Face;
+
+ typedef Maximal_dimension_ Maximal_dimension;
+ typedef typename Geom_traits::Point_d Point;
+
+ typedef typename TDS::Vertex_handle Vertex_handle;
+ typedef typename TDS::Vertex_iterator Vertex_iterator;
+ typedef typename TDS::Vertex_const_handle Vertex_const_handle;
+ typedef typename TDS::Vertex_const_iterator Vertex_const_iterator;
+
+ typedef typename TDS::Full_cell_handle Full_cell_handle;
+ typedef typename TDS::Full_cell_iterator Full_cell_iterator;
+ typedef typename TDS::Full_cell_const_handle Full_cell_const_handle;
+ typedef typename TDS::Full_cell_const_iterator Full_cell_const_iterator;
+
+ typedef typename TDS::Facet_iterator Facet_iterator;
+
+ typedef typename TDS::size_type size_type;
+ typedef typename TDS::difference_type difference_type;
+
+ /// The type of location a new point is found lying on
+ enum Locate_type
+ {
+ ON_VERTEX = 0 // simplex of dimension 0
+ , IN_FACE = 1 // simplex of dimension in [ 1, |current_dimension()| - 2 ]
+ , IN_FACET = 2 // simplex of dimension |current_dimension()| - 1
+ , IN_FULL_CELL = 3 /// simplex of dimension |current_dimension()|
+ , OUTSIDE_CONVEX_HULL = 4
+ , OUTSIDE_AFFINE_HULL = 5
+ };
+
+ // Finite elements iterators
+
+ class Finiteness_predicate;
+
+ typedef boost::filter_iterator<Finiteness_predicate, Vertex_iterator>
+ Finite_vertex_iterator;
+ typedef boost::filter_iterator<Finiteness_predicate, Vertex_const_iterator>
+ Finite_vertex_const_iterator;
+ typedef boost::filter_iterator<Finiteness_predicate, Full_cell_iterator>
+ Finite_full_cell_iterator;
+ typedef boost::filter_iterator<Finiteness_predicate, Full_cell_const_iterator>
+ Finite_full_cell_const_iterator;
+ typedef boost::filter_iterator<Finiteness_predicate, Facet_iterator>
+ Finite_facet_iterator;
+
+protected: // DATA MEMBERS
+
+ Triangulation_ds tds_;
+ const Geom_traits kernel_;
+ Vertex_handle infinity_;
+ mutable std::vector<Oriented_side> orientations_;
+ mutable boost::optional<Flat_orientation_d> flat_orientation_;
+ // The user can specify a Flat_orientation_d object to be used for
+ // orienting simplices of a specific dimension
+ // (= preset_flat_orientation_.first)
+ // preset_flat_orientation_.first = numeric_limits<int>::max() otherwise)
+ std::pair<int, const Flat_orientation_d *> preset_flat_orientation_;
+ // for stochastic walk in the locate() function:
+ mutable Random rng_;
+#ifdef CGAL_TRIANGULATION_STATISTICS
+ mutable unsigned long walk_size_;
+#endif
+
+protected: // HELPER FUNCTIONS
+
+ typedef CGAL::Iterator_project<
+ typename Full_cell::Vertex_handle_const_iterator,
+ internal::Triangulation::Point_from_vertex_handle<Vertex_handle, Point>
+ > Point_const_iterator;
+
+ Point_const_iterator points_begin(Full_cell_const_handle c) const
+ { return Point_const_iterator(c->vertices_begin()); }
+ Point_const_iterator points_end(Full_cell_const_handle c) const
+ { return Point_const_iterator(c->vertices_end()); }
+ Point_const_iterator points_begin(Full_cell_handle c) const
+ { return Point_const_iterator(c->vertices_begin()); }
+ Point_const_iterator points_end(Full_cell_handle c) const
+ { return Point_const_iterator(c->vertices_end()); }
+
+public:
+
+ // FACETS OPERATIONS
+
+ Full_cell_handle full_cell(const Facet & f) const
+ {
+ return tds().full_cell(f);
+ }
+
+ int index_of_covertex(const Facet & f) const
+ {
+ return tds().index_of_covertex(f);
+ }
+
+// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - UTILITIES
+
+ // A co-dimension 2 sub-simplex. called a Rotor because we can rotate
+ // the two "covertices" around the sub-simplex. Useful for traversing the
+ // boundary of a hole. NOT DOCUMENTED
+ typedef cpp11::tuple<Full_cell_handle, int, int> Rotor;
+
+ // Commented out because it was causing "internal compiler error" in MSVC
+ /*Full_cell_handle full_cell(const Rotor & r) const // NOT DOCUMENTED
+ {
+ return cpp11::get<0>(r);
+ }
+ int index_of_covertex(const Rotor & r) const // NOT DOCUMENTED
+ {
+ return cpp11::get<1>(r);
+ }
+ int index_of_second_covertex(const Rotor & r) const // NOT DOCUMENTED
+ {
+ return cpp11::get<2>(r);
+ }*/
+ Rotor rotate_rotor(Rotor & r) // NOT DOCUMENTED...
