summaryrefslogtreecommitdiff
path: root/src/Alpha_complex
diff options
context:
space:
mode:
Diffstat (limited to 'src/Alpha_complex')
-rw-r--r--src/Alpha_complex/benchmark/Alpha_complex_3d_benchmark.cpp278
-rw-r--r--src/Alpha_complex/benchmark/CMakeLists.txt9
-rw-r--r--src/Alpha_complex/concept/SimplicialComplexForAlpha.h14
-rw-r--r--src/Alpha_complex/concept/SimplicialComplexForAlpha3d.h57
-rw-r--r--src/Alpha_complex/doc/Intro_alpha_complex.h99
-rw-r--r--src/Alpha_complex/example/Alpha_complex_3d_from_points.cpp56
-rw-r--r--src/Alpha_complex/example/CMakeLists.txt23
-rw-r--r--src/Alpha_complex/example/Weighted_alpha_complex_3d_from_points.cpp59
-rw-r--r--src/Alpha_complex/example/weightedalpha3dfrompoints_for_doc.txt31
-rw-r--r--src/Alpha_complex/include/gudhi/Alpha_complex_3d.h596
-rw-r--r--src/Alpha_complex/include/gudhi/Alpha_complex_options.h45
-rw-r--r--src/Alpha_complex/test/Alpha_complex_3d_unit_test.cpp612
-rw-r--r--src/Alpha_complex/test/CMakeLists.txt18
-rw-r--r--src/Alpha_complex/utilities/CMakeLists.txt101
-rw-r--r--src/Alpha_complex/utilities/alpha_complex_3d_helper.h74
-rw-r--r--src/Alpha_complex/utilities/alpha_complex_3d_persistence.cpp367
-rw-r--r--src/Alpha_complex/utilities/alphacomplex.md145
-rw-r--r--src/Alpha_complex/utilities/exact_alpha_complex_3d_persistence.cpp265
-rw-r--r--src/Alpha_complex/utilities/periodic_alpha_complex_3d_persistence.cpp302
-rw-r--r--src/Alpha_complex/utilities/weighted_alpha_complex_3d_persistence.cpp316
-rw-r--r--src/Alpha_complex/utilities/weighted_periodic_alpha_complex_3d_persistence.cpp288
21 files changed, 2152 insertions, 1603 deletions
diff --git a/src/Alpha_complex/benchmark/Alpha_complex_3d_benchmark.cpp b/src/Alpha_complex/benchmark/Alpha_complex_3d_benchmark.cpp
new file mode 100644
index 00000000..1a33f2b4
--- /dev/null
+++ b/src/Alpha_complex/benchmark/Alpha_complex_3d_benchmark.cpp
@@ -0,0 +1,278 @@
+#include <gudhi/Alpha_complex_3d.h>
+#include <gudhi/Alpha_complex.h>
+// to construct a simplex_tree from alpha complex
+#include <gudhi/Simplex_tree.h>
+#include <gudhi/random_point_generators.h>
+#include <gudhi/Clock.h>
+
+#include <iostream>
+#include <string>
+#include <vector>
+#include <limits> // for numeric limits
+#include <fstream>
+
+#include <CGAL/Epick_d.h>
+#include <CGAL/Epeck_d.h>
+#include <CGAL/Random.h>
+
+std::ofstream results_csv("results.csv");
+
+template <typename Kernel>
+void benchmark_points_on_torus_dD(const std::string& msg) {
+ std::cout << "+ " << msg << std::endl;
+
+ results_csv << "\"" << msg << "\";" << std::endl;
+ results_csv << "\"nb_points\";"
+ << "\"nb_simplices\";"
+ << "\"alpha_creation_time(sec.)\";"
+ << "\"simplex_creation_time(sec.)\";" << std::endl;
+
+ using K = CGAL::Epick_d<CGAL::Dimension_tag<3>>;
+ for (int nb_points = 1000; nb_points <= 125000; nb_points *= 5) {
+ std::cout << " Alpha complex dD on torus with " << nb_points << " points." << std::endl;
+ std::vector<K::Point_d> points_on_torus = Gudhi::generate_points_on_torus_3D<K>(nb_points, 1.0, 0.5);
+ std::vector<typename Kernel::Point_d> points;
+
+ for (auto p : points_on_torus) {
+ points.push_back(typename Kernel::Point_d(p.begin(), p.end()));
+ }
+
+ Gudhi::Clock ac_create_clock(" benchmark_points_on_torus_dD - Alpha complex 3d creation");
+ ac_create_clock.begin();
+ Gudhi::alpha_complex::Alpha_complex<Kernel> alpha_complex_from_points(points);
+ ac_create_clock.end();
+ std::cout << ac_create_clock;
+
+ Gudhi::Simplex_tree<> simplex;
+ Gudhi::Clock st_create_clock(" benchmark_points_on_torus_dD - simplex tree creation");
+ st_create_clock.begin();
+ alpha_complex_from_points.create_complex(simplex);
+ st_create_clock.end();
+ std::cout << st_create_clock;
+
+ results_csv << nb_points << ";" << simplex.num_simplices() << ";" << ac_create_clock.num_seconds() << ";"
+ << st_create_clock.num_seconds() << ";" << std::endl;
+
+ std::cout << " benchmark_points_on_torus_dD - nb simplices = " << simplex.num_simplices() << std::endl;
+ }
+}
+
+template <typename Alpha_complex_3d>
+void benchmark_points_on_torus_3D(const std::string& msg) {
+ using K = CGAL::Epick_d<CGAL::Dimension_tag<3>>;
+ std::cout << "+ " << msg << std::endl;
+
+ results_csv << "\"" << msg << "\";" << std::endl;
+ results_csv << "\"nb_points\";"
+ << "\"nb_simplices\";"
+ << "\"alpha_creation_time(sec.)\";"
+ << "\"simplex_creation_time(sec.)\";" << std::endl;
+
+ for (int nb_points = 1000; nb_points <= 125000; nb_points *= 5) {
+ std::cout << " Alpha complex 3d on torus with " << nb_points << " points." << std::endl;
+ std::vector<K::Point_d> points_on_torus = Gudhi::generate_points_on_torus_3D<K>(nb_points, 1.0, 0.5);
+ std::vector<typename Alpha_complex_3d::Point_3> points;
+
+ for (auto p : points_on_torus) {
+ points.push_back(typename Alpha_complex_3d::Point_3(p[0], p[1], p[2]));
+ }
+
+ Gudhi::Clock ac_create_clock(" benchmark_points_on_torus_3D - Alpha complex 3d creation");
+ ac_create_clock.begin();
+ Alpha_complex_3d alpha_complex_from_points(points);
+ ac_create_clock.end();
+ std::cout << ac_create_clock;
+
+ Gudhi::Simplex_tree<> simplex;
+ Gudhi::Clock st_create_clock(" benchmark_points_on_torus_3D - simplex tree creation");
+ st_create_clock.begin();
+ alpha_complex_from_points.create_complex(simplex);
+ st_create_clock.end();
+ std::cout << st_create_clock;
+
+ results_csv << nb_points << ";" << simplex.num_simplices() << ";" << ac_create_clock.num_seconds() << ";"
+ << st_create_clock.num_seconds() << ";" << std::endl;
+
+ std::cout << " benchmark_points_on_torus_3D - nb simplices = " << simplex.num_simplices() << std::endl;
+ }
+}
+
+template <typename Weighted_alpha_complex_3d>
+void benchmark_weighted_points_on_torus_3D(const std::string& msg) {
+ using K = CGAL::Epick_d<CGAL::Dimension_tag<3>>;
+
+ std::cout << "+ " << msg << std::endl;
+
+ results_csv << "\"" << msg << "\";" << std::endl;
+ results_csv << "\"nb_points\";"
+ << "\"nb_simplices\";"
+ << "\"alpha_creation_time(sec.)\";"
+ << "\"simplex_creation_time(sec.)\";" << std::endl;
+
+ CGAL::Random random(8);
+
+ for (int nb_points = 1000; nb_points <= 125000; nb_points *= 5) {
+ std::cout << " Alpha complex 3d on torus with " << nb_points << " points." << std::endl;
+ std::vector<K::Point_d> points_on_torus = Gudhi::generate_points_on_torus_3D<K>(nb_points, 1.0, 0.5);
+
+ using Point = typename Weighted_alpha_complex_3d::Point_3;
+ using Weighted_point = typename Weighted_alpha_complex_3d::Triangulation_3::Weighted_point;
+
+ std::vector<Weighted_point> points;
+
+ for (auto p : points_on_torus) {
+ points.push_back(Weighted_point(Point(p[0], p[1], p[2]), 0.9 + random.get_double(0., 0.01)));
+ }
+
+ Gudhi::Clock ac_create_clock(" benchmark_weighted_points_on_torus_3D - Alpha complex 3d creation");
+ ac_create_clock.begin();
+ Weighted_alpha_complex_3d alpha_complex_from_points(points);
+ ac_create_clock.end();
+ std::cout << ac_create_clock;
+
+ Gudhi::Simplex_tree<> simplex;
+ Gudhi::Clock st_create_clock(" benchmark_weighted_points_on_torus_3D - simplex tree creation");
+ st_create_clock.begin();
+ alpha_complex_from_points.create_complex(simplex);
+ st_create_clock.end();
+ std::cout << st_create_clock;
+
+ results_csv << nb_points << ";" << simplex.num_simplices() << ";" << ac_create_clock.num_seconds() << ";"
+ << st_create_clock.num_seconds() << ";" << std::endl;
+
+ std::cout << " benchmark_weighted_points_on_torus_3D - nb simplices = " << simplex.num_simplices() << std::endl;
+ }
+}
+
+template <typename Periodic_alpha_complex_3d>
+void benchmark_periodic_points(const std::string& msg) {
+ std::cout << "+ " << msg << std::endl;
+
+ results_csv << "\"" << msg << "\";" << std::endl;
+ results_csv << "\"nb_points\";"
+ << "\"nb_simplices\";"
+ << "\"alpha_creation_time(sec.)\";"
+ << "\"simplex_creation_time(sec.)\";" << std::endl;
+
+ CGAL::Random random(8);
+
+ for (double nb_points = 10.; nb_points <= 40.; nb_points += 10.) {
+ std::cout << " Periodic alpha complex 3d with " << nb_points * nb_points * nb_points << " points." << std::endl;
+ using Point = typename Periodic_alpha_complex_3d::Point_3;
+ std::vector<Point> points;
+
+ for (double i = 0; i < nb_points; i++) {
+ for (double j = 0; j < nb_points; j++) {
+ for (double k = 0; k < nb_points; k++) {
+ points.push_back(
+ Point(i + random.get_double(0., 0.1), j + random.get_double(0., 0.1), k + random.get_double(0., 0.1)));
+ }
+ }
+ }
+
+ Gudhi::Clock ac_create_clock(" benchmark_periodic_points - Alpha complex 3d creation");
+ ac_create_clock.begin();
+ Periodic_alpha_complex_3d alpha_complex_from_points(points, 0., 0., 0., nb_points, nb_points, nb_points);
+ ac_create_clock.end();
+ std::cout << ac_create_clock;
+
+ Gudhi::Simplex_tree<> simplex;
+ Gudhi::Clock st_create_clock(" benchmark_periodic_points - simplex tree creation");
+ st_create_clock.begin();
+ alpha_complex_from_points.create_complex(simplex);
+ st_create_clock.end();
+ std::cout << st_create_clock;
+
+ results_csv << nb_points * nb_points * nb_points << ";" << simplex.num_simplices() << ";"
+ << ac_create_clock.num_seconds() << ";" << st_create_clock.num_seconds() << ";" << std::endl;
+
+ std::cout << " benchmark_periodic_points - nb simplices = " << simplex.num_simplices() << std::endl;
+ }
+}
+
+template <typename Weighted_periodic_alpha_complex_3d>
+void benchmark_weighted_periodic_points(const std::string& msg) {
+ std::cout << "+ " << msg << std::endl;
+
+ results_csv << "\"" << msg << "\";" << std::endl;
+ results_csv << "\"nb_points\";"
+ << "\"nb_simplices\";"
+ << "\"alpha_creation_time(sec.)\";"
+ << "\"simplex_creation_time(sec.)\";" << std::endl;
+
+ CGAL::Random random(8);
+
+ for (double nb_points = 10.; nb_points <= 40.; nb_points += 10.) {
+ std::cout << " Weighted periodic alpha complex 3d with " << nb_points * nb_points * nb_points << " points."
+ << std::endl;
+
+ using Point = typename Weighted_periodic_alpha_complex_3d::Point_3;
+ using Weighted_point = typename Weighted_periodic_alpha_complex_3d::Triangulation_3::Weighted_point;
+ std::vector<Weighted_point> points;
+
+ for (double i = 0; i < nb_points; i++) {
+ for (double j = 0; j < nb_points; j++) {
+ for (double k = 0; k < nb_points; k++) {
+ points.push_back(Weighted_point(
+ Point(i + random.get_double(0., 0.1), j + random.get_double(0., 0.1), k + random.get_double(0., 0.1)),
+ random.get_double(0., (nb_points * nb_points) / 64.)));
+ }
+ }
+ }
+
+ Gudhi::Clock ac_create_clock(" benchmark_weighted_periodic_points - Alpha complex 3d creation");
+ ac_create_clock.begin();
+ Weighted_periodic_alpha_complex_3d alpha_complex_from_points(points, 0., 0., 0., nb_points, nb_points, nb_points);
+ ac_create_clock.end();
+ std::cout << ac_create_clock;
+
+ Gudhi::Simplex_tree<> simplex;
+ Gudhi::Clock st_create_clock(" benchmark_weighted_periodic_points - simplex tree creation");
+ st_create_clock.begin();
+ alpha_complex_from_points.create_complex(simplex);
+ st_create_clock.end();
+ std::cout << st_create_clock;
+
+ results_csv << nb_points * nb_points * nb_points << ";" << simplex.num_simplices() << ";"
+ << ac_create_clock.num_seconds() << ";" << st_create_clock.num_seconds() << ";" << std::endl;
+
+ std::cout << " benchmark_weighted_periodic_points - nb simplices = " << simplex.num_simplices() << std::endl;
+ }
+}
+
+int main(int argc, char** argv) {
+ benchmark_points_on_torus_dD<CGAL::Epick_d<CGAL::Dimension_tag<3>>>("Fast static dimension version");
+ benchmark_points_on_torus_dD<CGAL::Epick_d<CGAL::Dynamic_dimension_tag>>("Fast dynamic dimension version");
+ benchmark_points_on_torus_dD<CGAL::Epeck_d<CGAL::Dimension_tag<3>>>("Exact static dimension version");
+ benchmark_points_on_torus_dD<CGAL::Epeck_d<CGAL::Dynamic_dimension_tag>>("Exact dynamic dimension version");
+
+ benchmark_points_on_torus_3D<
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::FAST, false, false>>("Fast version");
+ benchmark_points_on_torus_3D<
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::SAFE, false, false>>("Safe version");
+ benchmark_points_on_torus_3D<
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::EXACT, false, false>>("Exact version");
+
+ benchmark_weighted_points_on_torus_3D<
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::FAST, true, false>>("Fast version");
+ benchmark_weighted_points_on_torus_3D<
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::SAFE, true, false>>("Safe version");
+ benchmark_weighted_points_on_torus_3D<
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::EXACT, true, false>>("Exact version");
+
+ benchmark_periodic_points<
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::FAST, false, true>>("Fast version");
+ benchmark_periodic_points<
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::SAFE, false, true>>("Safe version");
+ benchmark_periodic_points<
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::EXACT, false, true>>("Exact version");
+
+ benchmark_weighted_periodic_points<
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::FAST, true, true>>("Fast version");
+ benchmark_weighted_periodic_points<
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::SAFE, true, true>>("Safe version");
+ benchmark_weighted_periodic_points<
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::EXACT, true, true>>("Exact version");
+
+ return 0;
+}
diff --git a/src/Alpha_complex/benchmark/CMakeLists.txt b/src/Alpha_complex/benchmark/CMakeLists.txt
new file mode 100644
index 00000000..622963dc
--- /dev/null
+++ b/src/Alpha_complex/benchmark/CMakeLists.txt
@@ -0,0 +1,9 @@
+project(Alpha_complex_benchmark)
+
+if (NOT CGAL_WITH_EIGEN3_VERSION VERSION_LESS 4.11.0)
+ add_executable(Alpha_complex_3d_benchmark Alpha_complex_3d_benchmark.cpp)
+ target_link_libraries(Alpha_complex_3d_benchmark ${CGAL_LIBRARY})
+ if (TBB_FOUND)
+ target_link_libraries(Alpha_complex_3d_benchmark ${TBB_LIBRARIES})
+ endif()
+endif ()
diff --git a/src/Alpha_complex/concept/SimplicialComplexForAlpha.h b/src/Alpha_complex/concept/SimplicialComplexForAlpha.h
index a51df127..ba97c802 100644
--- a/src/Alpha_complex/concept/SimplicialComplexForAlpha.h
+++ b/src/Alpha_complex/concept/SimplicialComplexForAlpha.h
@@ -41,9 +41,6 @@ struct SimplicialComplexForAlpha {
/** Returns the number of vertices in the simplicial complex. */
std::size_t num_vertices();
- /** Sets the simplicial complex dimension. */
- void set_dimension(int dimension);
-
/** Gets the 'simplex' dimension. */
int dimension(Simplex_handle simplex);
@@ -65,8 +62,7 @@ struct SimplicialComplexForAlpha {
* 'value type' must be 'Vertex_handle'.*/
typedef unspecified Simplex_vertex_range;
- /** \brief Returns a range over vertices of a given
- * simplex. */
+ /** \brief Returns a range over vertices of a given simplex. */
Simplex_vertex_range simplex_vertex_range(Simplex_handle const & simplex);
/** \brief Iterator over the boundaries of the complex, in an arbitrary order.
@@ -77,6 +73,14 @@ struct SimplicialComplexForAlpha {
/** \brief Returns a range over boundaries of a given simplex. */
Boundary_simplex_range boundary_simplex_range(Simplex_handle const & simplex);
+ /** \brief Iterator over the simplices of the skeleton of the complex, for a given dimension.
+ *
+ * 'value_type' must be 'Simplex_handle'. */
+ typedef unspecified Skeleton_simplex_range;
+ /** \brief Returns a range over the simplices of the skeleton of the simplicial complex, for a given
+ * dimension. */
+ Skeleton_simplex_range skeleton_simplex_range;
+
/** \brief Return type of an insertion of a simplex
*/
typedef unspecified Insertion_result_type;
diff --git a/src/Alpha_complex/concept/SimplicialComplexForAlpha3d.h b/src/Alpha_complex/concept/SimplicialComplexForAlpha3d.h
new file mode 100644
index 00000000..7acdf105
--- /dev/null
+++ b/src/Alpha_complex/concept/SimplicialComplexForAlpha3d.h
@@ -0,0 +1,57 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Vincent Rouvreau
+ *
+ * Copyright (C) 2018 Inria
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef CONCEPT_ALPHA_COMPLEX_SIMPLICIAL_COMPLEX_FOR_ALPHA_3D_H_
+#define CONCEPT_ALPHA_COMPLEX_SIMPLICIAL_COMPLEX_FOR_ALPHA_3D_H_
+
+namespace Gudhi {
+
+namespace alpha_complex {
+
+/** \brief The concept SimplicialComplexForAlpha3d describes the requirements for a type to implement a simplicial
+ * complex, that can be created from a `Alpha_complex_3d`.
+ */
+struct SimplicialComplexForAlpha3d {
+ /** Handle to specify a vertex. Must be a non-negative integer. */
+ typedef unspecified Vertex_handle;
+ /** Handle to specify the simplex filtration value. */
+ typedef unspecified Filtration_value;
+
+ /** Returns the number of vertices in the simplicial complex. */
+ std::size_t num_vertices();
+
+ /** \brief Inserts a simplex from a given simplex (represented by a vector of Vertex_handle) in the
+ * simplicial complex with the given 'filtration' value. */
+ void insert_simplex(std::vector<Vertex_handle> const& vertex_range, Filtration_value filtration);
+
+ /** Browses the simplicial complex to make the filtration non-decreasing. */
+ void make_filtration_non_decreasing();
+
+ /** Prune the simplicial complex above 'filtration' value given as parameter. */
+ void prune_above_filtration(Filtration_value filtration);
+};
+
+} // namespace alpha_complex
+
+} // namespace Gudhi
+
+#endif // CONCEPT_ALPHA_COMPLEX_SIMPLICIAL_COMPLEX_FOR_ALPHA_3D_H_
diff --git a/src/Alpha_complex/doc/Intro_alpha_complex.h b/src/Alpha_complex/doc/Intro_alpha_complex.h
index 7a375c9f..648fb6d6 100644
--- a/src/Alpha_complex/doc/Intro_alpha_complex.h
+++ b/src/Alpha_complex/doc/Intro_alpha_complex.h
@@ -29,34 +29,34 @@ namespace Gudhi {
namespace alpha_complex {
/** \defgroup alpha_complex Alpha complex
- *
+ *
* \author Vincent Rouvreau
*
* @{
- *
+ *
* \section definition Definition
- *
+ *
* Alpha_complex is a <a target="_blank" href="https://en.wikipedia.org/wiki/Simplicial_complex">simplicial complex</a>
* constructed from the finite cells of a Delaunay Triangulation.
- *
+ *
* The filtration value of each simplex is computed as the square of the circumradius of the simplex if the
* circumsphere is empty (the simplex is then said to be Gabriel), and as the minimum of the filtration
* values of the codimension 1 cofaces that make it not Gabriel otherwise.
- *
+ *
* All simplices that have a filtration value strictly greater than a given alpha squared value are not inserted into
* the complex.
- *
+ *
* \image html "alpha_complex_representation.png" "Alpha-complex representation"
- *
+ *
* Alpha_complex is constructing a <a target="_blank"
* href="http://doc.cgal.org/latest/Triangulation/index.html#Chapter_Triangulations">Delaunay Triangulation</a>
* \cite cgal:hdj-t-15b from <a target="_blank" href="http://www.cgal.org/">CGAL</a> (the Computational Geometry
* Algorithms Library \cite cgal:eb-15b) and is able to create a `SimplicialComplexForAlpha`.
- *
+ *
* The complex is a template class requiring an Epick_d <a target="_blank"
* href="http://doc.cgal.org/latest/Kernel_d/index.html#Chapter_dD_Geometry_Kernel">dD Geometry Kernel</a>
* \cite cgal:s-gkd-15b from CGAL as template parameter.
- *
+ *
* \remark
* - When the simplicial complex is constructed with an infinite value of alpha, the complex is a Delaunay
* complex.
@@ -65,30 +65,30 @@ namespace alpha_complex {
* \ref cech_complex can still make sense in higher dimension precisely because you can bound the radii.
*
* \section pointsexample Example from points
- *
+ *
* This example builds the Delaunay triangulation from the given points in a 2D static kernel, and creates a
* `Simplex_tree` with it.
- *
+ *
* Then, it is asked to display information about the simplicial complex.
- *
+ *
* \include Alpha_complex/Alpha_complex_from_points.cpp
- *
+ *
* When launching:
- *
+ *
* \code $> ./Alpha_complex_example_from_points
* \endcode
*
* the program output is:
- *
+ *
* \include Alpha_complex/alphaoffreader_for_doc_60.txt
- *
+ *
* \section createcomplexalgorithm Create complex algorithm
- *
+ *
* \subsection datastructure Data structure
- *
+ *
* In order to create the simplicial complex, first, it is built from the cells of the Delaunay Triangulation.
* The filtration values are set to NaN, which stands for unknown value.
- *
+ *
* In example, :
* \image html "alpha_complex_doc.png" "Simplicial complex structure construction example"
*
@@ -118,53 +118,76 @@ namespace alpha_complex {
* \f$
*
* \subsubsection dimension2 Dimension 2
- *
+ *
* From the example above, it means the algorithm looks into each triangle ([0,1,2], [0,2,4], [1,2,3], ...),
* computes the filtration value of the triangle, and then propagates the filtration value as described
* here :
* \image html "alpha_complex_doc_420.png" "Filtration value propagation example"
- *
+ *
* \subsubsection dimension1 Dimension 1
- *
+ *
* Then, the algorithm looks into each edge ([0,1], [0,2], [1,2], ...),
* computes the filtration value of the edge (in this case, propagation will have no effect).
- *
+ *
* \subsubsection dimension0 Dimension 0
- *
+ *
* Finally, the algorithm looks into each vertex ([0], [1], [2], [3], [4], [5] and [6]) and
* sets the filtration value (0 in case of a vertex - propagation will have no effect).
- *
+ *
* \subsubsection nondecreasing Non decreasing filtration values
- *
+ *
* As the squared radii computed by CGAL are an approximation, it might happen that these alpha squared values do not
* quite define a proper filtration (i.e. non-decreasing with respect to inclusion).
* We fix that up by calling `SimplicialComplexForAlpha::make_filtration_non_decreasing()`.
- *
+ *
* \subsubsection pruneabove Prune above given filtration value
- *
+ *
* The simplex tree is pruned from the given maximum alpha squared value (cf.
* `SimplicialComplexForAlpha::prune_above_filtration()`).
* In the following example, the value is given by the user as argument of the program.
- *
- *
+ *
+ *
* \section offexample Example from OFF file
- *
+ *
* This example builds the Delaunay triangulation in a dynamic kernel, and initializes the alpha complex with it.
- *
- *
+ *
+ *
* Then, it is asked to display information about the alpha complex.
- *
+ *
* \include Alpha_complex/Alpha_complex_from_off.cpp
- *
+ *
* When launching:
- *
+ *
* \code $> ./Alpha_complex_example_from_off ../../data/points/alphacomplexdoc.off 32.0
* \endcode
*
* the program output is:
- *
+ *
* \include Alpha_complex/alphaoffreader_for_doc_32.txt
- *
+ *
+ *
+ * \section weighted3dexample 3d specific example
+ *
+ * A specific module for Alpha complex is available in 3d (cf. Alpha_complex_3d) and allows to construct default, exact,
+ * weighted, periodic or weighted and periodic versions of alpha complexes
+ *
+ * This example builds the CGAL 3d weighted alpha shapes from a small molecule, and initializes the alpha complex with
+ * it. This example is taken from <a href="https://doc.cgal.org/latest/Alpha_shapes_3/index.html#title13">CGAL 3d
+ * weighted alpha shapes</a>.
+ *
+ * Then, it is asked to display information about the alpha complex.
+ *
+ * \include Alpha_complex/Weighted_alpha_complex_3d_from_points.cpp
+ *
+ * When launching:
+ *
+ * \code $> ./Alpha_complex_example_weighted_3d_from_points
+ * \endcode
+ *
+ * the program output is:
+ *
+ * \include Alpha_complex/weightedalpha3dfrompoints_for_doc.txt
+ *
*/
/** @} */ // end defgroup alpha_complex
diff --git a/src/Alpha_complex/example/Alpha_complex_3d_from_points.cpp b/src/Alpha_complex/example/Alpha_complex_3d_from_points.cpp
new file mode 100644
index 00000000..3acebd2e
--- /dev/null
+++ b/src/Alpha_complex/example/Alpha_complex_3d_from_points.cpp
@@ -0,0 +1,56 @@
+#include <gudhi/Alpha_complex_3d.h>
+// to construct a simplex_tree from alpha complex
+#include <gudhi/Simplex_tree.h>
+
+#include <iostream>
+#include <string>
+#include <vector>
+#include <limits> // for numeric limits
+
+using Alpha_complex_3d = Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::EXACT, false, false>;
+using Point = Alpha_complex_3d::Point_3;
+using Vector_of_points = std::vector<Point>;
+
+int main(int argc, char **argv) {
+ if (argc != 1) {
+ std::cerr << "Error: Number of arguments (" << argc << ") is not correct\n";
+ std::cerr << "Usage: " << (argv[0] - 1) << " \n";
+ exit(-1); // ----- >>
+ }
+
+ // ----------------------------------------------------------------------------
+ // Init of a list of points from a small molecule
+ // ----------------------------------------------------------------------------
+ Vector_of_points points;
+ points.push_back(Point(1, -1, -1));
+ points.push_back(Point(-1, 1, -1));
+ points.push_back(Point(-1, -1, 1));
+ points.push_back(Point(1, 1, 1));
+ points.push_back(Point(2, 2, 2));
+
+ // ----------------------------------------------------------------------------
+ // Init of an alpha complex from the list of points
+ // ----------------------------------------------------------------------------
+ Alpha_complex_3d alpha_complex_from_points(points);
+
+ Gudhi::Simplex_tree<> simplex;
+ if (alpha_complex_from_points.create_complex(simplex)) {
+ // ----------------------------------------------------------------------------
+ // Display information about the alpha complex
+ // ----------------------------------------------------------------------------
+ std::cout << "Alpha complex is of dimension " << simplex.dimension() << " - " << simplex.num_simplices()
+ << " simplices - " << simplex.num_vertices() << " vertices." << std::endl;
+
+ std::cout << "Iterator on alpha complex simplices in the filtration order, with [filtration value]:" << std::endl;
+ for (auto f_simplex : simplex.filtration_simplex_range()) {
+ std::cout << " ( ";
+ for (auto vertex : simplex.simplex_vertex_range(f_simplex)) {
+ std::cout << vertex << " ";
+ }
+ std::cout << ") -> "
+ << "[" << simplex.filtration(f_simplex) << "] ";
+ std::cout << std::endl;
+ }
+ }
+ return 0;
+}
diff --git a/src/Alpha_complex/example/CMakeLists.txt b/src/Alpha_complex/example/CMakeLists.txt
index 2fc62452..c62a220c 100644
--- a/src/Alpha_complex/example/CMakeLists.txt
+++ b/src/Alpha_complex/example/CMakeLists.txt
@@ -1,7 +1,5 @@
project(Alpha_complex_examples)
-# need CGAL 4.7
-# cmake -DCGAL_DIR=~/workspace/CGAL-4.7 ..
if (NOT CGAL_WITH_EIGEN3_VERSION VERSION_LESS 4.7.0)
add_executable ( Alpha_complex_example_from_points Alpha_complex_from_points.cpp )
target_link_libraries(Alpha_complex_example_from_points ${CGAL_LIBRARY})
@@ -28,8 +26,23 @@ if (NOT CGAL_WITH_EIGEN3_VERSION VERSION_LESS 4.7.0)
add_test(Alpha_complex_example_from_off_32_diff_files ${DIFF_PATH}
${CMAKE_CURRENT_BINARY_DIR}/alphaoffreader_result_32.txt ${CMAKE_CURRENT_BINARY_DIR}/alphaoffreader_for_doc_32.txt)
endif()
+endif(NOT CGAL_WITH_EIGEN3_VERSION VERSION_LESS 4.7.0)
- install(TARGETS Alpha_complex_example_from_points DESTINATION bin)
- install(TARGETS Alpha_complex_example_from_off DESTINATION bin)
+if (NOT CGAL_WITH_EIGEN3_VERSION VERSION_LESS 4.11.0)
+ add_executable ( Alpha_complex_example_weighted_3d_from_points Weighted_alpha_complex_3d_from_points.cpp )
+ target_link_libraries(Alpha_complex_example_weighted_3d_from_points ${CGAL_LIBRARY})
+ if (TBB_FOUND)
+ target_link_libraries(Alpha_complex_example_weighted_3d_from_points ${TBB_LIBRARIES})
+ endif()
+ add_test(NAME Alpha_complex_example_weighted_3d_from_points
+ COMMAND $<TARGET_FILE:Alpha_complex_example_weighted_3d_from_points>)
-endif(NOT CGAL_WITH_EIGEN3_VERSION VERSION_LESS 4.7.0)
+ add_executable ( Alpha_complex_example_3d_from_points Alpha_complex_3d_from_points.cpp )
+ target_link_libraries(Alpha_complex_example_3d_from_points ${CGAL_LIBRARY})
+ if (TBB_FOUND)
+ target_link_libraries(Alpha_complex_example_3d_from_points ${TBB_LIBRARIES})
+ endif()
+ add_test(NAME Alpha_complex_example_3d_from_points
+ COMMAND $<TARGET_FILE:Alpha_complex_example_3d_from_points>)
+
+endif(NOT CGAL_WITH_EIGEN3_VERSION VERSION_LESS 4.11.0)
diff --git a/src/Alpha_complex/example/Weighted_alpha_complex_3d_from_points.cpp b/src/Alpha_complex/example/Weighted_alpha_complex_3d_from_points.cpp
new file mode 100644
index 00000000..68f72f0a
--- /dev/null
+++ b/src/Alpha_complex/example/Weighted_alpha_complex_3d_from_points.cpp
@@ -0,0 +1,59 @@
+#include <gudhi/Alpha_complex_3d.h>
+// to construct a simplex_tree from alpha complex
+#include <gudhi/Simplex_tree.h>
+
+#include <iostream>
+#include <string>
+#include <vector>
+#include <limits> // for numeric limits
+
+using Weighted_alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::EXACT, true, false>;
+using Point = Weighted_alpha_complex_3d::Point_3;
+using Weighted_point = Weighted_alpha_complex_3d::Triangulation_3::Weighted_point;
+using Vector_of_weighted_points = std::vector<Weighted_point>;
+using Vector_of_weights = std::vector<Weighted_alpha_complex_3d::Alpha_shape_3::FT>;
+
+int main(int argc, char **argv) {
+ if (argc != 1) {
+ std::cerr << "Error: Number of arguments (" << argc << ") is not correct\n";
+ std::cerr << "Usage: " << (argv[0] - 1) << " \n";
+ exit(-1); // ----- >>
+ }
+
+ // ----------------------------------------------------------------------------
+ // Init of a list of points and weights from a small molecule
+ // ----------------------------------------------------------------------------
+ Vector_of_weighted_points weighted_points;
+ weighted_points.push_back(Weighted_point(Point(1, -1, -1), 4.));
+ weighted_points.push_back(Weighted_point(Point(-1, 1, -1), 4.));
+ weighted_points.push_back(Weighted_point(Point(-1, -1, 1), 4.));
+ weighted_points.push_back(Weighted_point(Point(1, 1, 1), 4.));
+ weighted_points.push_back(Weighted_point(Point(2, 2, 2), 1.));
+
+ // ----------------------------------------------------------------------------
+ // Init of an alpha complex from the list of points
+ // ----------------------------------------------------------------------------
+ Weighted_alpha_complex_3d alpha_complex_from_points(weighted_points);
+
+ Gudhi::Simplex_tree<> simplex;
+ if (alpha_complex_from_points.create_complex(simplex)) {
+ // ----------------------------------------------------------------------------
+ // Display information about the alpha complex
+ // ----------------------------------------------------------------------------
+ std::cout << "Alpha complex is of dimension " << simplex.dimension() << " - " << simplex.num_simplices()
+ << " simplices - " << simplex.num_vertices() << " vertices." << std::endl;
+
+ std::cout << "Iterator on alpha complex simplices in the filtration order, with [filtration value]:" << std::endl;
+ for (auto f_simplex : simplex.filtration_simplex_range()) {
+ std::cout << " ( ";
+ for (auto vertex : simplex.simplex_vertex_range(f_simplex)) {
+ std::cout << vertex << " ";
+ }
+ std::cout << ") -> "
+ << "[" << simplex.filtration(f_simplex) << "] ";
+ std::cout << std::endl;
+ }
+ }
+ return 0;
+}
diff --git a/src/Alpha_complex/example/weightedalpha3dfrompoints_for_doc.txt b/src/Alpha_complex/example/weightedalpha3dfrompoints_for_doc.txt
new file mode 100644
index 00000000..7a09998d
--- /dev/null
+++ b/src/Alpha_complex/example/weightedalpha3dfrompoints_for_doc.txt
@@ -0,0 +1,31 @@
+Alpha complex is of dimension 3 - 29 simplices - 5 vertices.
+Iterator on alpha complex simplices in the filtration order, with [filtration value]:
+ ( 0 ) -> [-4]
+ ( 1 ) -> [-4]
+ ( 2 ) -> [-4]
+ ( 3 ) -> [-4]
+ ( 1 0 ) -> [-2]
+ ( 2 0 ) -> [-2]
+ ( 2 1 ) -> [-2]
+ ( 3 0 ) -> [-2]
+ ( 3 1 ) -> [-2]
+ ( 3 2 ) -> [-2]
+ ( 2 1 0 ) -> [-1.33333]
+ ( 3 1 0 ) -> [-1.33333]
+ ( 3 2 0 ) -> [-1.33333]
+ ( 3 2 1 ) -> [-1.33333]
+ ( 3 2 1 0 ) -> [-1]
+ ( 4 ) -> [-1]
+ ( 4 2 ) -> [-1]
+ ( 4 0 ) -> [23]
+ ( 4 1 ) -> [23]
+ ( 4 2 0 ) -> [23]
+ ( 4 2 1 ) -> [23]
+ ( 4 3 ) -> [23]
+ ( 4 3 2 ) -> [23]
+ ( 4 1 0 ) -> [95]
+ ( 4 2 1 0 ) -> [95]
+ ( 4 3 0 ) -> [95]
+ ( 4 3 1 ) -> [95]
+ ( 4 3 2 0 ) -> [95]
+ ( 4 3 2 1 ) -> [95]
diff --git a/src/Alpha_complex/include/gudhi/Alpha_complex_3d.h b/src/Alpha_complex/include/gudhi/Alpha_complex_3d.h
new file mode 100644
index 00000000..00a47d5c
--- /dev/null
+++ b/src/Alpha_complex/include/gudhi/Alpha_complex_3d.h
@@ -0,0 +1,596 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Vincent Rouvreau
+ *
+ * Copyright (C) 2018 Inria
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef ALPHA_COMPLEX_3D_H_
+#define ALPHA_COMPLEX_3D_H_
+
+#include <boost/version.hpp>
+#include <boost/variant.hpp>
+
+#if BOOST_VERSION >= 105400
+#include <boost/container/static_vector.hpp>
+#endif
+
+#include <gudhi/Debug_utils.h>
+#include <gudhi/Alpha_complex_options.h>
+
+#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
+#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
+#include <CGAL/Delaunay_triangulation_3.h>
+#include <CGAL/Periodic_3_Delaunay_triangulation_traits_3.h>
+#include <CGAL/Periodic_3_Delaunay_triangulation_3.h>
+#include <CGAL/Periodic_3_regular_triangulation_traits_3.h>
+#include <CGAL/Periodic_3_regular_triangulation_3.h>
+#include <CGAL/Regular_triangulation_3.h>
+#include <CGAL/Alpha_shape_3.h>
+#include <CGAL/Alpha_shape_cell_base_3.h>
+#include <CGAL/Alpha_shape_vertex_base_3.h>
+
+#include <CGAL/Object.h>
+#include <CGAL/tuple.h>
+#include <CGAL/iterator.h>
+#include <CGAL/version.h>
+
+#include <iostream>
+#include <vector>
+#include <unordered_map>
+#include <stdexcept>
+#include <cstddef>
+#include <memory> // for std::unique_ptr
+#include <type_traits> // for std::conditional and std::enable_if
+
+#if CGAL_VERSION_NR < 1041101000
+// Make compilation fail - required for external projects - https://gitlab.inria.fr/GUDHI/gudhi-devel/issues/10
+static_assert(false, "Alpha_complex_3d is only available for CGAL >= 4.11");
+#endif
+
+namespace Gudhi {
+
+namespace alpha_complex {
+
+#ifdef GUDHI_CAN_USE_CXX11_THREAD_LOCAL
+thread_local
+#endif // GUDHI_CAN_USE_CXX11_THREAD_LOCAL
+ double RELATIVE_PRECISION_OF_TO_DOUBLE = 0.00001;
+
+// Value_from_iterator returns the filtration value from an iterator on alpha shapes values
+//
+// FAST SAFE EXACT
+// not weighted and *iterator Specific case due to CGAL CGAL::to_double(iterator->exact())
+// not periodic issue # 3153
+//
+// otherwise *iterator CGAL::to_double(*iterator) CGAL::to_double(iterator->exact())
+
+template <complexity Complexity, bool Weighted_or_periodic>
+struct Value_from_iterator {
+ template <typename Iterator>
+ static double perform(Iterator it) {
+ // Default behaviour is to return the value pointed by the given iterator
+ return *it;
+ }
+};
+
+template <>
+struct Value_from_iterator<complexity::SAFE, true> {
+ template <typename Iterator>
+ static double perform(Iterator it) {
+ // In SAFE mode, we are with Epick with EXACT value set to CGAL::Tag_true.
+ return CGAL::to_double(*it);
+ }
+};
+
+template <>
+struct Value_from_iterator<complexity::SAFE, false> {
+ template <typename Iterator>
+ static double perform(Iterator it) {
+ // In SAFE mode, we are with Epeck with EXACT value set to CGAL::Tag_true.
+ // Specific case due to CGAL issue https://github.com/CGAL/cgal/issues/3153
+ auto approx = it->approx();
+ double r;
+ if (CGAL::fit_in_double(approx, r)) return r;
+
+ // If it's precise enough, then OK.
+ if (CGAL::has_smaller_relative_precision(approx, RELATIVE_PRECISION_OF_TO_DOUBLE)) return CGAL::to_double(approx);
+
+ it->exact();
+ return CGAL::to_double(it->approx());
+ }
+};
+
+template <>
+struct Value_from_iterator<complexity::EXACT, true> {
+ template <typename Iterator>
+ static double perform(Iterator it) {
+ // In EXACT mode, we are with Epeck or Epick with EXACT value set to CGAL::Tag_true.
+ return CGAL::to_double(it->exact());
+ }
+};
+
+template <>
+struct Value_from_iterator<complexity::EXACT, false> {
+ template <typename Iterator>
+ static double perform(Iterator it) {
+ // In EXACT mode, we are with Epeck or Epick with EXACT value set to CGAL::Tag_true.
+ return CGAL::to_double(it->exact());
+ }
+};
+
+/**
+ * \class Alpha_complex_3d
+ * \brief Alpha complex data structure for 3d specific case.
+ *
+ * \ingroup alpha_complex
+ *
+ * \details
+ * The data structure is constructing a <a href="https://doc.cgal.org/latest/Alpha_shapes_3/index.html">CGAL 3D Alpha
+ * Shapes</a> from a range of points (can be read from an OFF file, cf. Points_off_reader).
+ * Duplicate points are inserted once in the Alpha_complex. This is the reason why the vertices may be not contiguous.
+ *
+ * \tparam Complexity shall be `Gudhi::alpha_complex::complexity`. Default value is
+ * `Gudhi::alpha_complex::complexity::FAST`.
+ *
+ * \tparam Weighted Boolean used to set/unset the weighted version of Alpha_complex_3d. Default value is false.
+ *
+ * \tparam Periodic Boolean used to set/unset the periodic version of Alpha_complex_3d. Default value is false.
+ *
+ * For the weighted version, weights values are explained on CGAL
+ * <a href="https://doc.cgal.org/latest/Alpha_shapes_3/index.html#title0">Alpha shapes 3d</a> and
+ * <a href="https://doc.cgal.org/latest/Triangulation_3/index.html#Triangulation3secclassRegulartriangulation">Regular
+ * triangulation</a> documentation.
+ *
+ * For the periodic version, refer to the
+ * <a href="https://doc.cgal.org/latest/Periodic_3_triangulation_3/index.html">CGAL’s 3D Periodic Triangulations User
+ * Manual </a> for more details.