+ {
+ int opposite = cpp11::get<0>(r)->mirror_index(cpp11::get<1>(r));
+ Full_cell_handle s = cpp11::get<0>(r)->neighbor(cpp11::get<1>(r));
+ int new_second = s->index(cpp11::get<0>(r)->vertex(cpp11::get<2>(r)));
+ return Rotor(s, new_second, opposite);
+ }
+
+ // - - - - - - - - - - - - - - - - - - - - - - - - CREATION / CONSTRUCTORS
+
+ Triangulation(int dim, const Geom_traits &k = Geom_traits())
+ : tds_(dim)
+ , kernel_(k)
+ , infinity_()
+ , preset_flat_orientation_((std::numeric_limits<int>::max)(),
+ (Flat_orientation_d*) NULL)
+ , rng_((long)0)
+#ifdef CGAL_TRIANGULATION_STATISTICS
+ ,walk_size_(0)
+#endif
+ {
+ clear();
+ }
+
+ // With this constructor,
+ // the user can specify a Flat_orientation_d object to be used for
+ // orienting simplices of a specific dimension
+ // (= preset_flat_orientation_.first)
+ // It it used for by dark triangulations created by DT::remove
+ Triangulation(
+ int dim,
+ const std::pair<int, const Flat_orientation_d *> &preset_flat_orientation,
+ const Geom_traits k = Geom_traits())
+ : tds_(dim)
+ , kernel_(k)
+ , infinity_()
+ , preset_flat_orientation_(preset_flat_orientation)
+ , rng_((long)0)
+#ifdef CGAL_TRIANGULATION_STATISTICS
+ ,walk_size_(0)
+#endif
+ {
+ clear();
+ }
+
+ Triangulation(const Triangulation & t2)
+ : tds_(t2.tds_)
+ , kernel_(t2.kernel_)
+ , infinity_()
+ , preset_flat_orientation_((std::numeric_limits<int>::max)(),
+ (Flat_orientation_d*) NULL)
+ , rng_(t2.rng_)
+#ifdef CGAL_TRIANGULATION_STATISTICS
+ ,walk_size_(t2.walk_size_)
+#endif
+ {
+ // We find the vertex at infinity by scanning the vertices of both
+ // triangulations. This works because Compact_container garantees that
+ // the vertices in the copy (*this) are stored in the same order as in
+ // the original triangulation (t2)
+ infinity_ = vertices_begin();
+ Vertex_const_iterator inf2 = t2.vertices_begin();
+ while( inf2 != t2.infinite_vertex() )
+ {
+ ++infinity_;
+ ++inf2;
+ }
+ // A full_cell has at most 1 + maximal_dimension() facets:
+ orientations_.resize(1 + maximal_dimension());
+ // Our coaffine orientation predicates HAS state member variables
+ reset_flat_orientation();
+ }
+
+ ~Triangulation() {}
+
+ // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ACCESS FUNCTIONS
+
+ /* These three function are no longer needed since we do not use them anymore
+ in the Delaunay_triangulation::remove. *But*, they may reappear in the future
+ if we manage to passe the information that flags/TDS_data is available or not
+ for marking simplices in Delaunay_triangulation::remove. This would be useful
+ to make it a little faster, instead of binary searching if a simplex is marked
+ or not...
+ // NOT DOCUMENTED --
+ bool get_visited(Full_cell_handle s) const
+ {
+ return tds().get_visited(s);
+ }
+ // NOT DOCUMENTED --
+ bool get_visited(Full_cell_const_handle s) const
+ {
+ return tds().get_visited(s);
+ }
+
+ // NOT DOCUMENTED --
+ void set_visited(Full_cell_handle s, bool b) const
+ {
+ tds().set_visited(s, b);
+ } */
+
+ Coaffine_orientation_d coaffine_orientation_predicate() const
+ {
+ return Coaffine_orientation_d (
+ flat_orientation_,
+ geom_traits().construct_flat_orientation_d_object(),
+ geom_traits().in_flat_orientation_d_object()
+ );
+ }
+
+ const Triangulation_ds & tds() const
+ {
+ return tds_;
+ }
+
+ Triangulation_ds & tds()
+ {
+ return tds_;
+ }
+
+ const Geom_traits & geom_traits() const
+ {
+ return kernel_;
+ }
+
+ int maximal_dimension() const { return tds().maximal_dimension(); }
+ int current_dimension() const { return tds().current_dimension(); }
+
+ bool empty() const
+ {
+ return current_dimension() == -1;
+ }
+
+ size_type number_of_vertices() const
+ {
+ return tds().number_of_vertices() - 1;
+ }
+
+ size_type number_of_full_cells() const
+ {
+ return tds().number_of_full_cells();
+ }
+
+ Vertex_handle infinite_vertex() const
+ {
+ return infinity_;
+ }
+
+ Full_cell_handle infinite_full_cell() const
+ {
+ CGAL_assertion(infinite_vertex()->full_cell()->has_vertex(infinite_vertex()));
+ return infinite_vertex()->full_cell();
+ }
+
+// - - - - - - - - - - - - - - - - - - - - - - - - - NON CONSTANT-TIME ACCESS FUNCTIONS
+
+ size_type number_of_finite_full_cells() const
+ {
+ Full_cell_const_iterator s = full_cells_begin();
+ size_type result = number_of_full_cells();
+ for( ; s != full_cells_end(); ++s )
+ {
+ if( is_infinite(s) )
+ --result;
+ }
+ return result;
+ }
+
+// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - TRAVERSAL
+
+ Vertex_iterator vertices_begin() { return tds().vertices_begin(); }
+ Vertex_iterator vertices_end() { return tds().vertices_end(); }
+
+ Vertex_const_iterator vertices_begin() const { return tds().vertices_begin(); }
+ Vertex_const_iterator vertices_end() const { return tds().vertices_end(); }
+
+ Finite_vertex_iterator finite_vertices_begin()
+ { return Finite_vertex_iterator(Finiteness_predicate(*this), vertices_begin(), vertices_end()); }
+ Finite_vertex_iterator finite_vertices_end()
+ { return Finite_vertex_iterator(Finiteness_predicate(*this), vertices_end(), vertices_end()); }