+ * The periodicity is defined by an iso-oriented cuboid with diagonal opposite vertices (x_min, y_min, z_min) and
+ * (x_max, y_max, z_max).
+ *
+ * Please refer to \ref alpha_complex for examples.
+ *
+ * \remark When Alpha_complex_3d is constructed with an infinite value of alpha (default value), the complex is a
+ * 3d Delaunay complex.
+ *
+ */
+template <complexity Complexity = complexity::FAST, bool Weighted = false, bool Periodic = false>
+class Alpha_complex_3d {
+ // Epick = Exact_predicates_inexact_constructions_kernel
+ // Epeck = Exact_predicates_exact_constructions_kernel
+ // ExactAlphaComparisonTag = exact version of CGAL Alpha_shape_3 and of its objects (Alpha_shape_vertex_base_3 and
+ // Alpha_shape_cell_base_3). Not available if weighted or periodic.
+ // Can be CGAL::Tag_false or CGAL::Tag_true
+ // cf. https://doc.cgal.org/latest/Alpha_shapes_3/classCGAL_1_1Alpha__shape__3.html
+ //
+ //
+ // FAST SAFE EXACT
+ // not weighted and Epick + CGAL::Tag_false Epick + CGAL::Tag_true Epick + CGAL::Tag_true
+ // not periodic
+ //
+ // otherwise Epick + CGAL::Tag_false Epeck Epeck
+ using Predicates = typename std::conditional<((!Weighted && !Periodic) || (Complexity == complexity::FAST)),
+ CGAL::Exact_predicates_inexact_constructions_kernel,
+ CGAL::Exact_predicates_exact_constructions_kernel>::type;
+
+ // The other way to do a conditional type. Here there are 3 possibilities
+ template <typename Predicates, bool Weighted_version, bool Periodic_version>
+ struct Kernel_3 {};
+
+ template <typename Predicates>
+ struct Kernel_3<Predicates, false, false> {
+ using Kernel = Predicates;
+ };
+ template <typename Predicates>
+ struct Kernel_3<Predicates, true, false> {
+ using Kernel = Predicates;
+ };
+ template <typename Predicates>
+ struct Kernel_3<Predicates, false, true> {
+ using Kernel = CGAL::Periodic_3_Delaunay_triangulation_traits_3<Predicates>;
+ };
+ template <typename Predicates>
+ struct Kernel_3<Predicates, true, true> {
+ using Kernel = CGAL::Periodic_3_regular_triangulation_traits_3<Predicates>;
+ };
+
+ using Kernel = typename Kernel_3<Predicates, Weighted, Periodic>::Kernel;
+
+ using Exact_tag = typename std::conditional<(Complexity == complexity::FAST), CGAL::Tag_false, CGAL::Tag_true>::type;
+
+ using TdsVb = typename std::conditional<Periodic, CGAL::Periodic_3_triangulation_ds_vertex_base_3<>,
+ CGAL::Triangulation_ds_vertex_base_3<>>::type;
+
+ using Tvb = typename std::conditional<Weighted, CGAL::Regular_triangulation_vertex_base_3<Kernel, TdsVb>,
+ CGAL::Triangulation_vertex_base_3<Kernel, TdsVb>>::type;
+
+ using Vb = CGAL::Alpha_shape_vertex_base_3<Kernel, Tvb, Exact_tag>;
+
+ using TdsCb = typename std::conditional<Periodic, CGAL::Periodic_3_triangulation_ds_cell_base_3<>,
+ CGAL::Triangulation_ds_cell_base_3<>>::type;
+
+ using Tcb = typename std::conditional<Weighted, CGAL::Regular_triangulation_cell_base_3<Kernel, TdsCb>,
+ CGAL::Triangulation_cell_base_3<Kernel, TdsCb>>::type;
+
+ using Cb = CGAL::Alpha_shape_cell_base_3<Kernel, Tcb, Exact_tag>;
+ using Tds = CGAL::Triangulation_data_structure_3<Vb, Cb>;
+
+ // The other way to do a conditional type. Here there 4 possibilities, cannot use std::conditional
+ template <typename Kernel, typename Tds, bool Weighted_version, bool Periodic_version>
+ struct Triangulation {};
+
+ template <typename Kernel, typename Tds>
+ struct Triangulation<Kernel, Tds, false, false> {
+ using Triangulation_3 = CGAL::Delaunay_triangulation_3<Kernel, Tds>;
+ };
+ template <typename Kernel, typename Tds>
+ struct Triangulation<Kernel, Tds, true, false> {
+ using Triangulation_3 = CGAL::Regular_triangulation_3<Kernel, Tds>;
+ };
+ template <typename Kernel, typename Tds>
+ struct Triangulation<Kernel, Tds, false, true> {
+ using Triangulation_3 = CGAL::Periodic_3_Delaunay_triangulation_3<Kernel, Tds>;
+ };
+ template <typename Kernel, typename Tds>
+ struct Triangulation<Kernel, Tds, true, true> {
+ using Triangulation_3 = CGAL::Periodic_3_regular_triangulation_3<Kernel, Tds>;
+ };
+
+ public:
+ using Triangulation_3 = typename Triangulation<Kernel, Tds, Weighted, Periodic>::Triangulation_3;
+
+ using Alpha_shape_3 = CGAL::Alpha_shape_3<Triangulation_3, Exact_tag>;
+
+ using Point_3 = typename Kernel::Point_3;
+
+ private:
+ using Alpha_value_type = typename Alpha_shape_3::FT;
+ using Dispatch =
+ CGAL::Dispatch_output_iterator<CGAL::cpp11::tuple<CGAL::Object, Alpha_value_type>,
+ CGAL::cpp11::tuple<std::back_insert_iterator<std::vector<CGAL::Object>>,
+ std::back_insert_iterator<std::vector<Alpha_value_type>>>>;
+
+ using Cell_handle = typename Alpha_shape_3::Cell_handle;
+ using Facet = typename Alpha_shape_3::Facet;
+ using Edge = typename Alpha_shape_3::Edge;
+ using Alpha_vertex_handle = typename Alpha_shape_3::Vertex_handle;
+#if BOOST_VERSION >= 105400
+ using Vertex_list = boost::container::static_vector<Alpha_vertex_handle, 4>;
+#else
+ using Vertex_list = std::vector<Alpha_vertex_handle>;
+#endif
+
+ public:
+ /** \brief Alpha_complex constructor from a list of points.
+ *
+ * @param[in] points Range of points to triangulate. Points must be in `Alpha_complex_3d::Point_3` or
+ * `Alpha_complex_3d::Triangulation_3::Weighted_point`.
+ *
+ * @pre Available if Alpha_complex_3d is not Periodic.
+ *
+ * The type InputPointRange must be a range for which std::begin and std::end return input iterators on a
+ * `Alpha_complex_3d::Point_3` or a `Alpha_complex_3d::Triangulation_3::Weighted_point`.
+ */
+ template <typename InputPointRange>
+ Alpha_complex_3d(const InputPointRange& points) {
+ static_assert(!Periodic, "This constructor is not available for periodic versions of Alpha_complex_3d");
+
+ alpha_shape_3_ptr_ = std::unique_ptr<Alpha_shape_3>(
+ new Alpha_shape_3(std::begin(points), std::end(points), 0, Alpha_shape_3::GENERAL));
+ }
+
+ /** \brief Alpha_complex constructor from a list of points and associated weights.
+ *
+ * @exception std::invalid_argument In debug mode, if points and weights do not have the same size.
+ *
+ * @param[in] points Range of points to triangulate. Points must be in `Alpha_complex_3d::Point_3`
+ * @param[in] weights Range of weights on points. Weights shall be in `Alpha_complex_3d::Alpha_shape_3::FT`
+ *
+ * @pre Available if Alpha_complex_3d is Weighted and not Periodic.
+ *
+ * The type InputPointRange must be a range for which std::begin and
+ * std::end return input iterators on a `Alpha_complex_3d::Point_3`.
+ * The type WeightRange must be a range for which std::begin and
+ * std::end return an input iterator on a `Alpha_complex_3d::Alpha_shape_3::FT`.
+ */
+ template <typename InputPointRange, typename WeightRange>
+ Alpha_complex_3d(const InputPointRange& points, WeightRange weights) {
+ static_assert(Weighted, "This constructor is not available for non-weighted versions of Alpha_complex_3d");
+ static_assert(!Periodic, "This constructor is not available for periodic versions of Alpha_complex_3d");
+ GUDHI_CHECK((weights.size() == points.size()),
+ std::invalid_argument("Points number in range different from weights range number"));
+
+ using Weighted_point_3 = typename Triangulation_3::Weighted_point;
+ std::vector<Weighted_point_3> weighted_points_3;
+
+ std::size_t index = 0;
+ weighted_points_3.reserve(points.size());
+ while ((index < weights.size()) && (index < points.size())) {
+ weighted_points_3.push_back(Weighted_point_3(points[index], weights[index]));
+ index++;
+ }
+
+ alpha_shape_3_ptr_ = std::unique_ptr<Alpha_shape_3>(
+ new Alpha_shape_3(std::begin(weighted_points_3), std::end(weighted_points_3), 0, Alpha_shape_3::GENERAL));
+ }
+
+ /** \brief Alpha_complex constructor from a list of points and an iso-cuboid coordinates.
+ *
+ * @exception std::invalid_argument In debug mode, if the size of the cuboid in every directions is not the same.
+ *
+ * @param[in] points Range of points to triangulate. Points must be in `Alpha_complex_3d::Point_3` or
+ * `Alpha_complex_3d::Triangulation_3::Weighted_point`.
+ * @param[in] x_min Iso-oriented cuboid x_min.
+ * @param[in] y_min Iso-oriented cuboid y_min.
+ * @param[in] z_min Iso-oriented cuboid z_min.
+ * @param[in] x_max Iso-oriented cuboid x_max.
+ * @param[in] y_max Iso-oriented cuboid y_max.
+ * @param[in] z_max Iso-oriented cuboid z_max.
+ *
+ * @pre Available if Alpha_complex_3d is Periodic.
+ *
+ * The type InputPointRange must be a range for which std::begin and std::end return input iterators on a
+ * `Alpha_complex_3d::Point_3` or a `Alpha_complex_3d::Triangulation_3::Weighted_point`.
+ *
+ * @note In weighted version, please check weights are greater than zero, and lower than 1/64*cuboid length
+ * squared.
+ */
+ template <typename InputPointRange>
+ Alpha_complex_3d(const InputPointRange& points, Alpha_value_type x_min, Alpha_value_type y_min,
+ Alpha_value_type z_min, Alpha_value_type x_max, Alpha_value_type y_max, Alpha_value_type z_max) {
+ static_assert(Periodic, "This constructor is not available for non-periodic versions of Alpha_complex_3d");
+ // Checking if the cuboid is the same in x,y and z direction. If not, CGAL will not process it.
+ GUDHI_CHECK(
+ (x_max - x_min == y_max - y_min) && (x_max - x_min == z_max - z_min) && (z_max - z_min == y_max - y_min),
+ std::invalid_argument("The size of the cuboid in every directions is not the same."));
+
+ // Define the periodic cube
+ Triangulation_3 pdt(typename Kernel::Iso_cuboid_3(x_min, y_min, z_min, x_max, y_max, z_max));
+ // Heuristic for inserting large point sets (if pts is reasonably large)
+ pdt.insert(std::begin(points), std::end(points), true);
+ // As pdt won't be modified anymore switch to 1-sheeted cover if possible
+ if (!pdt.is_triangulation_in_1_sheet()) {
+ throw std::invalid_argument("Unable to construct a triangulation within a single periodic domain.");
+ }
+ pdt.convert_to_1_sheeted_covering();
+
+ // alpha shape construction from points. CGAL has a strange behavior in REGULARIZED mode. This is the default mode
+ // Maybe need to set it to GENERAL mode
+ alpha_shape_3_ptr_ = std::unique_ptr<Alpha_shape_3>(new Alpha_shape_3(pdt, 0, Alpha_shape_3::GENERAL));
+ }
+
+ /** \brief Alpha_complex constructor from a list of points, associated weights and an iso-cuboid coordinates.
+ *
+ * @exception std::invalid_argument In debug mode, if points and weights do not have the same size.
+ * @exception std::invalid_argument In debug mode, if the size of the cuboid in every directions is not the same.
+ * @exception std::invalid_argument In debug mode, if a weight is negative, zero, or greater than 1/64*cuboid length
+ * squared.
+ *
+ * @param[in] points Range of points to triangulate. Points must be in `Alpha_complex_3d::Point_3`
+ * @param[in] weights Range of weights on points. Weights shall be in `Alpha_complex_3d::Alpha_shape_3::FT`
+ * @param[in] x_min Iso-oriented cuboid x_min.
+ * @param[in] y_min Iso-oriented cuboid y_min.
+ * @param[in] z_min Iso-oriented cuboid z_min.
+ * @param[in] x_max Iso-oriented cuboid x_max.
+ * @param[in] y_max Iso-oriented cuboid y_max.
+ * @param[in] z_max Iso-oriented cuboid z_max.
+ *
+ * @pre Available if Alpha_complex_3d is Weighted and Periodic.
+ *
+ * The type InputPointRange must be a range for which std::begin and
+ * std::end return input iterators on a `Alpha_complex_3d::Point_3`.
+ * The type WeightRange must be a range for which std::begin and
+ * std::end return an input iterator on a `Alpha_complex_3d::Alpha_shape_3::FT`.
+ * The type of x_min, y_min, z_min, x_max, y_max and z_max is `Alpha_complex_3d::Alpha_shape_3::FT`.
+ */
+ template <typename InputPointRange, typename WeightRange>
+ Alpha_complex_3d(const InputPointRange& points, WeightRange weights, Alpha_value_type x_min, Alpha_value_type y_min,
+ Alpha_value_type z_min, Alpha_value_type x_max, Alpha_value_type y_max, Alpha_value_type z_max) {
+ static_assert(Weighted, "This constructor is not available for non-weighted versions of Alpha_complex_3d");
+ static_assert(Periodic, "This constructor is not available for non-periodic versions of Alpha_complex_3d");
+ GUDHI_CHECK((weights.size() == points.size()),
+ std::invalid_argument("Points number in range different from weights range number"));
+ // Checking if the cuboid is the same in x,y and z direction. If not, CGAL will not process it.
+ GUDHI_CHECK(
+ (x_max - x_min == y_max - y_min) && (x_max - x_min == z_max - z_min) && (z_max - z_min == y_max - y_min),
+ std::invalid_argument("The size of the cuboid in every directions is not the same."));
+
+ using Weighted_point_3 = typename Triangulation_3::Weighted_point;
+ std::vector<Weighted_point_3> weighted_points_3;
+
+ std::size_t index = 0;
+ weighted_points_3.reserve(points.size());
+
+#ifdef GUDHI_DEBUG
+ // Defined in GUDHI_DEBUG to avoid unused variable warning for GUDHI_CHECK
+ Alpha_value_type maximal_possible_weight = 0.015625 * (x_max - x_min) * (x_max - x_min);
+#endif
+
+ while ((index < weights.size()) && (index < points.size())) {
+ GUDHI_CHECK((weights[index] < maximal_possible_weight) && (weights[index] >= 0),
+ std::invalid_argument("Invalid weight at index " + std::to_string(index + 1) +
+ ". Must be positive and less than maximal possible weight = 1/64*cuboid length "
+ "squared, which is not an acceptable input."));
+ weighted_points_3.push_back(Weighted_point_3(points[index], weights[index]));
+ index++;
+ }
+
+ // Define the periodic cube
+ Triangulation_3 pdt(typename Kernel::Iso_cuboid_3(x_min, y_min, z_min, x_max, y_max, z_max));
+ // Heuristic for inserting large point sets (if pts is reasonably large)
+ pdt.insert(std::begin(weighted_points_3), std::end(weighted_points_3), true);
+ // As pdt won't be modified anymore switch to 1-sheeted cover if possible
+ if (!pdt.is_triangulation_in_1_sheet()) {
+ throw std::invalid_argument("Unable to construct a triangulation within a single periodic domain.");
+ }
+ pdt.convert_to_1_sheeted_covering();
+
+ // alpha shape construction from points. CGAL has a strange behavior in REGULARIZED mode. This is the default mode
+ // Maybe need to set it to GENERAL mode
+ alpha_shape_3_ptr_ = std::unique_ptr<Alpha_shape_3>(new Alpha_shape_3(pdt, 0, Alpha_shape_3::GENERAL));
+ }
+
+ /** \brief Inserts all Delaunay triangulation into the simplicial complex.
+ * It also computes the filtration values accordingly to the \ref createcomplexalgorithm
+ *
+ * \tparam SimplicialComplexForAlpha3d must meet `SimplicialComplexForAlpha3d` concept.
+ *
+ * @param[in] complex SimplicialComplexForAlpha3d to be created.
+ * @param[in] max_alpha_square maximum for alpha square value. Default value is +\f$\infty\f$.
+ *
+ * @return true if creation succeeds, false otherwise.
+ *
+ * @pre The simplicial complex must be empty (no vertices)
+ *
+ * Initialization can be launched once.
+ *
+ */
+ template <typename SimplicialComplexForAlpha3d,
+ typename Filtration_value = typename SimplicialComplexForAlpha3d::Filtration_value>
+ bool create_complex(SimplicialComplexForAlpha3d& complex,
+ Filtration_value max_alpha_square = std::numeric_limits<Filtration_value>::infinity()) {
+ if (complex.num_vertices() > 0) {
+ std::cerr << "Alpha_complex_3d create_complex - complex is not empty\n";
+ return false; // ----- >>
+ }
+
+ // using Filtration_value = typename SimplicialComplexForAlpha3d::Filtration_value;
+ using Complex_vertex_handle = typename SimplicialComplexForAlpha3d::Vertex_handle;
+ using Alpha_shape_simplex_tree_map = std::unordered_map<Alpha_vertex_handle, Complex_vertex_handle>;
+ using Simplex_tree_vector_vertex = std::vector<Complex_vertex_handle>;
+
+#ifdef DEBUG_TRACES
+ std::size_t count_vertices = 0;
+ std::size_t count_edges = 0;
+ std::size_t count_facets = 0;
+ std::size_t count_cells = 0;
+#endif // DEBUG_TRACES
+ std::vector<CGAL::Object> objects;
+ std::vector<Alpha_value_type> alpha_values;
+
+ Dispatch dispatcher = CGAL::dispatch_output<CGAL::Object, Alpha_value_type>(std::back_inserter(objects),
+ std::back_inserter(alpha_values));
+
+ alpha_shape_3_ptr_->filtration_with_alpha_values(dispatcher);
+#ifdef DEBUG_TRACES
+ std::cout << "filtration_with_alpha_values returns : " << objects.size() << " objects" << std::endl;
+#endif // DEBUG_TRACES
+
+ Alpha_shape_simplex_tree_map map_cgal_simplex_tree;
+ using Alpha_value_iterator = typename std::vector<Alpha_value_type>::const_iterator;
+ Alpha_value_iterator alpha_value_iterator = alpha_values.begin();
+ for (auto object_iterator : objects) {
+ Vertex_list vertex_list;
+
+ // Retrieve Alpha shape vertex list from object
+ if (const Cell_handle* cell = CGAL::object_cast<Cell_handle>(&object_iterator)) {
+ for (auto i = 0; i < 4; i++) {
+#ifdef DEBUG_TRACES
+ std::cout << "from cell[" << i << "]=" << (*cell)->vertex(i)->point() << std::endl;
+#endif // DEBUG_TRACES
+ vertex_list.push_back((*cell)->vertex(i));
+ }
+#ifdef DEBUG_TRACES
+ count_cells++;
+#endif // DEBUG_TRACES
+ } else if (const Facet* facet = CGAL::object_cast<Facet>(&object_iterator)) {
+ for (auto i = 0; i < 4; i++) {
+ if ((*facet).second != i) {
+#ifdef DEBUG_TRACES
+ std::cout << "from facet=[" << i << "]" << (*facet).first->vertex(i)->point() << std::endl;
+#endif // DEBUG_TRACES
+ vertex_list.push_back((*facet).first->vertex(i));
+ }
+ }
+#ifdef DEBUG_TRACES
+ count_facets++;
+#endif // DEBUG_TRACES
+ } else if (const Edge* edge = CGAL::object_cast<Edge>(&object_iterator)) {
+ for (auto i : {(*edge).second, (*edge).third}) {
+#ifdef DEBUG_TRACES
+ std::cout << "from edge[" << i << "]=" << (*edge).first->vertex(i)->point() << std::endl;
+#endif // DEBUG_TRACES
+ vertex_list.push_back((*edge).first->vertex(i));
+ }
+#ifdef DEBUG_TRACES
+ count_edges++;
+#endif // DEBUG_TRACES
+ } else if (const Alpha_vertex_handle* vertex = CGAL::object_cast<Alpha_vertex_handle>(&object_iterator)) {
+#ifdef DEBUG_TRACES
+ count_vertices++;
+ std::cout << "from vertex=" << (*vertex)->point() << std::endl;
+#endif // DEBUG_TRACES
+ vertex_list.push_back((*vertex));
+ }
+ // Construction of the vector of simplex_tree vertex from list of alpha_shapes vertex
+ Simplex_tree_vector_vertex the_simplex;
+ for (auto the_alpha_shape_vertex : vertex_list) {
+ auto the_map_iterator = map_cgal_simplex_tree.find(the_alpha_shape_vertex);
+ if (the_map_iterator == map_cgal_simplex_tree.end()) {
+ // alpha shape not found
+ Complex_vertex_handle vertex = map_cgal_simplex_tree.size();
+#ifdef DEBUG_TRACES
+ std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] not found - insert " << vertex << std::endl;
+#endif // DEBUG_TRACES
+ the_simplex.push_back(vertex);
+ map_cgal_simplex_tree.emplace(the_alpha_shape_vertex, vertex);
+ } else {
+ // alpha shape found
+ Complex_vertex_handle vertex = the_map_iterator->second;
+#ifdef DEBUG_TRACES
+ std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] found in " << vertex << std::endl;
+#endif // DEBUG_TRACES
+ the_simplex.push_back(vertex);
+ }
+ }
+ // Construction of the simplex_tree
+ Filtration_value filtr = Value_from_iterator<Complexity, (Weighted || Periodic)>::perform(alpha_value_iterator);
+
+#ifdef DEBUG_TRACES
+ std::cout << "filtration = " << filtr << std::endl;
+#endif // DEBUG_TRACES
+ complex.insert_simplex(the_simplex, static_cast<Filtration_value>(filtr));
+ GUDHI_CHECK(alpha_value_iterator != alpha_values.end(), "CGAL provided more simplices than values");
+ ++alpha_value_iterator;
+ }
+
+#ifdef DEBUG_TRACES
+ std::cout << "vertices \t" << count_vertices << std::endl;
+ std::cout << "edges \t\t" << count_edges << std::endl;
+ std::cout << "facets \t\t" << count_facets << std::endl;
+ std::cout << "cells \t\t" << count_cells << std::endl;
+#endif // DEBUG_TRACES
+ // --------------------------------------------------------------------------------------------
+ // As Alpha value is an approximation, we have to make filtration non decreasing while increasing the dimension
+ complex.make_filtration_non_decreasing();
+ // Remove all simplices that have a filtration value greater than max_alpha_square
+ complex.prune_above_filtration(max_alpha_square);
+ // --------------------------------------------------------------------------------------------
+ return true;
+ }
+
+ private:
+ // use of a unique_ptr on cgal Alpha_shape_3, as copy and default constructor is not available - no need to be freed
+ std::unique_ptr<Alpha_shape_3> alpha_shape_3_ptr_;
+};
+
+} // namespace alpha_complex
+
+} // namespace Gudhi
+
+#endif // ALPHA_COMPLEX_3D_H_
diff --git a/src/Alpha_complex/include/gudhi/Alpha_complex_options.h b/src/Alpha_complex/include/gudhi/Alpha_complex_options.h
new file mode 100644
index 00000000..7a555fa1
--- /dev/null
+++ b/src/Alpha_complex/include/gudhi/Alpha_complex_options.h
@@ -0,0 +1,45 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Vincent Rouvreau
+ *
+ * Copyright (C) 2018 Inria
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef ALPHA_COMPLEX_OPTIONS_H_
+#define ALPHA_COMPLEX_OPTIONS_H_
+
+namespace Gudhi {
+
+namespace alpha_complex {
+
+/**
+ * \brief Alpha complex complexity template parameter possible values.