+ Finite_vertex_const_iterator finite_vertices_begin() const
+ { return Finite_vertex_const_iterator(Finiteness_predicate(*this), vertices_begin(), vertices_end()); }
+ Finite_vertex_const_iterator finite_vertices_end() const
+ { return Finite_vertex_const_iterator(Finiteness_predicate(*this), vertices_end(), vertices_end()); }
+
+ Full_cell_iterator full_cells_begin() { return tds().full_cells_begin(); }
+ Full_cell_iterator full_cells_end() { return tds().full_cells_end(); }
+
+ Full_cell_const_iterator full_cells_begin() const { return tds().full_cells_begin(); }
+ Full_cell_const_iterator full_cells_end() const { return tds().full_cells_end(); }
+
+ Finite_full_cell_iterator finite_full_cells_begin()
+ { return Finite_full_cell_iterator(Finiteness_predicate(*this), full_cells_begin(), full_cells_end()); }
+ Finite_full_cell_iterator finite_full_cells_end()
+ { return Finite_full_cell_iterator(Finiteness_predicate(*this), full_cells_end(), full_cells_end()); }
+ Finite_full_cell_const_iterator finite_full_cells_begin() const
+ { return Finite_full_cell_const_iterator(Finiteness_predicate(*this), full_cells_begin(), full_cells_end()); }
+ Finite_full_cell_const_iterator finite_full_cells_end() const
+ { return Finite_full_cell_const_iterator(Finiteness_predicate(*this), full_cells_end(), full_cells_end()); }
+
+ Facet_iterator facets_begin() { return tds().facets_begin(); }
+ Facet_iterator facets_end() { return tds().facets_end(); }
+ Facet_iterator finite_facets_begin()
+ { return Finite_facet_iterator(Finiteness_predicate(*this), facets_begin(), facets_end()); }
+ Facet_iterator finite_facets_end()
+ { return Finite_facet_iterator(Finiteness_predicate(*this), facets_end(), facets_end()); }
+
+// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SOME PREDICATE FUNCTORS
+
+ class Finiteness_predicate
+ {
+ const Self & t_;
+ public:
+ Finiteness_predicate(const Self & t) : t_(t) {}
+ template < class T >
+ bool operator()(const T & t) const
+ {
+ return ! t_.is_infinite(t);
+ }
+ };
+
+ class Point_equality_predicate
+ {
+ const Point & o_;
+ public:
+ Point_equality_predicate(const Point & o) : o_(o) {}
+ bool operator()(const Point & o) const { return (o == o_ );}
+ };
+
+// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SIMPLE QUERIES
+/*
+ bool is_vertex(const Point & p, Vertex_handle & v, Full_cell_handle hint = Full_cell_handle()) const
+ {
+ Locate_type lt;
+ Face f(maximal_dimension());
+ Facet ft;
+ Full_cell_handle s = locate(p, lt, f, ft, hint);
+ if( ON_VERTEX == lt )
+ {
+ v = s->vertex(f.index(0));
+ return true;
+ }
+ return false;
+ }
+
+ bool is_vertex(Vertex_const_handle v) const
+ {
+ return tds().is_vertex(v);
+ }
+
+ bool is_full_cell(Full_cell_const_handle s) const
+ {
+ return tds().is_full_cell(s);
+ }
+*/
+
+ bool is_infinite(Vertex_const_handle v) const
+ {
+ CGAL_precondition(Vertex_const_handle() != v);
+ return (infinite_vertex() == v);
+ }
+
+ bool is_infinite(const Vertex & v) const /* internal use, not documented */
+ {
+ return (&(*infinite_vertex()) == &v);
+ }
+
+ bool is_infinite(Full_cell_const_handle s) const
+ {
+ CGAL_precondition(Full_cell_const_handle() != s);
+ return is_infinite(*s);
+ }
+ bool is_infinite(const Full_cell & s) const /* internal use, not documented */
+ {
+ for(int i = 0; i <= current_dimension(); ++i)
+ if( is_infinite(s.vertex(i)) )
+ return true;
+ return false;
+ }
+ bool is_infinite(const Facet & ft) const
+ {
+ Full_cell_const_handle s = full_cell(ft);
+ CGAL_precondition(s != Full_cell_const_handle());
+ if( is_infinite(s) )
+ return (s->vertex(index_of_covertex(ft)) != infinite_vertex());
+ return false;
+ }
+
+ bool is_infinite(const Face & f) const
+ {
+ Full_cell_const_handle s = f.full_cell();
+ CGAL_precondition(s != Full_cell_const_handle());
+ if( is_infinite(s) )
+ {
+ Vertex_handle v;
+ for( int i(0); i<= f.face_dimension(); ++i)
+ if ( is_infinite( f.vertex(i) )) return true;
+ }
+ return false;
+ }
+
+ // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ELEMENT GATHERING
+
+
+ template< typename OutputIterator >
+ OutputIterator incident_full_cells(const Face & f, OutputIterator out) const
+ {
+ return tds().incident_full_cells(f, out);
+ }
+ template< typename OutputIterator >
+ OutputIterator incident_full_cells(Vertex_const_handle v, OutputIterator out) const
+ {
+ return tds().incident_full_cells(v, out);
+ }
+ template< typename OutputIterator >
+ OutputIterator star(const Face & f, OutputIterator out) const
+ {
+ return tds().star(f, out);
+ }
+
+ template< typename OutputIterator >
+ OutputIterator incident_faces(Vertex_const_handle v, int d, OutputIterator out) const
+ {
+ return tds().incident_faces(v, d, out);
+ }
+ /*
+ template< typename OutputIterator, class Comparator >
+ OutputIterator incident_upper_faces( Vertex_const_handle v, int d,
+ OutputIterator out, Comparator cmp = Comparator())
+ {
+ return tds().incident_upper_faces(v, d, out, cmp);
+ }
+ template< typename OutputIterator >
+ OutputIterator incident_upper_faces( Vertex_const_handle v, int d,
+ OutputIterator out)
+ { // FIXME: uncomment this function, since it uses a comparator specific to
+ // *geometric* triangulation (taking infinite vertex into account)
+ internal::Triangulation::Compare_vertices_for_upper_face<Self> cmp(*this);
+ return tds().incident_upper_faces(v, d, out, cmp);
+ }
+ */
+ Orientation orientation(Full_cell_const_handle s, bool in_is_valid = false) const
+ {
+ if( ! in_is_valid )
+ CGAL_assertion( ! is_infinite(s) );
+ if( 0 == current_dimension() )
+ return POSITIVE;
+ if( current_dimension() == maximal_dimension() )
+ {
+ Orientation_d ori = geom_traits().orientation_d_object();
+ return ori(points_begin(s), points_begin(s) + 1 + current_dimension());
+ }
+ else
+ {
+ return coaffine_orientation_predicate()(points_begin(s), points_begin(s) + 1 + current_dimension());
+ }
+ }
+
+// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - UPDATE OPERATIONS
+
+ void clear()
+ {
+ tds_.clear();
+ infinity_ = tds().insert_increase_dimension();
+ // A full_cell has at most 1 + maximal_dimension() facets:
+ orientations_.resize(1 + maximal_dimension());
+ // Our coaffine orientation predicates HAS state member variables
+ reset_flat_orientation();
+#ifdef CGAL_TRIANGULATION_STATISTICS
+ walk_size_ = 0;
+#endif
+ }
+
+ void set_current_dimension(int d)
+ {
+ tds().set_current_dimension(d);
+ }
+
+ Full_cell_handle new_full_cell()
+ {
+ return tds().new_full_cell();
+ }
+
+ Vertex_handle new_vertex()
+ {
+ return tds().new_vertex();
+ }
+
+ Vertex_handle new_vertex(const Point & p)
+ {
+ return tds().new_vertex(p);
+ }
+
+ void set_neighbors(Full_cell_handle s, int i, Full_cell_handle s1, int j)
+ {
+ tds().set_neighbors(s, i, s1, j);
+ }
+
+// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - VALIDITY
+
+ bool is_valid(bool = false, int = 0) const;
+ bool are_incident_full_cells_valid(Vertex_const_handle, bool = false, int = 0) const;
+
+// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - POINT LOCATION
+
+protected:
+ template< typename OrientationPredicate >
+ Full_cell_handle do_locate(const Point &, Locate_type &, Face &, Facet &,
+ Full_cell_handle start,
+ const OrientationPredicate & o) const;
+public:
+ Full_cell_handle locate(const Point &, Locate_type &, Face &, Facet &,
+ Full_cell_handle start = Full_cell_handle()) const;
+ Full_cell_handle locate(const Point &, Locate_type &, Face &, Facet &,
+ Vertex_handle) const;
+ Full_cell_handle locate(const Point & p, Full_cell_handle s = Full_cell_handle()) const;
+ Full_cell_handle locate(const Point & p, Vertex_handle v) const;
+
+// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - REMOVALS
+
+ Vertex_handle contract_face(const Point &, const Face &);
+
+// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - POINT INSERTION
+
+ template< typename ForwardIterator >
+ size_type insert(ForwardIterator start, ForwardIterator end)
+ {
+ size_type n = number_of_vertices();
+ std::vector<Point> points(start, end);
+ spatial_sort(points.begin(), points.end(), geom_traits());
+ Full_cell_handle hint = Full_cell_handle();
+ typename std::vector<Point>::const_iterator s = points.begin();
+ while( s != points.end() )
+ {
+ hint = insert(*s++, hint)->full_cell();
+ }
+ return number_of_vertices() - n;
+ }
+ Vertex_handle insert(const Point &, Locate_type, const Face &, const Facet &, Full_cell_handle);
+ Vertex_handle insert(const Point &, Full_cell_handle start = Full_cell_handle());
+ Vertex_handle insert(const Point &, Vertex_handle);
+ template< typename ForwardIterator >
+ Vertex_handle insert_in_hole(const Point & p, ForwardIterator start, ForwardIterator end, const Facet & ft)
+ {
+ Emptyset_iterator out;
+ return insert_in_hole(p, start, end, ft, out);
+ }
+ template< typename ForwardIterator, typename OutputIterator >
+ Vertex_handle insert_in_hole(const Point & p, ForwardIterator start, ForwardIterator end, const Facet & ft,
+ OutputIterator out)
+ {
+ Vertex_handle v = tds().insert_in_hole(start, end, ft, out);
+ v->set_point(p);
+ return v;
+ }
+ Vertex_handle insert_in_face(const Point &, const Face &);
+ Vertex_handle insert_in_facet(const Point &, const Facet &);
+ Vertex_handle insert_in_full_cell(const Point &, Full_cell_handle);
+ Vertex_handle insert_outside_convex_hull_1(const Point &, Full_cell_handle);
+ Vertex_handle insert_outside_convex_hull(const Point &, Full_cell_handle);
+ Vertex_handle insert_outside_affine_hull(const Point &);
+
+// - - - - - - - - - - - - - - - - - - - - - - - - - - - FACET-TRAVERSAL PREDICATES
+
+ template< typename OrientationPredicate >
+ class Outside_convex_hull_traversal_predicate
+ {
+ Triangulation & t_;
+ const Point & p_;
+ OrientationPredicate const& ori_;
+ int cur_dim_;
+ public:
+ Outside_convex_hull_traversal_predicate(Triangulation & t, const Point & p,
+ OrientationPredicate const& ori)
+ : t_(t), p_(p), ori_(ori), cur_dim_(t.current_dimension()) {}
+ // FUTURE change parameter to const reference
+ bool operator()(Facet f) const
+ {
+ Full_cell_handle s = t_.full_cell(f);
+ const int i = t_.index_of_covertex(f);
+ Full_cell_handle n = s->neighbor(i);
+ if( ! t_.is_infinite(n) )