+ *
+ * \ingroup alpha_complex
+ */
+enum class complexity : char {
+ FAST = 'f', ///< Fast version.
+ SAFE = 's', ///< Safe version.
+ EXACT = 'e', ///< Exact version.
+};
+
+} // namespace alpha_complex
+
+} // namespace Gudhi
+
+#endif // ALPHA_COMPLEX_OPTIONS_H_
diff --git a/src/Alpha_complex/test/Alpha_complex_3d_unit_test.cpp b/src/Alpha_complex/test/Alpha_complex_3d_unit_test.cpp
new file mode 100644
index 00000000..9e071195
--- /dev/null
+++ b/src/Alpha_complex/test/Alpha_complex_3d_unit_test.cpp
@@ -0,0 +1,612 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Vincent Rouvreau
+ *
+ * Copyright (C) 2015 Inria
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#define BOOST_TEST_DYN_LINK
+#define BOOST_TEST_MODULE "alpha_complex_3d"
+#include <boost/test/unit_test.hpp>
+#include <boost/mpl/list.hpp>
+
+#include <cmath> // float comparison
+#include <limits>
+#include <string>
+#include <vector>
+#include <random>
+#include <cstddef> // for std::size_t
+
+#include <gudhi/Alpha_complex_3d.h>
+#include <gudhi/graph_simplicial_complex.h>
+#include <gudhi/Simplex_tree.h>
+#include <gudhi/Unitary_tests_utils.h>
+// to construct Alpha_complex from a OFF file of points
+#include <gudhi/Points_3D_off_io.h>
+
+#include <CGAL/Random.h>
+#include <CGAL/point_generators_3.h>
+
+using Fast_alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::FAST, false, false>;
+using Safe_alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::SAFE, false, false>;
+using Exact_alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::EXACT, false, false>;
+
+using Fast_weighted_alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::FAST, true, false>;
+using Safe_weighted_alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::SAFE, true, false>;
+using Exact_weighted_alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::EXACT, true, false>;
+
+using Fast_periodic_alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::FAST, false, true>;
+using Safe_periodic_alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::SAFE, false, true>;
+using Exact_periodic_alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::EXACT, false, true>;
+
+using Fast_weighted_periodic_alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::FAST, true, true>;
+using Safe_weighted_periodic_alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::SAFE, true, true>;
+using Exact_weighted_periodic_alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::EXACT, true, true>;
+
+BOOST_AUTO_TEST_CASE(Alpha_complex_3d_from_points) {
+ // -----------------
+ // Fast version
+ // -----------------
+ std::cout << "Fast alpha complex 3d" << std::endl;
+ std::vector<Fast_alpha_complex_3d::Point_3> points;
+ points.push_back(Fast_alpha_complex_3d::Point_3(0.0, 0.0, 0.0));
+ points.push_back(Fast_alpha_complex_3d::Point_3(0.0, 0.0, 0.2));
+ points.push_back(Fast_alpha_complex_3d::Point_3(0.2, 0.0, 0.2));
+ points.push_back(Fast_alpha_complex_3d::Point_3(0.6, 0.6, 0.0));
+ points.push_back(Fast_alpha_complex_3d::Point_3(0.8, 0.8, 0.2));
+ points.push_back(Fast_alpha_complex_3d::Point_3(0.2, 0.8, 0.6));
+
+ Fast_alpha_complex_3d alpha_complex(points);
+
+ Gudhi::Simplex_tree<> stree;
+ alpha_complex.create_complex(stree);
+
+ // -----------------
+ // Exact version
+ // -----------------
+ std::cout << "Exact alpha complex 3d" << std::endl;
+
+ Exact_alpha_complex_3d exact_alpha_complex(points);
+
+ Gudhi::Simplex_tree<> exact_stree;
+ exact_alpha_complex.create_complex(exact_stree);
+
+ // ---------------------
+ // Compare both versions
+ // ---------------------
+ std::cout << "Exact Alpha complex 3d is of dimension " << exact_stree.dimension() << " - Non exact is "
+ << stree.dimension() << std::endl;
+ BOOST_CHECK(exact_stree.dimension() == stree.dimension());
+ std::cout << "Exact Alpha complex 3d num_simplices " << exact_stree.num_simplices() << " - Non exact is "
+ << stree.num_simplices() << std::endl;
+ BOOST_CHECK(exact_stree.num_simplices() == stree.num_simplices());
+ std::cout << "Exact Alpha complex 3d num_vertices " << exact_stree.num_vertices() << " - Non exact is "
+ << stree.num_vertices() << std::endl;
+ BOOST_CHECK(exact_stree.num_vertices() == stree.num_vertices());
+
+ auto sh = stree.filtration_simplex_range().begin();
+ while (sh != stree.filtration_simplex_range().end()) {
+ std::vector<int> simplex;
+ std::vector<int> exact_simplex;
+ std::cout << "Non-exact ( ";
+ for (auto vertex : stree.simplex_vertex_range(*sh)) {
+ simplex.push_back(vertex);
+ std::cout << vertex << " ";
+ }
+ std::cout << ") -> "
+ << "[" << stree.filtration(*sh) << "] ";
+ std::cout << std::endl;
+
+ // Find it in the exact structure
+ auto sh_exact = exact_stree.find(simplex);
+ BOOST_CHECK(sh_exact != exact_stree.null_simplex());
+
+ // Exact and non-exact version is not exactly the same due to float comparison
+ GUDHI_TEST_FLOAT_EQUALITY_CHECK(exact_stree.filtration(sh_exact), stree.filtration(*sh));
+
+ ++sh;
+ }
+ // -----------------
+ // Safe version
+ // -----------------
+ std::cout << "Safe alpha complex 3d" << std::endl;
+
+ Safe_alpha_complex_3d safe_alpha_complex(points);
+
+ Gudhi::Simplex_tree<> safe_stree;
+ safe_alpha_complex.create_complex(safe_stree);
+
+ // ---------------------
+ // Compare both versions
+ // ---------------------
+ std::cout << "Exact Alpha complex 3d is of dimension " << safe_stree.dimension() << " - Non exact is "
+ << stree.dimension() << std::endl;
+ BOOST_CHECK(safe_stree.dimension() == stree.dimension());
+ std::cout << "Exact Alpha complex 3d num_simplices " << safe_stree.num_simplices() << " - Non exact is "
+ << stree.num_simplices() << std::endl;
+ BOOST_CHECK(safe_stree.num_simplices() == stree.num_simplices());
+ std::cout << "Exact Alpha complex 3d num_vertices " << safe_stree.num_vertices() << " - Non exact is "
+ << stree.num_vertices() << std::endl;
+ BOOST_CHECK(safe_stree.num_vertices() == stree.num_vertices());
+
+ auto safe_sh = stree.filtration_simplex_range().begin();
+ while (safe_sh != stree.filtration_simplex_range().end()) {
+ std::vector<int> simplex;
+ std::vector<int> exact_simplex;
+#ifdef DEBUG_TRACES
+ std::cout << "Non-exact ( ";
+#endif
+ for (auto vertex : stree.simplex_vertex_range(*safe_sh)) {
+ simplex.push_back(vertex);
+#ifdef DEBUG_TRACES
+ std::cout << vertex << " ";
+#endif
+ }
+#ifdef DEBUG_TRACES
+ std::cout << ") -> "
+ << "[" << stree.filtration(*safe_sh) << "] ";
+ std::cout << std::endl;
+#endif
+
+ // Find it in the exact structure
+ auto sh_exact = safe_stree.find(simplex);
+ BOOST_CHECK(sh_exact != safe_stree.null_simplex());
+
+ // Exact and non-exact version is not exactly the same due to float comparison
+ GUDHI_TEST_FLOAT_EQUALITY_CHECK(safe_stree.filtration(sh_exact), stree.filtration(*safe_sh));
+
+ ++safe_sh;
+ }
+}
+
+typedef boost::mpl::list<Fast_weighted_alpha_complex_3d, Safe_weighted_alpha_complex_3d,
+ Exact_weighted_alpha_complex_3d>
+ weighted_variants_type_list;
+
+#ifdef GUDHI_DEBUG
+BOOST_AUTO_TEST_CASE_TEMPLATE(Alpha_complex_weighted_throw, Weighted_alpha_complex_3d, weighted_variants_type_list) {
+ using Point_3 = typename Weighted_alpha_complex_3d::Point_3;
+ std::vector<Point_3> w_points;
+ w_points.push_back(Point_3(0.0, 0.0, 0.0));
+ w_points.push_back(Point_3(0.0, 0.0, 0.2));
+ w_points.push_back(Point_3(0.2, 0.0, 0.2));
+ // w_points.push_back(Point_3(0.6, 0.6, 0.0));
+ // w_points.push_back(Point_3(0.8, 0.8, 0.2));
+ // w_points.push_back(Point_3(0.2, 0.8, 0.6));
+
+ // weights size is different from w_points size to make weighted Alpha_complex_3d throw in debug mode
+ std::vector<double> weights = {0.01, 0.005, 0.006, 0.01, 0.009, 0.001};
+
+ std::cout << "Check exception throw in debug mode" << std::endl;
+ BOOST_CHECK_THROW(Weighted_alpha_complex_3d wac(w_points, weights), std::invalid_argument);
+}
+#endif
+
+BOOST_AUTO_TEST_CASE_TEMPLATE(Alpha_complex_weighted, Weighted_alpha_complex_3d, weighted_variants_type_list) {
+ std::cout << "Weighted alpha complex 3d from points and weights" << std::endl;
+ using Point_3 = typename Weighted_alpha_complex_3d::Point_3;
+ std::vector<Point_3> w_points;
+ w_points.push_back(Point_3(0.0, 0.0, 0.0));
+ w_points.push_back(Point_3(0.0, 0.0, 0.2));
+ w_points.push_back(Point_3(0.2, 0.0, 0.2));
+ w_points.push_back(Point_3(0.6, 0.6, 0.0));
+ w_points.push_back(Point_3(0.8, 0.8, 0.2));
+ w_points.push_back(Point_3(0.2, 0.8, 0.6));
+
+ // weights size is different from w_points size to make weighted Alpha_complex_3d throw in debug mode
+ std::vector<double> weights = {0.01, 0.005, 0.006, 0.01, 0.009, 0.001};
+
+ Weighted_alpha_complex_3d alpha_complex_p_a_w(w_points, weights);
+ Gudhi::Simplex_tree<> stree;
+ alpha_complex_p_a_w.create_complex(stree);
+
+ std::cout << "Weighted alpha complex 3d from weighted points" << std::endl;
+ using Weighted_point_3 = typename Weighted_alpha_complex_3d::Triangulation_3::Weighted_point;
+
+ std::vector<Weighted_point_3> weighted_points;
+
+ for (std::size_t i = 0; i < w_points.size(); i++) {
+ weighted_points.push_back(Weighted_point_3(w_points[i], weights[i]));
+ }
+ Weighted_alpha_complex_3d alpha_complex_w_p(weighted_points);
+
+ Gudhi::Simplex_tree<> stree_bis;
+ alpha_complex_w_p.create_complex(stree_bis);
+
+ // ---------------------
+ // Compare both versions
+ // ---------------------
+ std::cout << "Weighted alpha complex 3d is of dimension " << stree_bis.dimension() << " - versus "
+ << stree.dimension() << std::endl;
+ BOOST_CHECK(stree_bis.dimension() == stree.dimension());
+ std::cout << "Weighted alpha complex 3d num_simplices " << stree_bis.num_simplices() << " - versus "
+ << stree.num_simplices() << std::endl;
+ BOOST_CHECK(stree_bis.num_simplices() == stree.num_simplices());
+ std::cout << "Weighted alpha complex 3d num_vertices " << stree_bis.num_vertices() << " - versus "
+ << stree.num_vertices() << std::endl;
+ BOOST_CHECK(stree_bis.num_vertices() == stree.num_vertices());
+
+ auto sh = stree.filtration_simplex_range().begin();
+ while (sh != stree.filtration_simplex_range().end()) {
+ std::vector<int> simplex;
+ std::vector<int> exact_simplex;
+#ifdef DEBUG_TRACES
+ std::cout << " ( ";
+#endif
+ for (auto vertex : stree.simplex_vertex_range(*sh)) {
+ simplex.push_back(vertex);
+#ifdef DEBUG_TRACES
+ std::cout << vertex << " ";
+#endif
+ }
+#ifdef DEBUG_TRACES
+ std::cout << ") -> "
+ << "[" << stree.filtration(*sh) << "] ";
+ std::cout << std::endl;
+#endif
+
+ // Find it in the exact structure
+ auto sh_exact = stree_bis.find(simplex);
+ BOOST_CHECK(sh_exact != stree_bis.null_simplex());
+
+ // Exact and non-exact version is not exactly the same due to float comparison
+ GUDHI_TEST_FLOAT_EQUALITY_CHECK(stree_bis.filtration(sh_exact), stree.filtration(*sh));
+
+ ++sh;
+ }
+}
+
+#ifdef GUDHI_DEBUG
+typedef boost::mpl::list<Fast_periodic_alpha_complex_3d, Safe_periodic_alpha_complex_3d,
+ Exact_periodic_alpha_complex_3d>
+ periodic_variants_type_list;
+
+BOOST_AUTO_TEST_CASE_TEMPLATE(Alpha_complex_periodic_throw, Periodic_alpha_complex_3d, periodic_variants_type_list) {
+ std::cout << "Periodic alpha complex 3d exception throw" << std::endl;
+ using Point_3 = typename Periodic_alpha_complex_3d::Point_3;
+ std::vector<Point_3> p_points;
+
+ // Not important, this is not what we want to check
+ p_points.push_back(Point_3(0.0, 0.0, 0.0));
+
+ std::cout << "Check exception throw in debug mode" << std::endl;
+ // Check it throws an exception when the cuboid is not iso
+ BOOST_CHECK_THROW(Periodic_alpha_complex_3d periodic_alpha_complex(p_points, 0., 0., 0., 0.9, 1., 1.),
+ std::invalid_argument);
+ BOOST_CHECK_THROW(Periodic_alpha_complex_3d periodic_alpha_complex(p_points, 0., 0., 0., 1., 0.9, 1.),
+ std::invalid_argument);
+ BOOST_CHECK_THROW(Periodic_alpha_complex_3d periodic_alpha_complex(p_points, 0., 0., 0., 1., 1., 0.9),
+ std::invalid_argument);
+ BOOST_CHECK_THROW(Periodic_alpha_complex_3d periodic_alpha_complex(p_points, 0., 0., 0., 1.1, 1., 1.),
+ std::invalid_argument);
+ BOOST_CHECK_THROW(Periodic_alpha_complex_3d periodic_alpha_complex(p_points, 0., 0., 0., 1., 1.1, 1.),
+ std::invalid_argument);
+ BOOST_CHECK_THROW(Periodic_alpha_complex_3d periodic_alpha_complex(p_points, 0., 0., 0., 1., 1., 1.1),
+ std::invalid_argument);
+}
+#endif
+
+BOOST_AUTO_TEST_CASE(Alpha_complex_periodic) {
+ // ---------------------
+ // Fast periodic version
+ // ---------------------
+ std::cout << "Fast periodic alpha complex 3d" << std::endl;
+
+ using Creator = CGAL::Creator_uniform_3<double, Fast_periodic_alpha_complex_3d::Point_3>;
+ CGAL::Random random(7);
+ CGAL::Random_points_in_cube_3<Fast_periodic_alpha_complex_3d::Point_3, Creator> in_cube(1, random);
+ std::vector<Fast_periodic_alpha_complex_3d::Point_3> p_points;
+
+ for (int i = 0; i < 50; i++) {
+ Fast_periodic_alpha_complex_3d::Point_3 p = *in_cube++;
+ p_points.push_back(p);
+ }
+
+ Fast_periodic_alpha_complex_3d periodic_alpha_complex(p_points, -1., -1., -1., 1., 1., 1.);
+
+ Gudhi::Simplex_tree<> stree;
+ periodic_alpha_complex.create_complex(stree);
+
+ // ----------------------
+ // Exact periodic version
+ // ----------------------
+ std::cout << "Exact periodic alpha complex 3d" << std::endl;
+
+ std::vector<Exact_periodic_alpha_complex_3d::Point_3> e_p_points;
+
+ for (auto p : p_points) {
+ e_p_points.push_back(Exact_periodic_alpha_complex_3d::Point_3(p[0], p[1], p[2]));
+ }
+
+ Exact_periodic_alpha_complex_3d exact_alpha_complex(e_p_points, -1., -1., -1., 1., 1., 1.);
+
+ Gudhi::Simplex_tree<> exact_stree;
+ exact_alpha_complex.create_complex(exact_stree);
+
+ // ---------------------
+ // Compare both versions
+ // ---------------------
+ std::cout << "Exact periodic alpha complex 3d is of dimension " << exact_stree.dimension() << " - Non exact is "
+ << stree.dimension() << std::endl;
+ BOOST_CHECK(exact_stree.dimension() == stree.dimension());
+ std::cout << "Exact periodic alpha complex 3d num_simplices " << exact_stree.num_simplices() << " - Non exact is "
+ << stree.num_simplices() << std::endl;
+ BOOST_CHECK(exact_stree.num_simplices() == stree.num_simplices());
+ std::cout << "Exact periodic alpha complex 3d num_vertices " << exact_stree.num_vertices() << " - Non exact is "
+ << stree.num_vertices() << std::endl;
+ BOOST_CHECK(exact_stree.num_vertices() == stree.num_vertices());
+
+ // We cannot compare as objects from dispatcher on the alpha shape is not deterministic.
+ // cf. https://github.com/CGAL/cgal/issues/3346
+ auto sh = stree.filtration_simplex_range().begin();
+ auto sh_exact = exact_stree.filtration_simplex_range().begin();
+
+ while (sh != stree.filtration_simplex_range().end() || sh_exact != exact_stree.filtration_simplex_range().end()) {
+ GUDHI_TEST_FLOAT_EQUALITY_CHECK(stree.filtration(*sh), exact_stree.filtration(*sh_exact), 1e-14);
+
+ std::vector<int> vh(stree.simplex_vertex_range(*sh).begin(), stree.simplex_vertex_range(*sh).end());
+ std::vector<int> exact_vh(exact_stree.simplex_vertex_range(*sh_exact).begin(),
+ exact_stree.simplex_vertex_range(*sh_exact).end());
+
+ BOOST_CHECK(vh.size() == exact_vh.size());
+ ++sh;
+ ++sh_exact;
+ }
+
+ BOOST_CHECK(sh == stree.filtration_simplex_range().end());
+ BOOST_CHECK(sh_exact == exact_stree.filtration_simplex_range().end());
+
+ // ----------------------
+ // Safe periodic version
+ // ----------------------
+ std::cout << "Safe periodic alpha complex 3d" << std::endl;
+
+ std::vector<Safe_periodic_alpha_complex_3d::Point_3> s_p_points;
+
+ for (auto p : p_points) {
+ s_p_points.push_back(Safe_periodic_alpha_complex_3d::Point_3(p[0], p[1], p[2]));
+ }
+
+ Safe_periodic_alpha_complex_3d safe_alpha_complex(s_p_points, -1., -1., -1., 1., 1., 1.);
+
+ Gudhi::Simplex_tree<> safe_stree;
+ safe_alpha_complex.create_complex(safe_stree);
+
+ // ---------------------
+ // Compare both versions
+ // ---------------------
+ // We cannot compare as objects from dispatcher on the alpha shape is not deterministic.
+ // cf. https://github.com/CGAL/cgal/issues/3346
+ sh = stree.filtration_simplex_range().begin();
+ auto sh_safe = safe_stree.filtration_simplex_range().begin();
+
+ while (sh != stree.filtration_simplex_range().end() || sh_safe != safe_stree.filtration_simplex_range().end()) {
+ GUDHI_TEST_FLOAT_EQUALITY_CHECK(stree.filtration(*sh), safe_stree.filtration(*sh_safe), 1e-14);
+
+ std::vector<int> vh(stree.simplex_vertex_range(*sh).begin(), stree.simplex_vertex_range(*sh).end());
+ std::vector<int> safe_vh(safe_stree.simplex_vertex_range(*sh_safe).begin(),
+ safe_stree.simplex_vertex_range(*sh_safe).end());
+
+ BOOST_CHECK(vh.size() == safe_vh.size());
+ ++sh;
+ ++sh_safe;
+ }
+
+ BOOST_CHECK(sh == stree.filtration_simplex_range().end());
+ BOOST_CHECK(sh_safe == safe_stree.filtration_simplex_range().end());
+}
+
+typedef boost::mpl::list<Fast_weighted_periodic_alpha_complex_3d, Exact_weighted_periodic_alpha_complex_3d,
+ Safe_weighted_periodic_alpha_complex_3d>
+ wp_variants_type_list;
+
+#ifdef GUDHI_DEBUG
+BOOST_AUTO_TEST_CASE_TEMPLATE(Alpha_complex_weighted_periodic_throw, Weighted_periodic_alpha_complex_3d,
+ wp_variants_type_list) {
+ std::cout << "Weighted periodic alpha complex 3d exception throw" << std::endl;
+
+ using Creator = CGAL::Creator_uniform_3<double, Weighted_periodic_alpha_complex_3d::Point_3>;
+ CGAL::Random random(7);
+ CGAL::Random_points_in_cube_3<Weighted_periodic_alpha_complex_3d::Point_3, Creator> in_cube(1, random);
+ std::vector<Weighted_periodic_alpha_complex_3d::Point_3> wp_points;
+
+ for (int i = 0; i < 50; i++) {
+ Weighted_periodic_alpha_complex_3d::Point_3 p = *in_cube++;
+ wp_points.push_back(p);
+ }
+ std::vector<double> p_weights;
+ // Weights must be in range ]0, 1/64 = 0.015625[
+ for (std::size_t i = 0; i < wp_points.size(); ++i) {
+ p_weights.push_back(random.get_double(0., 0.01));
+ }
+
+ std::cout << "Cuboid is not iso exception" << std::endl;
+ // Check it throws an exception when the cuboid is not iso
+ BOOST_CHECK_THROW(
+ Weighted_periodic_alpha_complex_3d wp_alpha_complex(wp_points, p_weights, -1., -1., -1., 0.9, 1., 1.),
+ std::invalid_argument);
+ BOOST_CHECK_THROW(
+ Weighted_periodic_alpha_complex_3d wp_alpha_complex(wp_points, p_weights, -1., -1., -1., 1., 0.9, 1.),
+ std::invalid_argument);
+ BOOST_CHECK_THROW(
+ Weighted_periodic_alpha_complex_3d wp_alpha_complex(wp_points, p_weights, -1., -1., -1., 1., 1., 0.9),
+ std::invalid_argument);
+ BOOST_CHECK_THROW(
+ Weighted_periodic_alpha_complex_3d wp_alpha_complex(wp_points, p_weights, -1., -1., -1., 1.1, 1., 1.),
+ std::invalid_argument);
+ BOOST_CHECK_THROW(
+ Weighted_periodic_alpha_complex_3d wp_alpha_complex(wp_points, p_weights, -1., -1., -1., 1., 1.1, 1.),
+ std::invalid_argument);
+ BOOST_CHECK_THROW(
+ Weighted_periodic_alpha_complex_3d wp_alpha_complex(wp_points, p_weights, -1., -1., -1., 1., 1., 1.1),
+ std::invalid_argument);
+
+ std::cout << "0 <= point.weight() < 1/64 * domain_size * domain_size exception" << std::endl;
+ // Weights must be in range ]0, 1/64 = 0.015625[
+ double temp = p_weights[25];
+ p_weights[25] = 1.0;
+ BOOST_CHECK_THROW(Weighted_periodic_alpha_complex_3d wp_alpha_complex(wp_points, p_weights, 0., 0., 0., 1., 1., 1.),
+ std::invalid_argument);
+ // Weights must be in range ]0, 1/64 = 0.015625[
+ p_weights[25] = temp;
+ temp = p_weights[14];
+ p_weights[14] = -1e-10;
+ BOOST_CHECK_THROW(Weighted_periodic_alpha_complex_3d wp_alpha_complex(wp_points, p_weights, 0., 0., 0., 1., 1., 1.),
+ std::invalid_argument);
+ p_weights[14] = temp;
+
+ std::cout << "wp_points and p_weights size exception" << std::endl;
+ // Weights and points must have the same size
+ // + 1
+ p_weights.push_back(1e-10);
+ BOOST_CHECK_THROW(Weighted_periodic_alpha_complex_3d wp_alpha_complex(wp_points, p_weights, 0., 0., 0., 1., 1., 1.),
+ std::invalid_argument);
+ // - 1
+ p_weights.pop_back();
+ p_weights.pop_back();
+ BOOST_CHECK_THROW(Weighted_periodic_alpha_complex_3d wp_alpha_complex(wp_points, p_weights, 0., 0., 0., 1., 1., 1.),
+ std::invalid_argument);
+}
+#endif
+
+BOOST_AUTO_TEST_CASE(Alpha_complex_weighted_periodic) {
+ // ---------------------
+ // Fast weighted periodic version
+ // ---------------------
+ std::cout << "Fast weighted periodic alpha complex 3d" << std::endl;
+
+ using Creator = CGAL::Creator_uniform_3<double, Fast_weighted_periodic_alpha_complex_3d::Point_3>;
+ CGAL::Random random(7);
+ CGAL::Random_points_in_cube_3<Fast_weighted_periodic_alpha_complex_3d::Point_3, Creator> in_cube(1, random);
+ std::vector<Fast_weighted_periodic_alpha_complex_3d::Point_3> p_points;
+
+ for (int i = 0; i < 50; i++) {
+ Fast_weighted_periodic_alpha_complex_3d::Point_3 p = *in_cube++;
+ p_points.push_back(p);
+ }
+ std::vector<double> p_weights;
+ // Weights must be in range ]0, 1/64 = 0.015625[
+ for (std::size_t i = 0; i < p_points.size(); ++i) {
+ p_weights.push_back(random.get_double(0., 0.01));
+ }
+
+ Fast_weighted_periodic_alpha_complex_3d periodic_alpha_complex(p_points, p_weights, -1., -1., -1., 1., 1., 1.);
+
+ Gudhi::Simplex_tree<> stree;
+ periodic_alpha_complex.create_complex(stree);
+
+ // ----------------------
+ // Exact weighted periodic version
+ // ----------------------
+ std::cout << "Exact weighted periodic alpha complex 3d" << std::endl;
+
+ std::vector<Exact_weighted_periodic_alpha_complex_3d::Point_3> e_p_points;
+
+ for (auto p : p_points) {
+ e_p_points.push_back(Exact_weighted_periodic_alpha_complex_3d::Point_3(p[0], p[1], p[2]));
+ }
+
+ Exact_weighted_periodic_alpha_complex_3d exact_alpha_complex(e_p_points, p_weights, -1., -1., -1., 1., 1., 1.);
+
+ Gudhi::Simplex_tree<> exact_stree;
+ exact_alpha_complex.create_complex(exact_stree);
+
+ // ---------------------
+ // Compare both versions
+ // ---------------------
+ std::cout << "Exact weighted periodic alpha complex 3d is of dimension " << exact_stree.dimension()
+ << " - Non exact is " << stree.dimension() << std::endl;
+ BOOST_CHECK(exact_stree.dimension() == stree.dimension());
+ std::cout << "Exact weighted periodic alpha complex 3d num_simplices " << exact_stree.num_simplices()
+ << " - Non exact is " << stree.num_simplices() << std::endl;
+ BOOST_CHECK(exact_stree.num_simplices() == stree.num_simplices());
+ std::cout << "Exact weighted periodic alpha complex 3d num_vertices " << exact_stree.num_vertices()
+ << " - Non exact is " << stree.num_vertices() << std::endl;
+ BOOST_CHECK(exact_stree.num_vertices() == stree.num_vertices());
+
+ // We cannot compare as objects from dispatcher on the alpha shape is not deterministic.
+ // cf. https://github.com/CGAL/cgal/issues/3346
+ auto sh = stree.filtration_simplex_range().begin();
+ auto sh_exact = exact_stree.filtration_simplex_range().begin();
+
+ while (sh != stree.filtration_simplex_range().end() || sh_exact != exact_stree.filtration_simplex_range().end()) {
+ GUDHI_TEST_FLOAT_EQUALITY_CHECK(stree.filtration(*sh), exact_stree.filtration(*sh_exact), 1e-14);
+
+ std::vector<int> vh(stree.simplex_vertex_range(*sh).begin(), stree.simplex_vertex_range(*sh).end());
+ std::vector<int> exact_vh(exact_stree.simplex_vertex_range(*sh_exact).begin(),
+ exact_stree.simplex_vertex_range(*sh_exact).end());
+
+ BOOST_CHECK(vh.size() == exact_vh.size());
+ ++sh;
+ ++sh_exact;
+ }
+
+ BOOST_CHECK(sh == stree.filtration_simplex_range().end());
+ BOOST_CHECK(sh_exact == exact_stree.filtration_simplex_range().end());
+
+ // ----------------------
+ // Safe weighted periodic version
+ // ----------------------
+ std::cout << "Safe weighted periodic alpha complex 3d" << std::endl;
+
+ std::vector<Safe_weighted_periodic_alpha_complex_3d::Point_3> s_p_points;
+
+ for (auto p : p_points) {
+ s_p_points.push_back(Safe_weighted_periodic_alpha_complex_3d::Point_3(p[0], p[1], p[2]));
+ }
+
+ Safe_weighted_periodic_alpha_complex_3d safe_alpha_complex(s_p_points, p_weights, -1., -1., -1., 1., 1., 1.);
+
+ Gudhi::Simplex_tree<> safe_stree;
+ safe_alpha_complex.create_complex(safe_stree);
+
+ // ---------------------
+ // Compare both versions
+ // ---------------------
+ // We cannot compare as objects from dispatcher on the alpha shape is not deterministic.
+ // cf. https://github.com/CGAL/cgal/issues/3346
+ sh = stree.filtration_simplex_range().begin();
+ auto sh_safe = safe_stree.filtration_simplex_range().begin();
+
+ while (sh != stree.filtration_simplex_range().end() || sh_safe != safe_stree.filtration_simplex_range().end()) {
+ GUDHI_TEST_FLOAT_EQUALITY_CHECK(stree.filtration(*sh), safe_stree.filtration(*sh_safe), 1e-14);
+
+ std::vector<int> vh(stree.simplex_vertex_range(*sh).begin(), stree.simplex_vertex_range(*sh).end());
+ std::vector<int> safe_vh(safe_stree.simplex_vertex_range(*sh_safe).begin(),
+ safe_stree.simplex_vertex_range(*sh_safe).end());
+
+ BOOST_CHECK(vh.size() == safe_vh.size());
+ ++sh;
+ ++sh_safe;
+ }
+
+ BOOST_CHECK(sh == stree.filtration_simplex_range().end());
+ BOOST_CHECK(sh_safe == safe_stree.filtration_simplex_range().end());
+}
diff --git a/src/Alpha_complex/test/CMakeLists.txt b/src/Alpha_complex/test/CMakeLists.txt
index 9255d3db..380380f4 100644
--- a/src/Alpha_complex/test/CMakeLists.txt
+++ b/src/Alpha_complex/test/CMakeLists.txt
@@ -1,7 +1,10 @@
project(Alpha_complex_tests)
+include(GUDHI_test_coverage)
if (NOT CGAL_WITH_EIGEN3_VERSION VERSION_LESS 4.7.0)
- include(GUDHI_test_coverage)
+
+ # Do not forget to copy test files in current binary dir
+ file(COPY "${CMAKE_SOURCE_DIR}/data/points/alphacomplexdoc.off" DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/)
add_executable ( Alpha_complex_test_unit Alpha_complex_unit_test.cpp )
target_link_libraries(Alpha_complex_test_unit ${CGAL_LIBRARY} ${Boost_UNIT_TEST_FRAMEWORK_LIBRARY})
@@ -9,10 +12,17 @@ if (NOT CGAL_WITH_EIGEN3_VERSION VERSION_LESS 4.7.0)
target_link_libraries(Alpha_complex_test_unit ${TBB_LIBRARIES})
endif()
- # Do not forget to copy test files in current binary dir
- file(COPY "${CMAKE_SOURCE_DIR}/data/points/alphacomplexdoc.off" DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/)
-
gudhi_add_coverage_test(Alpha_complex_test_unit)
endif (NOT CGAL_WITH_EIGEN3_VERSION VERSION_LESS 4.7.0)
+if (NOT CGAL_WITH_EIGEN3_VERSION VERSION_LESS 4.11.0)
+ add_executable ( Alpha_complex_3d_test_unit Alpha_complex_3d_unit_test.cpp )
+ target_link_libraries(Alpha_complex_3d_test_unit ${CGAL_LIBRARY} ${Boost_UNIT_TEST_FRAMEWORK_LIBRARY})
+ if (TBB_FOUND)
+ target_link_libraries(Alpha_complex_3d_test_unit ${TBB_LIBRARIES})
+ endif()
+
+ gudhi_add_coverage_test(Alpha_complex_3d_test_unit)
+
+endif (NOT CGAL_WITH_EIGEN3_VERSION VERSION_LESS 4.11.0)
diff --git a/src/Alpha_complex/utilities/CMakeLists.txt b/src/Alpha_complex/utilities/CMakeLists.txt
index 7ace6064..b12c9690 100644
--- a/src/Alpha_complex/utilities/CMakeLists.txt
+++ b/src/Alpha_complex/utilities/CMakeLists.txt
@@ -1,64 +1,61 @@
project(Alpha_complex_utilities)
-if(CGAL_FOUND)
- add_executable(alpha_complex_3d_persistence alpha_complex_3d_persistence.cpp)
- target_link_libraries(alpha_complex_3d_persistence ${CGAL_LIBRARY} ${Boost_PROGRAM_OPTIONS_LIBRARY})
- add_executable(exact_alpha_complex_3d_persistence exact_alpha_complex_3d_persistence.cpp)
- target_link_libraries(exact_alpha_complex_3d_persistence ${CGAL_LIBRARY} ${Boost_PROGRAM_OPTIONS_LIBRARY})
- add_executable(weighted_alpha_complex_3d_persistence weighted_alpha_complex_3d_persistence.cpp)
- target_link_libraries(weighted_alpha_complex_3d_persistence ${CGAL_LIBRARY} ${Boost_PROGRAM_OPTIONS_LIBRARY})
+if (NOT CGAL_WITH_EIGEN3_VERSION VERSION_LESS 4.7.0)
+ add_executable (alpha_complex_persistence alpha_complex_persistence.cpp)
+ target_link_libraries(alpha_complex_persistence ${CGAL_LIBRARY} ${Boost_PROGRAM_OPTIONS_LIBRARY})
if (TBB_FOUND)
- target_link_libraries(alpha_complex_3d_persistence ${TBB_LIBRARIES})
- target_link_libraries(exact_alpha_complex_3d_persistence ${TBB_LIBRARIES})
- target_link_libraries(weighted_alpha_complex_3d_persistence ${TBB_LIBRARIES})
+ target_link_libraries(alpha_complex_persistence ${TBB_LIBRARIES})
endif(TBB_FOUND)
-
- add_test(NAME Alpha_complex_utilities_alpha_complex_3d_persistence COMMAND $<TARGET_FILE:alpha_complex_3d_persistence>
+ add_test(NAME Alpha_complex_utilities_alpha_complex_persistence COMMAND $<TARGET_FILE:alpha_complex_persistence>
"${CMAKE_SOURCE_DIR}/data/points/tore3D_300.off" "-p" "2" "-m" "0.45")
- add_test(NAME Alpha_complex_utilities_exact_alpha_complex_3d COMMAND $<TARGET_FILE:exact_alpha_complex_3d_persistence>
- "${CMAKE_SOURCE_DIR}/data/points/tore3D_300.off" "-p" "2" "-m" "0.45")
- add_test(NAME Alpha_complex_utilities_weighted_alpha_complex_3d COMMAND $<TARGET_FILE:weighted_alpha_complex_3d_persistence>
- "${CMAKE_SOURCE_DIR}/data/points/tore3D_300.off" "${CMAKE_SOURCE_DIR}/data/points/tore3D_300.weights" "-p" "2" "-m" "0.45")
-
- install(TARGETS alpha_complex_3d_persistence DESTINATION bin)
- install(TARGETS exact_alpha_complex_3d_persistence DESTINATION bin)
- install(TARGETS weighted_alpha_complex_3d_persistence DESTINATION bin)
-
- if (NOT CGAL_WITH_EIGEN3_VERSION VERSION_LESS 4.7.0)
- add_executable (alpha_complex_persistence alpha_complex_persistence.cpp)
- target_link_libraries(alpha_complex_persistence ${CGAL_LIBRARY} ${Boost_PROGRAM_OPTIONS_LIBRARY})
-
- add_executable(periodic_alpha_complex_3d_persistence periodic_alpha_complex_3d_persistence.cpp)
- target_link_libraries(periodic_alpha_complex_3d_persistence ${CGAL_LIBRARY} ${Boost_PROGRAM_OPTIONS_LIBRARY})
-
- if (TBB_FOUND)
- target_link_libraries(alpha_complex_persistence ${TBB_LIBRARIES})
- target_link_libraries(periodic_alpha_complex_3d_persistence ${TBB_LIBRARIES})
- endif(TBB_FOUND)
- add_test(NAME Alpha_complex_utilities_alpha_complex_persistence COMMAND $<TARGET_FILE:alpha_complex_persistence>
- "${CMAKE_SOURCE_DIR}/data/points/tore3D_300.off" "-p" "2" "-m" "0.45")
- add_test(NAME Alpha_complex_utilities_periodic_alpha_complex_3d_persistence COMMAND $<TARGET_FILE:periodic_alpha_complex_3d_persistence>
- "${CMAKE_SOURCE_DIR}/data/points/grid_10_10_10_in_0_1.off" "${CMAKE_SOURCE_DIR}/data/points/iso_cuboid_3_in_0_1.txt" "-p" "2" "-m" "0")
- install(TARGETS alpha_complex_persistence DESTINATION bin)
- install(TARGETS periodic_alpha_complex_3d_persistence DESTINATION bin)
+ install(TARGETS alpha_complex_persistence DESTINATION bin)
- endif (NOT CGAL_WITH_EIGEN3_VERSION VERSION_LESS 4.7.0)
+endif (NOT CGAL_WITH_EIGEN3_VERSION VERSION_LESS 4.7.0)
- if (NOT CGAL_VERSION VERSION_LESS 4.11.0)
- add_executable(weighted_periodic_alpha_complex_3d_persistence weighted_periodic_alpha_complex_3d_persistence.cpp)
- target_link_libraries(weighted_periodic_alpha_complex_3d_persistence ${CGAL_LIBRARY})
- if (TBB_FOUND)
- target_link_libraries(weighted_periodic_alpha_complex_3d_persistence ${TBB_LIBRARIES})
- endif(TBB_FOUND)
-
- add_test(NAME Alpha_complex_utilities_weigted_periodic_alpha_complex_3d COMMAND $<TARGET_FILE:weighted_periodic_alpha_complex_3d_persistence>
- "${CMAKE_SOURCE_DIR}/data/points/grid_10_10_10_in_0_1.off" "${CMAKE_SOURCE_DIR}/data/points/grid_10_10_10_in_0_1.weights"
- "${CMAKE_SOURCE_DIR}/data/points/iso_cuboid_3_in_0_1.txt" "3" "1.0")
+if (NOT CGAL_WITH_EIGEN3_VERSION VERSION_LESS 4.11.0)
+ add_executable(alpha_complex_3d_persistence alpha_complex_3d_persistence.cpp)
+ target_link_libraries(alpha_complex_3d_persistence ${CGAL_LIBRARY} ${Boost_PROGRAM_OPTIONS_LIBRARY})
+ if (TBB_FOUND)
+ target_link_libraries(alpha_complex_3d_persistence ${TBB_LIBRARIES})
+ endif(TBB_FOUND)
- install(TARGETS weighted_periodic_alpha_complex_3d_persistence DESTINATION bin)
+ add_test(NAME Alpha_complex_utilities_alpha_complex_3d COMMAND $<TARGET_FILE:alpha_complex_3d_persistence>
+ "${CMAKE_SOURCE_DIR}/data/points/tore3D_300.off"
+ "-p" "2" "-m" "0.45" "-o" "alpha.pers")
+
+ add_test(NAME Alpha_complex_utilities_exact_alpha_complex_3d COMMAND $<TARGET_FILE:alpha_complex_3d_persistence>
+ "${CMAKE_SOURCE_DIR}/data/points/tore3D_300.off"
+ "-p" "2" "-m" "0.45" "-o" "exact.pers" "-e")
+
+ add_test(NAME Alpha_complex_utilities_safe_alpha_complex_3d COMMAND $<TARGET_FILE:alpha_complex_3d_persistence>
+ "${CMAKE_SOURCE_DIR}/data/points/tore3D_300.off"
+ "-p" "2" "-m" "0.45" "-o" "safe.pers" "-s")
+
+ if (DIFF_PATH)
+ add_test(Alpha_complex_utilities_diff_alpha_complex_3d ${DIFF_PATH}
+ "exact.pers" "alpha.pers")
+ add_test(Alpha_complex_utilities_diff_alpha_complex_3d ${DIFF_PATH}
+ "safe.pers" "alpha.pers")
+ endif()
+
+ add_test(NAME Alpha_complex_utilities_periodic_alpha_complex_3d_persistence COMMAND $<TARGET_FILE:alpha_complex_3d_persistence>
+ "${CMAKE_SOURCE_DIR}/data/points/grid_10_10_10_in_0_1.off"
+ "-c" "${CMAKE_SOURCE_DIR}/data/points/iso_cuboid_3_in_0_1.txt"
+ "-p" "2" "-m" "0")
+
+ add_test(NAME Alpha_complex_utilities_weighted_alpha_complex_3d COMMAND $<TARGET_FILE:alpha_complex_3d_persistence>
+ "${CMAKE_SOURCE_DIR}/data/points/grid_10_10_10_in_0_1.off"
+ "-w" "${CMAKE_SOURCE_DIR}/data/points/grid_10_10_10_in_0_1.weights"
+ "-p" "2" "-m" "0")
+
+ add_test(NAME Alpha_complex_utilities_weighted_periodic_alpha_complex_3d COMMAND $<TARGET_FILE:alpha_complex_3d_persistence>
+ "${CMAKE_SOURCE_DIR}/data/points/grid_10_10_10_in_0_1.off"
+ "-w" "${CMAKE_SOURCE_DIR}/data/points/grid_10_10_10_in_0_1.weights"
+ "-c" "${CMAKE_SOURCE_DIR}/data/points/iso_cuboid_3_in_0_1.txt"
+ "-p" "2" "-m" "0" "-e")
- endif (NOT CGAL_VERSION VERSION_LESS 4.11.0)
+ install(TARGETS alpha_complex_3d_persistence DESTINATION bin)
-endif(CGAL_FOUND)
+endif (NOT CGAL_WITH_EIGEN3_VERSION VERSION_LESS 4.11.0)
diff --git a/src/Alpha_complex/utilities/alpha_complex_3d_helper.h b/src/Alpha_complex/utilities/alpha_complex_3d_helper.h
deleted file mode 100644
index a72fd96d..00000000
--- a/src/Alpha_complex/utilities/alpha_complex_3d_helper.h
+++ /dev/null
@@ -1,74 +0,0 @@
-/* This file is part of the Gudhi Library. The Gudhi library
- * (Geometric Understanding in Higher Dimensions) is a generic C++
- * library for computational topology.