+ return false;
+ int inf_v_index = n->index(t_.infinite_vertex());
+ n->vertex(inf_v_index)->set_point(p_);
+ bool ok = (POSITIVE == ori_(t_.points_begin(n), t_.points_begin(n) + cur_dim_ + 1));
+ return ok;
+ }
+ };
+
+ // make sure all full_cells have positive orientation
+ void reorient_full_cells();
+
+protected:
+ // This is used in the |remove(v)| member function to manage sets of Full_cell_handles
+ template< typename FCH >
+ struct Full_cell_set : public std::vector<FCH>
+ {
+ typedef std::vector<FCH> Base_set;
+ using Base_set::begin;
+ using Base_set::end;
+ void make_searchable()
+ { // sort the full cell handles
+ std::sort(begin(), end());
+ }
+ bool contains(const FCH & fch) const
+ {
+ return std::binary_search(begin(), end(), fch);
+ }
+ bool contains_1st_and_not_2nd(const FCH & fst, const FCH & snd) const
+ {
+ return ( ! contains(snd) ) && ( contains(fst) );
+ }
+ };
+
+ void display_all_full_cells__debugging() const
+ {
+ std::cerr << "ALL FULL CELLS:" << std::endl;
+ for (Full_cell_const_iterator cit = full_cells_begin() ;
+ cit != full_cells_end() ; ++cit )
+ {
+ std::cerr << std::hex << &*cit << ": ";
+ for (int jj = 0 ; jj <= current_dimension() ; ++jj)
+ std::cerr << (is_infinite(cit->vertex(jj)) ? 0xFFFFFFFF : (unsigned int)&*cit->vertex(jj)) << " - ";
+ std::cerr << std::dec << std::endl;
+ }
+ std::cerr << std::endl;
+ }
+
+
+}; // Triangulation<...>
+
+// = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
+
+// CLASS MEMBER FUNCTIONS
+
+template < class TT, class TDS >
+void
+Triangulation<TT, TDS>
+::reorient_full_cells()
+{
+ if( current_dimension() < 1 )
+ return;
+
+ Full_cell_iterator sit = full_cells_begin();
+ Full_cell_iterator send = full_cells_end();
+ for ( ; sit != send ; ++sit)
+ {
+ if( ! (is_infinite(sit) && (1 == current_dimension())) )
+ {
+ sit->swap_vertices(current_dimension() - 1, current_dimension());
+ }
+ }
+}
+
+// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+// - - - - - - - - - - - - - - - - - - - - - - - - THE REMOVAL METHODS
+
+template < class TT, class TDS >
+typename Triangulation<TT, TDS>::Vertex_handle
+Triangulation<TT, TDS>
+::contract_face(const Point & p, const Face & f)
+{
+ CGAL_precondition( ! is_infinite(f) );
+ Vertex_handle v = tds().contract_face(f);
+ v->set_point(p);
+ CGAL_expensive_postcondition_msg(are_incident_full_cells_valid(v), "new point is not where it should be");
+ return v;
+}
+
+// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+// - - - - - - - - - - - - - - - - - - - - - - - - THE INSERTION METHODS
+
+template < class TT, class TDS >
+typename Triangulation<TT, TDS>::Vertex_handle
+Triangulation<TT, TDS>
+::insert(const Point & p, Locate_type lt, const Face & f, const Facet & ft, Full_cell_handle s)
+{
+ switch( lt )
+ {
+ case IN_FULL_CELL:
+ return insert_in_full_cell(p, s);
+ break;
+ case OUTSIDE_CONVEX_HULL:
+ return insert_outside_convex_hull(p, s);
+ break;
+ case OUTSIDE_AFFINE_HULL:
+ return insert_outside_affine_hull(p);
+ break;
+ case IN_FACET:
+ {
+ return insert_in_facet(p, ft);
+ break;
+ }
+ case IN_FACE:
+ return insert_in_face(p, f);
+ break;
+ case ON_VERTEX:
+ s->vertex(f.index(0))->set_point(p);
+ return s->vertex(f.index(0));
+ break;
+ }
+ CGAL_assertion(false);
+ return Vertex_handle();
+}
+
+template < class TT, class TDS >
+typename Triangulation<TT, TDS>::Vertex_handle
+Triangulation<TT, TDS>
+::insert(const Point & p, Full_cell_handle start)
+{
+ Locate_type lt;
+ Face f(maximal_dimension());
+ Facet ft;
+ Full_cell_handle s = locate(p, lt, f, ft, start);
+ return insert(p, lt, f, ft, s);
+}
+
+template < class TT, class TDS >
+typename Triangulation<TT, TDS>::Vertex_handle
+Triangulation<TT, TDS>
+::insert(const Point & p, Vertex_handle v)
+{
+ if( Vertex_handle() == v )
+ v = infinite_vertex();
+ return insert(p, v->full_cell());
+}
+
+template < class TT, class TDS >
+typename Triangulation<TT, TDS>::Vertex_handle
+Triangulation<TT, TDS>
+::insert_in_face(const Point & p, const Face & f)
+{
+ CGAL_precondition( ! is_infinite(f) );
+ Vertex_handle v = tds().insert_in_face(f);
+ v->set_point(p);
+ return v;
+}
+
+template < class TT, class TDS >
+typename Triangulation<TT, TDS>::Vertex_handle
+Triangulation<TT, TDS>
+::insert_in_facet(const Point & p, const Facet & ft)
+{
+ CGAL_precondition( ! is_infinite(ft) );
+ Vertex_handle v = tds().insert_in_facet(ft);
+ v->set_point(p);
+ return v;
+}
+
+template < class TT, class TDS >
+typename Triangulation<TT, TDS>::Vertex_handle
+Triangulation<TT, TDS>
+::insert_in_full_cell(const Point & p, Full_cell_handle s)
+{
+ CGAL_precondition( ! is_infinite(s) );
+ Vertex_handle v = tds().insert_in_full_cell(s);
+ v->set_point(p);
+ return v;
+}
+
+// NOT DOCUMENTED...
+template < class TT, class TDS >
+typename Triangulation<TT, TDS>::Vertex_handle
+Triangulation<TT, TDS>
+::insert_outside_convex_hull_1(const Point & p, Full_cell_handle s)
+{
+ // This is a special case for dimension 1, because in that case, the right
+ // infinite full_cell is not correctly oriented... (sice its first vertex is the
+ // infinite one...