- *
- * Author(s): Vincent Rouvreau
- *
- * Copyright (C) 2014 Inria
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
-
-#ifndef ALPHA_COMPLEX_3D_HELPER_H_
-#define ALPHA_COMPLEX_3D_HELPER_H_
-
-template <class Vertex_list, class Cell_handle>
-Vertex_list from_cell(const Cell_handle& ch) {
- Vertex_list the_list;
- for (auto i = 0; i < 4; i++) {
-#ifdef DEBUG_TRACES
- std::cout << "from cell[" << i << "]=" << ch->vertex(i)->point() << std::endl;
-#endif // DEBUG_TRACES
- the_list.push_back(ch->vertex(i));
- }
- return the_list;
-}
-
-template <class Vertex_list, class Facet>
-Vertex_list from_facet(const Facet& fct) {
- Vertex_list the_list;
- for (auto i = 0; i < 4; i++) {
- if (fct.second != i) {
-#ifdef DEBUG_TRACES
- std::cout << "from facet=[" << i << "]" << fct.first->vertex(i)->point() << std::endl;
-#endif // DEBUG_TRACES
- the_list.push_back(fct.first->vertex(i));
- }
- }
- return the_list;
-}
-
-template <class Vertex_list, class Edge_3>
-Vertex_list from_edge(const Edge_3& edg) {
- Vertex_list the_list;
- for (auto i : {edg.second, edg.third}) {
-#ifdef DEBUG_TRACES
- std::cout << "from edge[" << i << "]=" << edg.first->vertex(i)->point() << std::endl;
-#endif // DEBUG_TRACES
- the_list.push_back(edg.first->vertex(i));
- }
- return the_list;
-}
-
-template <class Vertex_list, class Vertex_handle>
-Vertex_list from_vertex(const Vertex_handle& vh) {
- Vertex_list the_list;
-#ifdef DEBUG_TRACES
- std::cout << "from vertex=" << vh->point() << std::endl;
-#endif // DEBUG_TRACES
- the_list.push_back(vh);
- return the_list;
-}
-
-#endif // ALPHA_COMPLEX_3D_HELPER_H_
diff --git a/src/Alpha_complex/utilities/alpha_complex_3d_persistence.cpp b/src/Alpha_complex/utilities/alpha_complex_3d_persistence.cpp
index 6e603155..d14ba375 100644
--- a/src/Alpha_complex/utilities/alpha_complex_3d_persistence.cpp
+++ b/src/Alpha_complex/utilities/alpha_complex_3d_persistence.cpp
@@ -20,188 +20,218 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
-#include <boost/version.hpp>
#include <boost/program_options.hpp>
#include <boost/variant.hpp>
-#if BOOST_VERSION >= 105400
-#include <boost/container/static_vector.hpp>
-#endif
-
+#include <gudhi/Alpha_complex_3d.h>
#include <gudhi/Simplex_tree.h>
#include <gudhi/Persistent_cohomology.h>
#include <gudhi/Points_3D_off_io.h>
-#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
-#include <CGAL/Delaunay_triangulation_3.h>
-#include <CGAL/Alpha_shape_3.h>
-#include <CGAL/Alpha_shape_cell_base_3.h>
-#include <CGAL/Alpha_shape_vertex_base_3.h>
-#include <CGAL/iterator.h>
-
#include <fstream>
-#include <cmath>
#include <string>
-#include <tuple>
-#include <map>
-#include <utility>
#include <vector>
-#include <cstdlib>
-
-#include "alpha_complex_3d_helper.h"
-
-// Alpha_shape_3 templates type definitions
-using Kernel = CGAL::Exact_predicates_inexact_constructions_kernel;
-using Vb = CGAL::Alpha_shape_vertex_base_3<Kernel>;
-using Fb = CGAL::Alpha_shape_cell_base_3<Kernel>;
-using Tds = CGAL::Triangulation_data_structure_3<Vb, Fb>;
-using Triangulation_3 = CGAL::Delaunay_triangulation_3<Kernel, Tds>;
-using Alpha_shape_3 = CGAL::Alpha_shape_3<Triangulation_3>;
-
-// From file type definition
-using Point_3 = Kernel::Point_3;
-
-// filtration with alpha values needed type definition
-using Alpha_value_type = Alpha_shape_3::FT;
-using Object = CGAL::Object;
-using Dispatch =
- CGAL::Dispatch_output_iterator<CGAL::cpp11::tuple<Object, Alpha_value_type>,
- CGAL::cpp11::tuple<std::back_insert_iterator<std::vector<Object> >,
- std::back_insert_iterator<std::vector<Alpha_value_type> > > >;
-using Cell_handle = Alpha_shape_3::Cell_handle;
-using Facet = Alpha_shape_3::Facet;
-using Edge_3 = Alpha_shape_3::Edge;
-using Vertex_handle = Alpha_shape_3::Vertex_handle;
-
-#if BOOST_VERSION >= 105400
-using Vertex_list = boost::container::static_vector<Alpha_shape_3::Vertex_handle, 4>;
-#else
-using Vertex_list = std::vector<Alpha_shape_3::Vertex_handle>;
-#endif
// gudhi type definition
-using ST = Gudhi::Simplex_tree<Gudhi::Simplex_tree_options_fast_persistence>;
-using Filtration_value = ST::Filtration_value;
-using Simplex_tree_vertex = ST::Vertex_handle;
-using Alpha_shape_simplex_tree_map = std::map<Alpha_shape_3::Vertex_handle, Simplex_tree_vertex>;
-using Simplex_tree_vector_vertex = std::vector<Simplex_tree_vertex>;
+using Simplex_tree = Gudhi::Simplex_tree<Gudhi::Simplex_tree_options_fast_persistence>;
+using Filtration_value = Simplex_tree::Filtration_value;
using Persistent_cohomology =
- Gudhi::persistent_cohomology::Persistent_cohomology<ST, Gudhi::persistent_cohomology::Field_Zp>;
-
-void program_options(int argc, char *argv[], std::string &off_file_points, std::string &output_file_diag,
- int &coeff_field_characteristic, Filtration_value &min_persistence);
-
-int main(int argc, char **argv) {
- std::string off_file_points;
- std::string output_file_diag;
- int coeff_field_characteristic;
- Filtration_value min_persistence;
+ Gudhi::persistent_cohomology::Persistent_cohomology<Simplex_tree, Gudhi::persistent_cohomology::Field_Zp>;
+
+void program_options(int argc, char *argv[], std::string &off_file_points, bool &exact, bool &safe,
+ std::string &weight_file, std::string &cuboid_file, std::string &output_file_diag,
+ Filtration_value &alpha_square_max_value, int &coeff_field_characteristic,
+ Filtration_value &min_persistence);
+
+bool read_weight_file(const std::string &weight_file, std::vector<double> &weights) {
+ // Read weights information from file
+ std::ifstream weights_ifstr(weight_file);
+ if (weights_ifstr.good()) {
+ double weight = 0.0;
+ // Attempt read the weight in a double format, return false if it fails
+ while (weights_ifstr >> weight) {
+ weights.push_back(weight);
+ }
+ } else {
+ return false;
+ }
+ return true;
+}
- program_options(argc, argv, off_file_points, output_file_diag, coeff_field_characteristic, min_persistence);
+bool read_cuboid_file(const std::string &cuboid_file, double &x_min, double &y_min, double &z_min, double &x_max,
+ double &y_max, double &z_max) {
+ // Read weights information from file
+ std::ifstream iso_cuboid_str(cuboid_file);
+ if (iso_cuboid_str.is_open()) {
+ if (!(iso_cuboid_str >> x_min >> y_min >> z_min >> x_max >> y_max >> z_max)) {
+ return false;
+ }
+ } else {
+ return false;
+ }
+ return true;
+}
+template <typename AlphaComplex3d>
+std::vector<typename AlphaComplex3d::Point_3> read_off(const std::string &off_file_points) {
// Read the OFF file (input file name given as parameter) and triangulate points
- Gudhi::Points_3D_off_reader<Point_3> off_reader(off_file_points);
+ Gudhi::Points_3D_off_reader<typename AlphaComplex3d::Point_3> off_reader(off_file_points);
// Check the read operation was correct
if (!off_reader.is_valid()) {
- std::cerr << "Unable to read file " << off_file_points << std::endl;
+ std::cerr << "Unable to read OFF file " << off_file_points << std::endl;
exit(-1);
}
+ return off_reader.get_point_cloud();
+}
- // Retrieve the points
- std::vector<Point_3> lp = off_reader.get_point_cloud();
-
- // alpha shape construction from points. CGAL has a strange behavior in REGULARIZED mode.
- Alpha_shape_3 as(lp.begin(), lp.end(), 0, Alpha_shape_3::GENERAL);
-#ifdef DEBUG_TRACES
- std::cout << "Alpha shape computed in GENERAL mode" << std::endl;
-#endif // DEBUG_TRACES
-
- // filtration with alpha values from alpha shape
- std::vector<Object> the_objects;
- std::vector<Alpha_value_type> the_alpha_values;
-
- Dispatch disp = CGAL::dispatch_output<Object, Alpha_value_type>(std::back_inserter(the_objects),
- std::back_inserter(the_alpha_values));
-
- as.filtration_with_alpha_values(disp);
-#ifdef DEBUG_TRACES
- std::cout << "filtration_with_alpha_values returns : " << the_objects.size() << " objects" << std::endl;
-#endif // DEBUG_TRACES
-
- Alpha_shape_3::size_type count_vertices = 0;
- Alpha_shape_3::size_type count_edges = 0;
- Alpha_shape_3::size_type count_facets = 0;
- Alpha_shape_3::size_type count_cells = 0;
-
- // Loop on objects vector
- Vertex_list vertex_list;
- ST simplex_tree;
- Alpha_shape_simplex_tree_map map_cgal_simplex_tree;
- std::vector<Alpha_value_type>::iterator the_alpha_value_iterator = the_alpha_values.begin();
- for (auto object_iterator : the_objects) {
- // Retrieve Alpha shape vertex list from object
- if (const Cell_handle *cell = CGAL::object_cast<Cell_handle>(&object_iterator)) {
- vertex_list = from_cell<Vertex_list, Cell_handle>(*cell);
- count_cells++;
- } else if (const Facet *facet = CGAL::object_cast<Facet>(&object_iterator)) {
- vertex_list = from_facet<Vertex_list, Facet>(*facet);
- count_facets++;
- } else if (const Edge_3 *edge = CGAL::object_cast<Edge_3>(&object_iterator)) {
- vertex_list = from_edge<Vertex_list, Edge_3>(*edge);
- count_edges++;
- } else if (const Vertex_handle *vertex = CGAL::object_cast<Vertex_handle>(&object_iterator)) {
- count_vertices++;
- vertex_list = from_vertex<Vertex_list, Vertex_handle>(*vertex);
- }
- // Construction of the vector of simplex_tree vertex from list of alpha_shapes vertex
- Simplex_tree_vector_vertex the_simplex;
- for (auto the_alpha_shape_vertex : vertex_list) {
- Alpha_shape_simplex_tree_map::iterator the_map_iterator = map_cgal_simplex_tree.find(the_alpha_shape_vertex);
- if (the_map_iterator == map_cgal_simplex_tree.end()) {
- // alpha shape not found
- Simplex_tree_vertex vertex = map_cgal_simplex_tree.size();
-#ifdef DEBUG_TRACES
- std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] not found - insert " << vertex << std::endl;
-#endif // DEBUG_TRACES
- the_simplex.push_back(vertex);
- map_cgal_simplex_tree.emplace(the_alpha_shape_vertex, vertex);
- } else {
- // alpha shape found
- Simplex_tree_vertex vertex = the_map_iterator->second;
-#ifdef DEBUG_TRACES
- std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] found in " << vertex << std::endl;
-#endif // DEBUG_TRACES
- the_simplex.push_back(vertex);
- }
+int main(int argc, char **argv) {
+ std::string off_file_points;
+ std::string weight_file;
+ std::string cuboid_file;
+ std::string output_file_diag;
+ Filtration_value alpha_square_max_value = 0.;
+ int coeff_field_characteristic = 0;
+ Filtration_value min_persistence = 0.;
+ bool exact_version = false;
+ bool safe_version = false;
+ bool weighted_version = false;
+ bool periodic_version = false;
+
+ program_options(argc, argv, off_file_points, exact_version, safe_version, weight_file, cuboid_file, output_file_diag,
+ alpha_square_max_value, coeff_field_characteristic, min_persistence);
+
+ std::vector<double> weights;
+ if (weight_file != std::string()) {
+ if (!read_weight_file(weight_file, weights)) {
+ std::cerr << "Unable to read weights file " << weight_file << std::endl;
+ exit(-1);
}
- // Construction of the simplex_tree
- Filtration_value filtr = /*std::sqrt*/ (*the_alpha_value_iterator);
-#ifdef DEBUG_TRACES
- std::cout << "filtration = " << filtr << std::endl;
-#endif // DEBUG_TRACES
- simplex_tree.insert_simplex(the_simplex, filtr);
- GUDHI_CHECK(the_alpha_value_iterator != the_alpha_values.end(), "CGAL provided more simplices than values");
- ++the_alpha_value_iterator;
+ weighted_version = true;
}
-#ifdef DEBUG_TRACES
- std::cout << "vertices \t\t" << count_vertices << std::endl;
- std::cout << "edges \t\t" << count_edges << std::endl;
- std::cout << "facets \t\t" << count_facets << std::endl;
- std::cout << "cells \t\t" << count_cells << std::endl;
+ double x_min = 0., y_min = 0., z_min = 0., x_max = 0., y_max = 0., z_max = 0.;
+ std::ifstream iso_cuboid_str(argv[3]);
+ if (cuboid_file != std::string()) {
+ if (!read_cuboid_file(cuboid_file, x_min, y_min, z_min, x_max, y_max, z_max)) {
+ std::cerr << "Unable to read cuboid file " << cuboid_file << std::endl;
+ exit(-1);
+ }
+ periodic_version = true;
+ }
- std::cout << "Information of the Simplex Tree: " << std::endl;
- std::cout << " Number of vertices = " << simplex_tree.num_vertices() << " ";
- std::cout << " Number of simplices = " << simplex_tree.num_simplices() << std::endl << std::endl;
- std::cout << " Dimension = " << simplex_tree.dimension() << " ";
-#endif // DEBUG_TRACES
+ Gudhi::alpha_complex::complexity complexity = Gudhi::alpha_complex::complexity::FAST;
+ if (exact_version) {
+ if (safe_version) {
+ std::cerr << "You cannot set the exact and the safe version." << std::endl;
+ exit(-1);
+ }
+ complexity = Gudhi::alpha_complex::complexity::EXACT;
+ }
+ if (safe_version) {
+ complexity = Gudhi::alpha_complex::complexity::SAFE;
+ }
-#ifdef DEBUG_TRACES
- std::cout << "Iterator on vertices: " << std::endl;
- for (auto vertex : simplex_tree.complex_vertex_range()) {
- std::cout << vertex << " ";
+ Simplex_tree simplex_tree;
+
+ switch (complexity) {
+ case Gudhi::alpha_complex::complexity::FAST:
+ if (weighted_version) {
+ if (periodic_version) {
+ using Alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::FAST, true, true>;
+ auto points = read_off<Alpha_complex_3d>(off_file_points);
+ Alpha_complex_3d alpha_complex(points, weights, x_min, y_min, z_min, x_max, y_max, z_max);
+ alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
+ } else {
+ using Alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::FAST, true, false>;
+ auto points = read_off<Alpha_complex_3d>(off_file_points);
+ Alpha_complex_3d alpha_complex(points, weights);
+ alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
+ }
+ } else {
+ if (periodic_version) {
+ using Alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::FAST, false, true>;
+ auto points = read_off<Alpha_complex_3d>(off_file_points);
+ Alpha_complex_3d alpha_complex(points, x_min, y_min, z_min, x_max, y_max, z_max);
+ alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
+ } else {
+ using Alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::FAST, false, false>;
+ auto points = read_off<Alpha_complex_3d>(off_file_points);
+ Alpha_complex_3d alpha_complex(points);
+ alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
+ }
+ }
+ break;
+ case Gudhi::alpha_complex::complexity::EXACT:
+ if (weighted_version) {
+ if (periodic_version) {
+ using Alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::EXACT, true, true>;
+ auto points = read_off<Alpha_complex_3d>(off_file_points);
+ Alpha_complex_3d alpha_complex(points, weights, x_min, y_min, z_min, x_max, y_max, z_max);
+ alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
+ } else {
+ using Alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::EXACT, true, false>;
+ auto points = read_off<Alpha_complex_3d>(off_file_points);
+ Alpha_complex_3d alpha_complex(points, weights);
+ alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
+ }
+ } else {
+ if (periodic_version) {
+ using Alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::EXACT, false, true>;
+ auto points = read_off<Alpha_complex_3d>(off_file_points);
+ Alpha_complex_3d alpha_complex(points, x_min, y_min, z_min, x_max, y_max, z_max);
+ alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
+ } else {
+ using Alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::EXACT, false, false>;
+ auto points = read_off<Alpha_complex_3d>(off_file_points);
+ Alpha_complex_3d alpha_complex(points);
+ alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
+ }
+ }
+ break;
+ case Gudhi::alpha_complex::complexity::SAFE:
+ if (weighted_version) {
+ if (periodic_version) {
+ using Alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::SAFE, true, true>;
+ auto points = read_off<Alpha_complex_3d>(off_file_points);
+ Alpha_complex_3d alpha_complex(points, weights, x_min, y_min, z_min, x_max, y_max, z_max);
+ alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
+ } else {
+ using Alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::SAFE, true, false>;
+ auto points = read_off<Alpha_complex_3d>(off_file_points);
+ Alpha_complex_3d alpha_complex(points, weights);
+ alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
+ }
+ } else {
+ if (periodic_version) {
+ using Alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::SAFE, false, true>;
+ auto points = read_off<Alpha_complex_3d>(off_file_points);
+ Alpha_complex_3d alpha_complex(points, x_min, y_min, z_min, x_max, y_max, z_max);
+ alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
+ } else {
+ using Alpha_complex_3d =
+ Gudhi::alpha_complex::Alpha_complex_3d<Gudhi::alpha_complex::complexity::SAFE, false, false>;
+ auto points = read_off<Alpha_complex_3d>(off_file_points);
+ Alpha_complex_3d alpha_complex(points);
+ alpha_complex.create_complex(simplex_tree, alpha_square_max_value);
+ }
+ }
+ break;
+ default:
+ std::cerr << "Unknown complexity value " << std::endl;
+ exit(-1);
+ break;
}
-#endif // DEBUG_TRACES
// Sort the simplices in the order of the filtration
simplex_tree.initialize_filtration();
@@ -227,8 +257,10 @@ int main(int argc, char **argv) {
return 0;
}
-void program_options(int argc, char *argv[], std::string &off_file_points, std::string &output_file_diag,
- int &coeff_field_characteristic, Filtration_value &min_persistence) {
+void program_options(int argc, char *argv[], std::string &off_file_points, bool &exact, bool &safe,
+ std::string &weight_file, std::string &cuboid_file, std::string &output_file_diag,
+ Filtration_value &alpha_square_max_value, int &coeff_field_characteristic,
+ Filtration_value &min_persistence) {
namespace po = boost::program_options;
po::options_description hidden("Hidden options");
hidden.add_options()("input-file", po::value<std::string>(&off_file_points),
@@ -236,8 +268,20 @@ void program_options(int argc, char *argv[], std::string &off_file_points, std::
po::options_description visible("Allowed options", 100);
visible.add_options()("help,h", "produce help message")(
+ "exact,e", po::bool_switch(&exact),
+ "To activate exact version of Alpha complex 3d (default is false, not available if safe is set)")(
+ "safe,s", po::bool_switch(&safe),
+ "To activate safe version of Alpha complex 3d (default is false, not available if exact is set)")(
+ "weight-file,w", po::value<std::string>(&weight_file)->default_value(std::string()),
+ "Name of file containing a point weights. Format is one weight per line:\n W1\n ...\n Wn ")(
+ "cuboid-file,c", po::value<std::string>(&cuboid_file),
+ "Name of file describing the periodic domain. Format is:\n min_hx min_hy min_hz\n max_hx max_hy max_hz")(
"output-file,o", po::value<std::string>(&output_file_diag)->default_value(std::string()),
"Name of file in which the persistence diagram is written. Default print in std::cout")(
+ "max-alpha-square-value,r",
+ po::value<Filtration_value>(&alpha_square_max_value)
+ ->default_value(std::numeric_limits<Filtration_value>::infinity()),
+ "Maximal alpha square value for the Alpha complex construction.")(
"field-charac,p", po::value<int>(&coeff_field_characteristic)->default_value(11),
"Characteristic p of the coefficient field Z/pZ for computing homology.")(
"min-persistence,m", po::value<Filtration_value>(&min_persistence),
@@ -254,17 +298,18 @@ void program_options(int argc, char *argv[], std::string &off_file_points, std::
po::store(po::command_line_parser(argc, argv).options(all).positional(pos).run(), vm);
po::notify(vm);
- if (vm.count("help") || !vm.count("input-file")) {
+ if (vm.count("help") || !vm.count("input-file") || !vm.count("weight-file")) {
std::cout << std::endl;
std::cout << "Compute the persistent homology with coefficient field Z/pZ \n";
- std::cout << "of a 3D Alpha complex defined on a set of input points.\n \n";
+ std::cout << "of a 3D Alpha complex defined on a set of input points.\n";
+ std::cout << "3D Alpha complex can be exact or safe, weighted and/or periodic\n\n";
std::cout << "The output diagram contains one bar per line, written with the convention: \n";
std::cout << " p dim b d \n";
std::cout << "where dim is the dimension of the homological feature,\n";
std::cout << "b and d are respectively the birth and death of the feature and \n";
- std::cout << "p is the characteristic of the field Z/pZ used for homology coefficients." << std::endl << std::endl;
+ std::cout << "p is the characteristic of the field Z/pZ used for homology coefficients.\n\n";
- std::cout << "Usage: " << argv[0] << " [options] input-file" << std::endl << std::endl;
+ std::cout << "Usage: " << argv[0] << " [options] input-file weight-file\n\n";
std::cout << visible << std::endl;
exit(-1);
}
diff --git a/src/Alpha_complex/utilities/alphacomplex.md b/src/Alpha_complex/utilities/alphacomplex.md
index b1a33e4b..98f56802 100644
--- a/src/Alpha_complex/utilities/alphacomplex.md
+++ b/src/Alpha_complex/utilities/alphacomplex.md
@@ -12,15 +12,18 @@ Leave the lines above as it is required by the web site generator 'Jekyll'
## alpha_complex_persistence ##
-This program computes the persistent homology with coefficient field Z/pZ of the dD alpha complex built from a dD point cloud.
+This program computes the persistent homology with coefficient field Z/pZ of
+the dD alpha complex built from a dD point cloud.
The output diagram contains one bar per line, written with the convention:
```
p dim birth death
```
-where `dim` is the dimension of the homological feature, `birth` and `death` are respectively the birth and death of the feature,
-and `p` is the characteristic of the field *Z/pZ* used for homology coefficients (`p` must be a prime number).
+where `dim` is the dimension of the homological feature, `birth` and `death`
+are respectively the birth and death of the feature, and `p` is the
+characteristic of the field *Z/pZ* used for homology coefficients (`p` must be
+a prime number).
**Usage**
@@ -29,15 +32,20 @@ and `p` is the characteristic of the field *Z/pZ* used for homology coefficients
```
where
-`<input OFF file>` is the path to the input point cloud in [nOFF ASCII format](http://www.geomview.org/docs/html/OFF.html).
+`<input OFF file>` is the path to the input point cloud in
+[nOFF ASCII format](http://www.geomview.org/docs/html/OFF.html).
**Allowed options**
* `-h [ --help ]` Produce help message
-* `-o [ --output-file ]` Name of file in which the persistence diagram is written. Default print in standard output.
-* `-r [ --max-alpha-square-value ]` (default = inf) Maximal alpha square value for the Alpha complex construction.
-* `-p [ --field-charac ]` (default = 11) Characteristic p of the coefficient field Z/pZ for computing homology.
-* `-m [ --min-persistence ]` (default = 0) Minimal lifetime of homology feature to be recorded. Enter a negative value to see zero length intervals.
+* `-o [ --output-file ]` Name of file in which the persistence diagram is
+written. Default print in standard output.
+* `-r [ --max-alpha-square-value ]` (default = inf) Maximal alpha square value
+for the Alpha complex construction.
+* `-p [ --field-charac ]` (default = 11) Characteristic p of the
+coefficient field Z/pZ for computing homology.
+* `-m [ --min-persistence ]` (default = 0) Minimal lifetime of homology feature
+to be recorded. Enter a negative value to see zero length intervals.
**Example**
@@ -51,13 +59,26 @@ N.B.:
## alpha_complex_3d_persistence ##
-This program computes the persistent homology with coefficient field Z/pZ of the 3D alpha complex built from a 3D point cloud. The output diagram contains one bar per line, written with the convention:
+This program computes the persistent homology with coefficient field Z/pZ of
+the 3D alpha complex built from a 3D point cloud.
+One can use exact computation. It is slower, but it is necessary when points
+are on a grid for instance.
+Alpha complex 3d can be weighted and/or periodic (refer to the
+[CGAL's 3D Periodic Triangulations User Manual](
+https://doc.cgal.org/latest/Periodic_3_triangulation_3/index.html)
+for more details).
+
+The output diagram contains
+one bar per line, written with the convention:
```
p dim birth death
```
-where `dim` is the dimension of the homological feature, `birth` and `death` are respectively the birth and death of the feature, and `p` is the characteristic of the field *Z/pZ* used for homology coefficients (`p` must be a prime number).
+where `dim` is the dimension of the homological feature, `birth` and `death`
+are respectively the birth and death of the feature, and `p` is the
+characteristic of the field *Z/pZ* used for homology coefficients (`p` must be
+a prime number).
**Usage**
@@ -65,14 +86,27 @@ where `dim` is the dimension of the homological feature, `birth` and `death` are
alpha_complex_3d_persistence [options] <input OFF file>
```
-where `<input OFF file>` is the path to the input point cloud in [nOFF ASCII format](http://www.geomview.org/docs/html/OFF.html).
+where `<input OFF file>` is the path to the input point cloud in
+[nOFF ASCII format](http://www.geomview.org/docs/html/OFF.html).
**Allowed options**
* `-h [ --help ]` Produce help message
-* `-o [ --output-file ]` Name of file in which the persistence diagram is written. Default print in standard output.
-* `-p [ --field-charac ]` (default=11) Characteristic p of the coefficient field Z/pZ for computing homology.
-* `-m [ --min-persistence ]` (default = 0) Minimal lifetime of homology feature to be recorded. Enter a negative value to see zero length intervals.
+* `-o [ --output-file ]` Name of file in which the persistence diagram is
+written. Default print in standard output.
+* `-r [ --max-alpha-square-value ]` (default = inf) Maximal alpha square value
+for the Alpha complex construction.
+* `-p [ --field-charac ]` (default=11) Characteristic p of the coefficient
+field Z/pZ for computing homology.
+* `-m [ --min-persistence ]` (default = 0) Minimal lifetime of homology feature
+to be recorded. Enter a negative value to see zero length intervals.
+* `-c [ --cuboid-file ]` is the path to the file describing the periodic domain.
+It must be in the format described
+[here]({{ site.officialurl }}/doc/latest/fileformats.html#FileFormatsIsoCuboid).
+* `-w [ --weight-file ]` is the path to the file containing the weights of the
+points (one value per line).
+* `-e [ --exact ]` for the exact computation version (not compatible with
+weight and periodic version).
**Example**
@@ -84,82 +118,7 @@ N.B.:
* `alpha_complex_3d_persistence` only accepts OFF files in dimension 3.
* Filtration values are alpha square values.
-
-
-## exact_alpha_complex_3d_persistence ##
-
-Same as `alpha_complex_3d_persistence`, but using exact computation.
-It is slower, but it is necessary when points are on a grid for instance.
-
-
-
-## weighted_alpha_complex_3d_persistence ##
-
-Same as `alpha_complex_3d_persistence`, but using weighted points.
-
-**Usage**
-
-```
- weighted_alpha_complex_3d_persistence [options] <input OFF file> <weights input file>
-```
-
-where
-
-* `<input OFF file>` is the path to the input point cloud in [nOFF ASCII format](http://www.geomview.org/docs/html/OFF.html).
-* `<input weights file>` is the path to the file containing the weights of the points (one value per line).
-
-**Allowed options**
-
-* `-h [ --help ]` Produce help message
-* `-o [ --output-file ]` Name of file in which the persistence diagram is written. Default print in standard output.
-* `-p [ --field-charac ]` (default=11) Characteristic p of the coefficient field Z/pZ for computing homology.
-* `-m [ --min-persistence ]` (default = 0) Minimal lifetime of homology feature to be recorded. Enter a negative value to see zero length intervals.
-
-**Example**
-
-```
- weighted_alpha_complex_3d_persistence ../../data/points/tore3D_300.off ../../data/points/tore3D_300.weights -p 2 -m 0.45
-```
-
-
-N.B.:
-
-* Weights values are explained on CGAL [Alpha shape](https://doc.cgal.org/latest/Alpha_shapes_3/index.html#title0)
-and [Regular triangulation](https://doc.cgal.org/latest/Triangulation_3/index.html#Triangulation3secclassRegulartriangulation) documentation.
-* Filtration values are alpha square values.
-
-
-## periodic_alpha_complex_3d_persistence ##
-Same as `alpha_complex_3d_persistence`, but using periodic alpha shape 3d.
-Refer to the [CGAL's 3D Periodic Triangulations User Manual](https://doc.cgal.org/latest/Periodic_3_triangulation_3/index.html) for more details.
-
-**Usage**
-
-```
- periodic_alpha_complex_3d_persistence [options] <input OFF file> <cuboid file>
-```
-
-where
-
-* `<input OFF file>` is the path to the input point cloud in [nOFF ASCII format](http://www.geomview.org/docs/html/OFF.html).
-* `<cuboid file>` is the path to the file describing the periodic domain. It must be in the format described
-[here]({{ site.officialurl }}/doc/latest/fileformats.html#FileFormatsIsoCuboid).
-
-**Allowed options**
-
-* `-h [ --help ]` Produce help message
-* `-o [ --output-file ]` Name of file in which the persistence diagram is written. Default print in standard output.
-* `-p [ --field-charac ]` (default=11) Characteristic p of the coefficient field Z/pZ for computing homology.
-* `-m [ --min-persistence ]` (default = 0) Minimal lifetime of homology feature to be recorded. Enter a negative value to see zero length intervals
-
-
-**Example**
-
-```
-periodic_alpha_complex_3d_persistence ../../data/points/grid_10_10_10_in_0_1.off ../../data/points/iso_cuboid_3_in_0_1.txt -p 3 -m 1.0
-```
-
-N.B.:
-
-* Cuboid file must be in the format described [here]({{ site.officialurl }}/doc/latest/fileformats.html#FileFormatsIsoCuboid).
-* Filtration values are alpha square values.
+* Weights values are explained on CGAL
+[Alpha shape](https://doc.cgal.org/latest/Alpha_shapes_3/index.html#title0)
+and
+[Regular triangulation](https://doc.cgal.org/latest/Triangulation_3/index.html#Triangulation3secclassRegulartriangulation) documentation.
diff --git a/src/Alpha_complex/utilities/exact_alpha_complex_3d_persistence.cpp b/src/Alpha_complex/utilities/exact_alpha_complex_3d_persistence.cpp
deleted file mode 100644
index 61f49bb1..00000000
--- a/src/Alpha_complex/utilities/exact_alpha_complex_3d_persistence.cpp
+++ /dev/null
@@ -1,265 +0,0 @@
-/* This file is part of the Gudhi Library. The Gudhi library
- * (Geometric Understanding in Higher Dimensions) is a generic C++
- * library for computational topology.
- *
- * Author(s): Vincent Rouvreau
- *
- * Copyright (C) 2014 Inria
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
-
-#include <boost/program_options.hpp>
-#include <boost/variant.hpp>
-
-#include <gudhi/Simplex_tree.h>
-#include <gudhi/Persistent_cohomology.h>
-#include <gudhi/Points_3D_off_io.h>
-
-#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
-#include <CGAL/Delaunay_triangulation_3.h>
-#include <CGAL/Alpha_shape_3.h>
-#include <CGAL/Alpha_shape_cell_base_3.h>
-#include <CGAL/Alpha_shape_vertex_base_3.h>
-#include <CGAL/iterator.h>
-
-#include <fstream>
-#include <cmath>
-#include <string>
-#include <tuple>
-#include <map>
-#include <utility>
-#include <vector>
-#include <cstdlib>
-
-#include "alpha_complex_3d_helper.h"
-
-// Alpha_shape_3 templates type definitions
-using Kernel = CGAL::Exact_predicates_inexact_constructions_kernel;
-using Exact_tag = CGAL::Tag_true;
-using Vb = CGAL::Alpha_shape_vertex_base_3<Kernel, CGAL::Default, Exact_tag>;
-using Fb = CGAL::Alpha_shape_cell_base_3<Kernel, CGAL::Default, Exact_tag>;
-using Tds = CGAL::Triangulation_data_structure_3<Vb, Fb>;
-using Triangulation_3 = CGAL::Delaunay_triangulation_3<Kernel, Tds>;
-using Alpha_shape_3 = CGAL::Alpha_shape_3<Triangulation_3, Exact_tag>;
-
-// From file type definition
-using Point_3 = Kernel::Point_3;
-
-// filtration with alpha values needed type definition
-using Alpha_value_type = Alpha_shape_3::FT;
-using Object = CGAL::Object;
-using Dispatch =
- CGAL::Dispatch_output_iterator<CGAL::cpp11::tuple<Object, Alpha_value_type>,
- CGAL::cpp11::tuple<std::back_insert_iterator<std::vector<Object> >,
- std::back_insert_iterator<std::vector<Alpha_value_type> > > >;
-using Cell_handle = Alpha_shape_3::Cell_handle;
-using Facet = Alpha_shape_3::Facet;
-using Edge_3 = Alpha_shape_3::Edge;
-using Vertex_handle = Alpha_shape_3::Vertex_handle;
-using Vertex_list = std::vector<Vertex_handle>;
-
-// gudhi type definition
-using ST = Gudhi::Simplex_tree<Gudhi::Simplex_tree_options_fast_persistence>;
-using Filtration_value = ST::Filtration_value;
-using Simplex_tree_vertex = ST::Vertex_handle;
-using Alpha_shape_simplex_tree_map = std::map<Alpha_shape_3::Vertex_handle, Simplex_tree_vertex>;
-using Simplex_tree_vector_vertex = std::vector<Simplex_tree_vertex>;
-using Persistent_cohomology =
- Gudhi::persistent_cohomology::Persistent_cohomology<ST, Gudhi::persistent_cohomology::Field_Zp>;
-
-void program_options(int argc, char *argv[], std::string &off_file_points, std::string &output_file_diag,
- int &coeff_field_characteristic, Filtration_value &min_persistence);
-
-int main(int argc, char **argv) {
- std::string off_file_points;
- std::string output_file_diag;
- int coeff_field_characteristic;
- Filtration_value min_persistence;
-
- program_options(argc, argv, off_file_points, output_file_diag, coeff_field_characteristic, min_persistence);
-
- // Read the OFF file (input file name given as parameter) and triangulate points
- Gudhi::Points_3D_off_reader<Point_3> off_reader(off_file_points);
- // Check the read operation was correct
- if (!off_reader.is_valid()) {
- std::cerr << "Unable to read file " << off_file_points << std::endl;
- exit(-1);
- }
-
- // Retrieve the points
- std::vector<Point_3> lp = off_reader.get_point_cloud();
-
- // alpha shape construction from points. CGAL has a strange behavior in REGULARIZED mode.
- Alpha_shape_3 as(lp.begin(), lp.end(), 0, Alpha_shape_3::GENERAL);
-#ifdef DEBUG_TRACES
- std::cout << "Alpha shape computed in GENERAL mode" << std::endl;
-#endif // DEBUG_TRACES
-
- // filtration with alpha values from alpha shape
- std::vector<Object> the_objects;
- std::vector<Alpha_value_type> the_alpha_values;
-
- Dispatch disp = CGAL::dispatch_output<Object, Alpha_value_type>(std::back_inserter(the_objects),
- std::back_inserter(the_alpha_values));
-
- as.filtration_with_alpha_values(disp);
-#ifdef DEBUG_TRACES
- std::cout << "filtration_with_alpha_values returns : " << the_objects.size() << " objects" << std::endl;
-#endif // DEBUG_TRACES
-
- Alpha_shape_3::size_type count_vertices = 0;
- Alpha_shape_3::size_type count_edges = 0;
- Alpha_shape_3::size_type count_facets = 0;
- Alpha_shape_3::size_type count_cells = 0;
-
- // Loop on objects vector
- Vertex_list vertex_list;
- ST simplex_tree;
- Alpha_shape_simplex_tree_map map_cgal_simplex_tree;
- std::vector<Alpha_value_type>::iterator the_alpha_value_iterator = the_alpha_values.begin();
- for (auto object_iterator : the_objects) {
- // Retrieve Alpha shape vertex list from object
- if (const Cell_handle *cell = CGAL::object_cast<Cell_handle>(&object_iterator)) {
- vertex_list = from_cell<Vertex_list, Cell_handle>(*cell);
- count_cells++;
- } else if (const Facet *facet = CGAL::object_cast<Facet>(&object_iterator)) {
- vertex_list = from_facet<Vertex_list, Facet>(*facet);
- count_facets++;
- } else if (const Edge_3 *edge = CGAL::object_cast<Edge_3>(&object_iterator)) {
- vertex_list = from_edge<Vertex_list, Edge_3>(*edge);
- count_edges++;
- } else if (const Vertex_handle *vertex = CGAL::object_cast<Vertex_handle>(&object_iterator)) {
- count_vertices++;
- vertex_list = from_vertex<Vertex_list, Vertex_handle>(*vertex);
- }
- // Construction of the vector of simplex_tree vertex from list of alpha_shapes vertex
- Simplex_tree_vector_vertex the_simplex;
- for (auto the_alpha_shape_vertex : vertex_list) {
- Alpha_shape_simplex_tree_map::iterator the_map_iterator = map_cgal_simplex_tree.find(the_alpha_shape_vertex);
- if (the_map_iterator == map_cgal_simplex_tree.end()) {
- // alpha shape not found
- Simplex_tree_vertex vertex = map_cgal_simplex_tree.size();
-#ifdef DEBUG_TRACES
- std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] not found - insert " << vertex << std::endl;
-#endif // DEBUG_TRACES
- the_simplex.push_back(vertex);
- map_cgal_simplex_tree.emplace(the_alpha_shape_vertex, vertex);
- } else {
- // alpha shape found
- Simplex_tree_vertex vertex = the_map_iterator->second;
-#ifdef DEBUG_TRACES
- std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] found in " << vertex << std::endl;
-#endif // DEBUG_TRACES
- the_simplex.push_back(vertex);
- }
- }
- // Construction of the simplex_tree
- // you can also use the_alpha_value_iterator->exact()
- Filtration_value filtr = /*std::sqrt*/ CGAL::to_double(the_alpha_value_iterator->exact());
-#ifdef DEBUG_TRACES
- std::cout << "filtration = " << filtr << std::endl;
-#endif // DEBUG_TRACES
- simplex_tree.insert_simplex(the_simplex, filtr);
- if (the_alpha_value_iterator != the_alpha_values.end())
- ++the_alpha_value_iterator;
- else
- std::cout << "This shall not happen" << std::endl;
- }
-
-#ifdef DEBUG_TRACES
- std::cout << "vertices \t\t" << count_vertices << std::endl;
- std::cout << "edges \t\t" << count_edges << std::endl;
- std::cout << "facets \t\t" << count_facets << std::endl;
- std::cout << "cells \t\t" << count_cells << std::endl;
-
- std::cout << "Information of the Simplex Tree: " << std::endl;
- std::cout << " Number of vertices = " << simplex_tree.num_vertices() << " ";
- std::cout << " Number of simplices = " << simplex_tree.num_simplices() << std::endl << std::endl;
- std::cout << " Dimension = " << simplex_tree.dimension() << " ";
-#endif // DEBUG_TRACES
-
-#ifdef DEBUG_TRACES
- std::cout << "Iterator on vertices: " << std::endl;
- for (auto vertex : simplex_tree.complex_vertex_range()) {
- std::cout << vertex << " ";
- }
-#endif // DEBUG_TRACES
-
- // Sort the simplices in the order of the filtration
- simplex_tree.initialize_filtration();
-
- std::cout << "Simplex_tree dim: " << simplex_tree.dimension() << std::endl;
- // Compute the persistence diagram of the complex
- Persistent_cohomology pcoh(simplex_tree, true);
- // initializes the coefficient field for homology
- pcoh.init_coefficients(coeff_field_characteristic);
-
- pcoh.compute_persistent_cohomology(min_persistence);
-
- // Output the diagram in filediag
- if (output_file_diag.empty()) {
- pcoh.output_diagram();
- } else {
- std::cout << "Result in file: " << output_file_diag << std::endl;
- std::ofstream out(output_file_diag);
- pcoh.output_diagram(out);
- out.close();
- }
-
- return 0;
-}
-
-void program_options(int argc, char *argv[], std::string &off_file_points, std::string &output_file_diag,
- int &coeff_field_characteristic, Filtration_value &min_persistence) {
- namespace po = boost::program_options;
- po::options_description hidden("Hidden options");
- hidden.add_options()("input-file", po::value<std::string>(&off_file_points),
- "Name of file containing a point set. Format is one point per line: X1 ... Xd ");
-
- po::options_description visible("Allowed options", 100);
- visible.add_options()("help,h", "produce help message")(
- "output-file,o", po::value<std::string>(&output_file_diag)->default_value(std::string()),
- "Name of file in which the persistence diagram is written. Default print in std::cout")(
- "field-charac,p", po::value<int>(&coeff_field_characteristic)->default_value(11),
- "Characteristic p of the coefficient field Z/pZ for computing homology.")(
- "min-persistence,m", po::value<Filtration_value>(&min_persistence),
- "Minimal lifetime of homology feature to be recorded. Default is 0. Enter a negative value to see zero length "
- "intervals");
-
- po::positional_options_description pos;
- pos.add("input-file", 1);
-
- po::options_description all;
- all.add(visible).add(hidden);
-
- po::variables_map vm;
- po::store(po::command_line_parser(argc, argv).options(all).positional(pos).run(), vm);
- po::notify(vm);
-
- if (vm.count("help") || !vm.count("input-file")) {
- std::cout << std::endl;
- std::cout << "Compute the persistent homology with coefficient field Z/pZ \n";
- std::cout << "of a 3D Alpha complex defined on a set of input points.\n \n";
- std::cout << "The output diagram contains one bar per line, written with the convention: \n";
- std::cout << " p dim b d \n";
- std::cout << "where dim is the dimension of the homological feature,\n";
- std::cout << "b and d are respectively the birth and death of the feature and \n";
- std::cout << "p is the characteristic of the field Z/pZ used for homology coefficients." << std::endl << std::endl;
-
- std::cout << "Usage: " << argv[0] << " [options] input-file" << std::endl << std::endl;
- std::cout << visible << std::endl;
- exit(-1);
- }
-}
diff --git a/src/Alpha_complex/utilities/periodic_alpha_complex_3d_persistence.cpp b/src/Alpha_complex/utilities/periodic_alpha_complex_3d_persistence.cpp
deleted file mode 100644
index a261c5a3..00000000
--- a/src/Alpha_complex/utilities/periodic_alpha_complex_3d_persistence.cpp
+++ /dev/null
@@ -1,302 +0,0 @@
-/* This file is part of the Gudhi Library. The Gudhi library
- * (Geometric Understanding in Higher Dimensions) is a generic C++
- * library for computational topology.