+ CGAL_precondition( is_infinite(s) );
+ CGAL_precondition( 1 == current_dimension() );
+ Vertex_handle v = tds().insert_in_full_cell(s);
+ v->set_point(p);
+ return v;
+}
+
+template < class TT, class TDS >
+typename Triangulation<TT, TDS>::Vertex_handle
+Triangulation<TT, TDS>
+::insert_outside_convex_hull(const Point & p, Full_cell_handle s)
+{
+ if( 1 == current_dimension() )
+ {
+ return insert_outside_convex_hull_1(p, s);
+ }
+ CGAL_precondition( is_infinite(s) );
+ CGAL_assertion( current_dimension() >= 2 );
+ std::vector<Full_cell_handle> simps;
+ simps.reserve(64);
+ std::back_insert_iterator<std::vector<Full_cell_handle> > out(simps);
+ if( current_dimension() < maximal_dimension() )
+ {
+ Coaffine_orientation_d ori = coaffine_orientation_predicate();
+ Outside_convex_hull_traversal_predicate<Coaffine_orientation_d>
+ ochtp(*this, p, ori);
+ tds().gather_full_cells(s, ochtp, out);
+ }
+ else
+ {
+ Orientation_d ori = geom_traits().orientation_d_object();
+ Outside_convex_hull_traversal_predicate<Orientation_d>
+ ochtp(*this, p, ori);
+ tds().gather_full_cells(s, ochtp, out);
+ }
+ int inf_v_index = s->index(infinite_vertex());
+ Vertex_handle v = insert_in_hole(
+ p, simps.begin(), simps.end(), Facet(s, inf_v_index));
+ return v;
+}
+
+template < class TT, class TDS >
+typename Triangulation<TT, TDS>::Vertex_handle
+Triangulation<TT, TDS>
+::insert_outside_affine_hull(const Point & p)
+{
+ CGAL_precondition( current_dimension() < maximal_dimension() );
+ Vertex_handle v = tds().insert_increase_dimension(infinite_vertex());
+ // reset the orientation predicate:
+ reset_flat_orientation();
+ v->set_point(p);
+ if( current_dimension() >= 1 )
+ {
+ Full_cell_handle inf_v_cell = infinite_vertex()->full_cell();
+ int inf_v_index = inf_v_cell->index(infinite_vertex());
+ Full_cell_handle s = inf_v_cell->neighbor(inf_v_index);
+ Orientation o = orientation(s);
+ CGAL_assertion( COPLANAR != o );
+ if( NEGATIVE == o )
+ reorient_full_cells();
+
+
+ // We just inserted the second finite point and the right infinite
+ // cell is like : (inf_v, v), but we want it to be (v, inf_v) to be
+ // consistent with the rest of the cells
+ if (current_dimension() == 1)
+ {
+ // Is "inf_v_cell" the right infinite cell?
+ // Then inf_v_index should be 1
+ if (inf_v_cell->neighbor(inf_v_index)->index(inf_v_cell) == 0
+ && inf_v_index == 0)
+ {
+ inf_v_cell->swap_vertices(
+ current_dimension() - 1, current_dimension());
+ }
+ // Otherwise, let's find the right infinite cell
+ else
+ {
+ inf_v_cell = inf_v_cell->neighbor((inf_v_index + 1) % 2);
+ inf_v_index = inf_v_cell->index(infinite_vertex());
+ // Is "inf_v_cell" the right infinite cell?
+ // Then inf_v_index should be 1
+ if (inf_v_cell->neighbor(inf_v_index)->index(inf_v_cell) == 0
+ && inf_v_index == 0)
+ {
+ inf_v_cell->swap_vertices(
+ current_dimension() - 1, current_dimension());
+ }
+ }
+ }
+ }
+ return v;
+}
+
+// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+// - - - - - - - - - - - - - - - - - - - - THE MAIN LOCATE(...) FUNCTION
+
+template < class TT, class TDS >
+template< typename OrientationPredicate >
+typename Triangulation<TT, TDS>::Full_cell_handle
+Triangulation<TT, TDS>
+::do_locate(const Point & p, // query point
+ Locate_type & loc_type,// type of result (full_cell, face, vertex)
+ Face & face,// the face containing the query in its interior (when appropriate)
+ Facet & facet,// the facet containing the query in its interior (when appropriate)
+ Full_cell_handle start, // starting full_cell for the walk
+ OrientationPredicate const& orientation_pred
+ ) const
+{
+ const int cur_dim = current_dimension();
+
+ if( cur_dim == -1 )
+ {
+ loc_type = OUTSIDE_AFFINE_HULL;
+ return Full_cell_handle();
+ }
+ else if( cur_dim == 0 )
+ {
+ Vertex_handle vit = infinite_full_cell()->neighbor(0)->vertex(0);
+ if( EQUAL != geom_traits().compare_lexicographically_d_object()(p, vit->point()) )
+ {
+ loc_type = OUTSIDE_AFFINE_HULL;
+ return Full_cell_handle();
+ }
+ else
+ {
+ loc_type = ON_VERTEX;
+ face.set_full_cell(vit->full_cell());
+ face.set_index(0, 0);
+ return vit->full_cell();
+ }
+ }
+
+ Full_cell_handle s;
+
+ // if we don't know where to start, we start from any bounded full_cell
+ if( Full_cell_handle() == start )
+ {
+ // THE HACK THAT NOBODY SHOULD DO... BUT DIFFICULT TO WORK AROUND
+ // THIS... TODO: WORK AROUND IT
+ Full_cell_handle inf_c = const_cast<Self*>(this)->infinite_full_cell();
+ int inf_v_index = inf_c->index(infinite_vertex());
+ s = inf_c->neighbor(inf_v_index);
+ }
+ else
+ {
+ s = start;
+ if( is_infinite(s) )
+ {
+ int inf_v_index = s->index(infinite_vertex());
+ s = s->neighbor(inf_v_index);
+ }
+ }
+
+ // Check if query |p| is outside the affine hull
+ if( cur_dim < maximal_dimension() )
+ {
+ if( ! geom_traits().contained_in_affine_hull_d_object()(
+ points_begin(s),
+ points_begin(s) + current_dimension() + 1,
+ p) )
+ {
+ loc_type = OUTSIDE_AFFINE_HULL;
+ return Full_cell_handle();
+ }
+ }
+
+ // we remember the |previous|ly visited full_cell to avoid the evaluation
+ // of one |orientation| predicate
+ Full_cell_handle previous = Full_cell_handle();
+ bool full_cell_not_found = true;
+ while(full_cell_not_found) // we walk until we locate the query point |p|
+ {
+ #ifdef CGAL_TRIANGULATION_STATISTICS
+ ++walk_size_;
+ #endif
+ // For the remembering stochastic walk, we need to start trying
+ // with a random index:
+ int j, i = rng_.get_int(0, cur_dim);
+ // we check |p| against all the full_cell's hyperplanes in turn
+
+ for(j = 0; j <= cur_dim; ++j, i = (i + 1) % (cur_dim + 1) )
+ {
+ Full_cell_handle next = s->neighbor(i);
+ if( previous == next )
+ { // no need to compute the orientation, we already know it
+ orientations_[i] = POSITIVE;
+ continue; // go to next full_cell's facet
+ }
+
+ Substitute_point_in_vertex_iterator<
+ typename Full_cell::Vertex_handle_const_iterator>
+ spivi(s->vertex(i), &p);
+
+ orientations_[i] = orientation_pred(
+ boost::make_transform_iterator(s->vertices_begin(), spivi),
+ boost::make_transform_iterator(s->vertices_begin() + cur_dim + 1,
+ spivi));
+
+ if( orientations_[i] != NEGATIVE )
+ {
+ // from this facet's point of view, we are inside the
+ // full_cell or on its boundary, so we continue to next facet
+ continue;
+ }
+
+ // At this point, we know that we have to jump to the |next|
+ // full_cell because orientation_[i] == NEGATIVE
+ previous = s;
+ s = next;
+ if( is_infinite(next) )
+ { // we have arrived OUTSIDE the convex hull of the triangulation,
+ // so we stop the search
+ full_cell_not_found = false;
+ loc_type = OUTSIDE_CONVEX_HULL;
+ face.set_full_cell(s);
+ }
+ break;
+ } // end of the 'for' loop
+ if( ( cur_dim + 1 ) == j ) // we found the full_cell containing |p|
+ full_cell_not_found = false;
+ }
+ // Here, we know in which full_cell |p| is in.
+ // We now check more precisely where |p| landed:
+ // vertex, facet, face or full_cell.
+ if( ! is_infinite(s) )
+ {
+ face.set_full_cell(s);
+ int num(0);
+ int verts(0);
+ for(int i = 0; i < cur_dim; ++i)
+ {
+ if( orientations_[i] == COPLANAR )
+ {
+ ++num;
+ facet = Facet(s, i);
+ }
+ else
+ face.set_index(verts++, i);
+ }
+ //-- We could put the if{}else{} below in the loop above, but then we would
+ // need to test if (verts < cur_dim) many times... we do it only once
+ // here:
+ if( orientations_[cur_dim] == COPLANAR )
+ {
+ ++num;
+ facet = Facet(s, cur_dim);
+ }
+ else if( verts < cur_dim )
+ face.set_index(verts, cur_dim);
+ //-- end of remark above //
+ if( 0 == num )
+ {
+ loc_type = IN_FULL_CELL;
+ face.clear();
+ }
+ else if( cur_dim == num )
+ loc_type = ON_VERTEX;
+ else if( 1 == num )
+ loc_type = IN_FACET;
+ else
+ loc_type = IN_FACE;
+ }
+ return s;
+}
+
+template < class TT, class TDS >
+typename Triangulation<TT, TDS>::Full_cell_handle
+Triangulation<TT, TDS>
+::locate( const Point & p, // query point
+ Locate_type & loc_type,// type of result (full_cell, face, vertex)
+ Face & face,// the face containing the query in its interior (when appropriate)
+ Facet & facet,// the facet containing the query in its interior (when appropriate)
+ Full_cell_handle start// starting full_cell for the walk
+ ) const
+{
+ if( current_dimension() == maximal_dimension() )
+ {
+ Orientation_d ori = geom_traits().orientation_d_object();
+ return do_locate(p, loc_type, face, facet, start, ori);
+ }
+ else
+ return do_locate(p, loc_type, face, facet, start, coaffine_orientation_predicate());
+}
+
+// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+// - - - - - - - - - - - - - - - - - - - - the locate(...) variants
+
+template < class TT, class TDS >
+typename Triangulation<TT, TDS>::Full_cell_handle
+Triangulation<TT, TDS>
+::locate( const Point & p,
+ Locate_type & loc_type,
+ Face & face,
+ Facet & facet,
+ Vertex_handle start) const
+{
+ if( Vertex_handle() == start )
+ start = infinite_vertex();
+ return locate(p, loc_type, face, facet, start->full_cell());
+}
+
+template < class TT, class TDS >
+typename Triangulation<TT, TDS>::Full_cell_handle
+Triangulation<TT, TDS>
+::locate(const Point & p, Full_cell_handle s) const
+{
+ Locate_type lt;
+ Face face(maximal_dimension());
+ Facet facet;
+ return locate(p, lt, face, facet, s);
+}
+
+template < class TT, class TDS >
+typename Triangulation<TT, TDS>::Full_cell_handle
+Triangulation<TT, TDS>
+::locate(const Point & p, Vertex_handle v) const
+{
+ if( Vertex_handle() != v )
+ v = infinite_vertex();
+ return this->locate(p, v->full_cell());
+}
+
+// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - VALIDITY
+
+template < class TT, class TDS >
+bool
+Triangulation<TT, TDS>
+::is_valid(bool verbose, int level) const
+{
+ if( ! tds().is_valid(verbose, level) )
+ return false;
+
+ Full_cell_const_iterator c;
+ if( current_dimension() < 0 )
+ return true;
+ Orientation o;
+ for( c = full_cells_begin(); c != full_cells_end(); ++c )
+ {
+ if( is_infinite(c) )
+ {
+ if( current_dimension() > 1 )
+ {
+ int i = c->index( infinite_vertex() );
+ Full_cell_handle n = c->neighbor(i);
+ infinite_vertex()->set_point(n->vertex(c->mirror_index(i))->point());
+ o = - orientation(c, true);
+ }
+ else
+ o = POSITIVE;
+ }
+ else
+ o = orientation(c, true);
+ if( NEGATIVE == o )
+ {
+ if( verbose ) CGAL_warning_msg(false, "full_cell is not correctly oriented");
+ return false;
+ }
+ if( COPLANAR == o )
+ {
+ if( verbose ) CGAL_warning_msg(false, "full_cell is flat");
+ return false;
+ }
+ }
+ return true;
+}
+
+template < class TT, class TDS >
+bool Triangulation<TT, TDS>::are_incident_full_cells_valid(Vertex_const_handle v, bool verbose, int) const
+{
+ if( current_dimension() <= 0 )
+ return true;
+ typedef std::vector<Full_cell_const_handle> Simps;
+ Simps simps;
+ simps.reserve(64);
+ std::back_insert_iterator<Simps> out(simps);
+ incident_full_cells(v, out);
+ typename Simps::const_iterator sit = simps.begin();
+ for( ; sit != simps.end(); ++sit )
+ {
+ if( is_infinite(*sit) )
+ continue;
+ Orientation o = orientation(*sit);
+ if( NEGATIVE == o )
+ {
+ if( verbose ) CGAL_warning_msg(false, "full_cell is not correctly oriented");
+ return false;
+ }
+ if( COPLANAR == o )
+ {
+ if( verbose ) CGAL_warning_msg(false, "full_cell is flat");
+ return false;
+ }
+ }
+ return true;
+}
+
+// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+
+// FUNCTIONS THAT ARE NOT MEMBER FUNCTIONS:
+
+template < class TT, class TDS >
+std::istream &
+operator>>(std::istream & is, Triangulation<TT, TDS> & tr)
+ // reads :
+ // - the dimensions (maximal and current)
+ // - the number of finite vertices
+ // - the non combinatorial information on vertices (point, etc)
+ // - the number of full_cells
+ // - the full_cells by the indices of their vertices in the preceding list
+ // of vertices, plus the non combinatorial information on each full_cell
+ // - the neighbors of each full_cell by their index in the preceding list
+{
+ typedef Triangulation<TT, TDS> T;
+ typedef typename T::Vertex_handle Vertex_handle;
+
+ // read current dimension and number of vertices
+ size_t n;
+ int cd;
+ if( is_ascii(is) )
+ is >> cd >> n;
+ else
+ {
+ read(is, cd);
+ read(is, n, io_Read_write());
+ }
+
+ CGAL_assertion_msg( cd <= tr.maximal_dimension(), "input Triangulation has too high dimension");
+
+ tr.clear();
+ tr.set_current_dimension(cd);
+
+ if( n == 0 )
+ return is;
+
+ std::vector<Vertex_handle> vertices;
+ vertices.resize(n+1);
+ vertices[0] = tr.infinite_vertex();
+ is >> (*vertices[0]);
+
+ // read the vertices:
+ size_t i(1);
+ while( i <= n )
+ {
+ vertices[i] = tr.new_vertex();
+ is >> (*vertices[i]); // read a vertex
+ ++i;
+ }
+
+ // now, read the combinatorial information
+ return tr.tds().read_full_cells(is, vertices);
+}
+
+template < class TT, class TDS >
+std::ostream &
+operator<<(std::ostream & os, const Triangulation<TT, TDS> & tr)
+ // writes :
+ // - the dimensions (maximal and current)
+ // - the number of finite vertices
+ // - the non combinatorial information on vertices (point, etc)
+ // - the number of full_cells
+ // - the full_cells by the indices of their vertices in the preceding list
+ // of vertices, plus the non combinatorial information on each full_cell
+ // - the neighbors of each full_cell by their index in the preceding list
+{
+ typedef Triangulation<TT, TDS> T;
+ typedef typename T::Vertex_const_handle Vertex_handle;
+ typedef typename T::Vertex_const_iterator Vertex_iterator;
+
+ // outputs dimensions and number of vertices
+ size_t n = tr.number_of_vertices();
+ if( is_ascii(os) )
+ os << tr.current_dimension() << std::endl << n << std::endl;
+ else
+ {
+ write(os, tr.current_dimension());
+ write(os, n, io_Read_write());
+ }
+
+ if( n == 0 )
+ return os;
+
+ size_t i(0);
+ // write the vertices
+ std::map<Vertex_handle, int> index_of_vertex;
+
+ // infinite vertex has index 0 (among all the vertices)
+ index_of_vertex[tr.infinite_vertex()] = i++;
+ os << *tr.infinite_vertex();
+ for( Vertex_iterator it = tr.vertices_begin(); it != tr.vertices_end(); ++it )
+ {
+ if( tr.is_infinite(it) )
+ continue;
+ os << *it; // write the vertex
+ index_of_vertex[it] = i++;
+ }
+ CGAL_assertion( i == n+1 );
+
+ // output the combinatorial information
+ return tr.tds().write_full_cells(os, index_of_vertex);
+}
+
+} //namespace CGAL
+
+#endif // CGAL_TRIANGULATION_H