- *
- * Author(s): Vincent Rouvreau
- * Pawel Dlotko - 2017 - Swansea University, UK
- *
- * Copyright (C) 2014 Inria
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
-
-#include <boost/program_options.hpp>
-#include <boost/variant.hpp>
-
-#include <gudhi/Simplex_tree.h>
-#include <gudhi/Persistent_cohomology.h>
-#include <gudhi/Points_3D_off_io.h>
-
-#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
-#include <CGAL/Periodic_3_Delaunay_triangulation_traits_3.h>
-#include <CGAL/Periodic_3_Delaunay_triangulation_3.h>
-#include <CGAL/Alpha_shape_3.h>
-#include <CGAL/Alpha_shape_cell_base_3.h>
-#include <CGAL/Alpha_shape_vertex_base_3.h>
-#include <CGAL/iterator.h>
-
-#include <fstream>
-#include <cmath>
-#include <string>
-#include <tuple>
-#include <map>
-#include <utility>
-#include <vector>
-#include <cstdlib>
-
-#include "alpha_complex_3d_helper.h"
-
-// Traits
-using K = CGAL::Exact_predicates_inexact_constructions_kernel;
-using PK = CGAL::Periodic_3_Delaunay_triangulation_traits_3<K>;
-// Vertex type
-using DsVb = CGAL::Periodic_3_triangulation_ds_vertex_base_3<>;
-using Vb = CGAL::Triangulation_vertex_base_3<PK, DsVb>;
-using AsVb = CGAL::Alpha_shape_vertex_base_3<PK, Vb>;
-// Cell type
-using DsCb = CGAL::Periodic_3_triangulation_ds_cell_base_3<>;
-using Cb = CGAL::Triangulation_cell_base_3<PK, DsCb>;
-using AsCb = CGAL::Alpha_shape_cell_base_3<PK, Cb>;
-using Tds = CGAL::Triangulation_data_structure_3<AsVb, AsCb>;
-using P3DT3 = CGAL::Periodic_3_Delaunay_triangulation_3<PK, Tds>;
-using Alpha_shape_3 = CGAL::Alpha_shape_3<P3DT3>;
-using Point_3 = PK::Point_3;
-
-// filtration with alpha values needed type definition
-using Alpha_value_type = Alpha_shape_3::FT;
-using Object = CGAL::Object;
-using Dispatch =
- CGAL::Dispatch_output_iterator<CGAL::cpp11::tuple<Object, Alpha_value_type>,
- CGAL::cpp11::tuple<std::back_insert_iterator<std::vector<Object> >,
- std::back_insert_iterator<std::vector<Alpha_value_type> > > >;
-using Cell_handle = Alpha_shape_3::Cell_handle;
-using Facet = Alpha_shape_3::Facet;
-using Edge_3 = Alpha_shape_3::Edge;
-using Vertex_handle = Alpha_shape_3::Vertex_handle;
-using Vertex_list = std::vector<Alpha_shape_3::Vertex_handle>;
-
-// gudhi type definition
-using ST = Gudhi::Simplex_tree<Gudhi::Simplex_tree_options_fast_persistence>;
-using Filtration_value = ST::Filtration_value;
-using Simplex_tree_vertex = ST::Vertex_handle;
-using Alpha_shape_simplex_tree_map = std::map<Alpha_shape_3::Vertex_handle, Simplex_tree_vertex>;
-using Simplex_tree_vector_vertex = std::vector<Simplex_tree_vertex>;
-using Persistent_cohomology =
- Gudhi::persistent_cohomology::Persistent_cohomology<ST, Gudhi::persistent_cohomology::Field_Zp>;
-
-void program_options(int argc, char *argv[], std::string &off_file_points, std::string &cuboid_file,
- std::string &output_file_diag, int &coeff_field_characteristic, Filtration_value &min_persistence);
-
-int main(int argc, char **argv) {
- std::string off_file_points;
- std::string cuboid_file;
- std::string output_file_diag;
- int coeff_field_characteristic;
- Filtration_value min_persistence;
-
- program_options(argc, argv, off_file_points, cuboid_file, output_file_diag, coeff_field_characteristic,
- min_persistence);
-
- // Read the OFF file (input file name given as parameter) and triangulate points
- Gudhi::Points_3D_off_reader<Point_3> off_reader(off_file_points);
- // Check the read operation was correct
- if (!off_reader.is_valid()) {
- std::cerr << "Unable to read OFF file " << off_file_points << std::endl;
- exit(-1);
- }
-
- // Read iso_cuboid_3 information from file
- std::ifstream iso_cuboid_str(cuboid_file);
- double x_min, y_min, z_min, x_max, y_max, z_max;
- if (iso_cuboid_str.good()) {
- iso_cuboid_str >> x_min >> y_min >> z_min >> x_max >> y_max >> z_max;
- } else {
- std::cerr << "Unable to read file " << cuboid_file << std::endl;
- exit(-1);
- }
- // Checking if the cuboid is the same in x,y and z direction. If not, CGAL will not process it.
- if ((x_max - x_min != y_max - y_min) || (x_max - x_min != z_max - z_min) || (z_max - z_min != y_max - y_min)) {
- std::cerr << "The size of the cuboid in every directions is not the same." << std::endl;
- exit(-1);
- }
-
- // Retrieve the points
- std::vector<Point_3> lp = off_reader.get_point_cloud();
-
- // Define the periodic cube
- P3DT3 pdt(PK::Iso_cuboid_3(x_min, y_min, z_min, x_max, y_max, z_max));
- // Heuristic for inserting large point sets (if pts is reasonably large)
- pdt.insert(lp.begin(), lp.end(), true);
- // As pdt won't be modified anymore switch to 1-sheeted cover if possible
- if (pdt.is_triangulation_in_1_sheet()) {
- pdt.convert_to_1_sheeted_covering();
- } else {
- std::cerr << "ERROR: we were not able to construct a triangulation within a single periodic domain." << std::endl;
- exit(-1);
- }
- std::cout << "Periodic Delaunay computed." << std::endl;
-
- // alpha shape construction from points. CGAL has a strange behavior in REGULARIZED mode. This is the default mode
- // Maybe need to set it to GENERAL mode
- Alpha_shape_3 as(pdt, 0, Alpha_shape_3::GENERAL);
-
- // filtration with alpha values from alpha shape
- std::vector<Object> the_objects;
- std::vector<Alpha_value_type> the_alpha_values;
-
- Dispatch disp = CGAL::dispatch_output<Object, Alpha_value_type>(std::back_inserter(the_objects),
- std::back_inserter(the_alpha_values));
-
- as.filtration_with_alpha_values(disp);
-#ifdef DEBUG_TRACES
- std::cout << "filtration_with_alpha_values returns : " << the_objects.size() << " objects" << std::endl;
-#endif // DEBUG_TRACES
-
- Alpha_shape_3::size_type count_vertices = 0;
- Alpha_shape_3::size_type count_edges = 0;
- Alpha_shape_3::size_type count_facets = 0;
- Alpha_shape_3::size_type count_cells = 0;
-
- // Loop on objects vector
- Vertex_list vertex_list;
- ST simplex_tree;
- Alpha_shape_simplex_tree_map map_cgal_simplex_tree;
- std::vector<Alpha_value_type>::iterator the_alpha_value_iterator = the_alpha_values.begin();
- for (auto object_iterator : the_objects) {
- // Retrieve Alpha shape vertex list from object
- if (const Cell_handle *cell = CGAL::object_cast<Cell_handle>(&object_iterator)) {
- vertex_list = from_cell<Vertex_list, Cell_handle>(*cell);
- count_cells++;
- } else if (const Facet *facet = CGAL::object_cast<Facet>(&object_iterator)) {
- vertex_list = from_facet<Vertex_list, Facet>(*facet);
- count_facets++;
- } else if (const Edge_3 *edge = CGAL::object_cast<Edge_3>(&object_iterator)) {
- vertex_list = from_edge<Vertex_list, Edge_3>(*edge);
- count_edges++;
- } else if (const Vertex_handle *vertex = CGAL::object_cast<Vertex_handle>(&object_iterator)) {
- count_vertices++;
- vertex_list = from_vertex<Vertex_list, Vertex_handle>(*vertex);
- }
- // Construction of the vector of simplex_tree vertex from list of alpha_shapes vertex
- Simplex_tree_vector_vertex the_simplex;
- for (auto the_alpha_shape_vertex : vertex_list) {
- Alpha_shape_simplex_tree_map::iterator the_map_iterator = map_cgal_simplex_tree.find(the_alpha_shape_vertex);
- if (the_map_iterator == map_cgal_simplex_tree.end()) {
- // alpha shape not found
- Simplex_tree_vertex vertex = map_cgal_simplex_tree.size();
-#ifdef DEBUG_TRACES
- std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] not found - insert " << vertex << std::endl;
-#endif // DEBUG_TRACES
- the_simplex.push_back(vertex);
- map_cgal_simplex_tree.emplace(the_alpha_shape_vertex, vertex);
- } else {
- // alpha shape found
- Simplex_tree_vertex vertex = the_map_iterator->second;
-#ifdef DEBUG_TRACES
- std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] found in " << vertex << std::endl;
-#endif // DEBUG_TRACES
- the_simplex.push_back(vertex);
- }
- }
- // Construction of the simplex_tree
- Filtration_value filtr = /*std::sqrt*/ (*the_alpha_value_iterator);
-#ifdef DEBUG_TRACES
- std::cout << "filtration = " << filtr << std::endl;
-#endif // DEBUG_TRACES
- simplex_tree.insert_simplex(the_simplex, filtr);
- if (the_alpha_value_iterator != the_alpha_values.end())
- ++the_alpha_value_iterator;
- else
- std::cout << "This shall not happen" << std::endl;
- }
-
-#ifdef DEBUG_TRACES
- std::cout << "vertices \t\t" << count_vertices << std::endl;
- std::cout << "edges \t\t" << count_edges << std::endl;
- std::cout << "facets \t\t" << count_facets << std::endl;
- std::cout << "cells \t\t" << count_cells << std::endl;
-
- std::cout << "Information of the Simplex Tree: " << std::endl;
- std::cout << " Number of vertices = " << simplex_tree.num_vertices() << " ";
- std::cout << " Number of simplices = " << simplex_tree.num_simplices() << std::endl << std::endl;
- std::cout << " Dimension = " << simplex_tree.dimension() << " ";
-#endif // DEBUG_TRACES
-
-#ifdef DEBUG_TRACES
- std::cout << "Iterator on vertices: " << std::endl;
- for (auto vertex : simplex_tree.complex_vertex_range()) {
- std::cout << vertex << " ";
- }
-#endif // DEBUG_TRACES
-
- // Sort the simplices in the order of the filtration
- simplex_tree.initialize_filtration();
-
- std::cout << "Simplex_tree dim: " << simplex_tree.dimension() << std::endl;
- // Compute the persistence diagram of the complex
- Persistent_cohomology pcoh(simplex_tree, true);
- // initializes the coefficient field for homology
- pcoh.init_coefficients(coeff_field_characteristic);
-
- pcoh.compute_persistent_cohomology(min_persistence);
-
- // Output the diagram in filediag
- if (output_file_diag.empty()) {
- pcoh.output_diagram();
- } else {
- std::cout << "Result in file: " << output_file_diag << std::endl;
- std::ofstream out(output_file_diag);
- pcoh.output_diagram(out);
- out.close();
- }
-
- return 0;
-}
-
-void program_options(int argc, char *argv[], std::string &off_file_points, std::string &cuboid_file,
- std::string &output_file_diag, int &coeff_field_characteristic,
- Filtration_value &min_persistence) {
- namespace po = boost::program_options;
- po::options_description hidden("Hidden options");
- hidden.add_options()("input-file", po::value<std::string>(&off_file_points),
- "Name of file containing a point set. Format is one point per line: X1 ... Xd ")(
- "cuboid-file", po::value<std::string>(&cuboid_file),
- "Name of file describing the periodic domain. Format is: min_hx min_hy min_hz\nmax_hx max_hy max_hz");
-
- po::options_description visible("Allowed options", 100);
- visible.add_options()("help,h", "produce help message")(
- "output-file,o", po::value<std::string>(&output_file_diag)->default_value(std::string()),
- "Name of file in which the persistence diagram is written. Default print in std::cout")(
- "field-charac,p", po::value<int>(&coeff_field_characteristic)->default_value(11),
- "Characteristic p of the coefficient field Z/pZ for computing homology.")(
- "min-persistence,m", po::value<Filtration_value>(&min_persistence),
- "Minimal lifetime of homology feature to be recorded. Default is 0. Enter a negative value to see zero length "
- "intervals");
-
- po::positional_options_description pos;
- pos.add("input-file", 1);
- pos.add("cuboid-file", 2);
-
- po::options_description all;
- all.add(visible).add(hidden);
-
- po::variables_map vm;
- po::store(po::command_line_parser(argc, argv).options(all).positional(pos).run(), vm);
- po::notify(vm);
-
- if (vm.count("help") || !vm.count("input-file") || !vm.count("cuboid-file")) {
- std::cout << std::endl;
- std::cout << "Compute the persistent homology with coefficient field Z/pZ \n";
- std::cout << "of a periodic 3D Alpha complex defined on a set of input points.\n \n";
- std::cout << "The output diagram contains one bar per line, written with the convention: \n";
- std::cout << " p dim b d \n";
- std::cout << "where dim is the dimension of the homological feature,\n";
- std::cout << "b and d are respectively the birth and death of the feature and \n";
- std::cout << "p is the characteristic of the field Z/pZ used for homology coefficients." << std::endl << std::endl;
-
- std::cout << "Usage: " << argv[0] << " [options] input-file cuboid-file" << std::endl << std::endl;
- std::cout << visible << std::endl;
- exit(-1);
- }
-}
diff --git a/src/Alpha_complex/utilities/weighted_alpha_complex_3d_persistence.cpp b/src/Alpha_complex/utilities/weighted_alpha_complex_3d_persistence.cpp
deleted file mode 100644
index aa7ddee2..00000000
--- a/src/Alpha_complex/utilities/weighted_alpha_complex_3d_persistence.cpp
+++ /dev/null
@@ -1,316 +0,0 @@
-/* This file is part of the Gudhi Library. The Gudhi library
- * (Geometric Understanding in Higher Dimensions) is a generic C++
- * library for computational topology.
- *
- * Author(s): Vincent Rouvreau
- *
- * Copyright (C) 2014 Inria
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
-
-#include <boost/program_options.hpp>
-#include <boost/variant.hpp>
-
-#include <gudhi/Simplex_tree.h>
-#include <gudhi/Persistent_cohomology.h>
-#include <gudhi/Points_3D_off_io.h>
-
-#include <CGAL/config.h>
-#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
-#include <CGAL/Regular_triangulation_3.h>
-#include <CGAL/Alpha_shape_3.h>
-#include <CGAL/Alpha_shape_cell_base_3.h>
-#include <CGAL/Alpha_shape_vertex_base_3.h>
-#include <CGAL/iterator.h>
-
-// For CGAL < 4.11
-#if CGAL_VERSION_NR < 1041100000
-#include <CGAL/Regular_triangulation_euclidean_traits_3.h>
-#endif // CGAL_VERSION_NR < 1041100000
-
-#include <fstream>
-#include <cmath>
-#include <string>
-#include <tuple>
-#include <map>
-#include <utility>
-#include <vector>
-#include <cstdlib>
-
-#include "alpha_complex_3d_helper.h"
-
-// Alpha_shape_3 templates type definitions
-using Kernel = CGAL::Exact_predicates_inexact_constructions_kernel;
-
-// For CGAL < 4.11
-#if CGAL_VERSION_NR < 1041100000
-using Gt = CGAL::Regular_triangulation_euclidean_traits_3<Kernel>;
-using Vb = CGAL::Alpha_shape_vertex_base_3<Gt>;
-using Fb = CGAL::Alpha_shape_cell_base_3<Gt>;
-using Tds = CGAL::Triangulation_data_structure_3<Vb, Fb>;
-using Triangulation_3 = CGAL::Regular_triangulation_3<Gt, Tds>;
-
-// From file type definition
-using Point_3 = Gt::Bare_point;
-using Weighted_point_3 = Gt::Weighted_point;
-
-// For CGAL >= 4.11
-#else // CGAL_VERSION_NR < 1041100000
-using Rvb = CGAL::Regular_triangulation_vertex_base_3<Kernel>;
-using Vb = CGAL::Alpha_shape_vertex_base_3<Kernel, Rvb>;
-using Rcb = CGAL::Regular_triangulation_cell_base_3<Kernel>;
-using Cb = CGAL::Alpha_shape_cell_base_3<Kernel, Rcb>;
-using Tds = CGAL::Triangulation_data_structure_3<Vb, Cb>;
-using Triangulation_3 = CGAL::Regular_triangulation_3<Kernel, Tds>;
-
-// From file type definition
-using Point_3 = Triangulation_3::Bare_point;
-using Weighted_point_3 = Triangulation_3::Weighted_point;
-#endif // CGAL_VERSION_NR < 1041100000
-
-using Alpha_shape_3 = CGAL::Alpha_shape_3<Triangulation_3>;
-
-// filtration with alpha values needed type definition
-using Alpha_value_type = Alpha_shape_3::FT;
-using Object = CGAL::Object;
-using Dispatch =
- CGAL::Dispatch_output_iterator<CGAL::cpp11::tuple<Object, Alpha_value_type>,
- CGAL::cpp11::tuple<std::back_insert_iterator<std::vector<Object> >,
- std::back_insert_iterator<std::vector<Alpha_value_type> > > >;
-using Cell_handle = Alpha_shape_3::Cell_handle;
-using Facet = Alpha_shape_3::Facet;
-using Edge_3 = Alpha_shape_3::Edge;
-using Vertex_handle = Alpha_shape_3::Vertex_handle;
-using Vertex_list = std::vector<Alpha_shape_3::Vertex_handle>;
-
-// gudhi type definition
-using ST = Gudhi::Simplex_tree<Gudhi::Simplex_tree_options_fast_persistence>;
-using Filtration_value = ST::Filtration_value;
-using Simplex_tree_vertex = ST::Vertex_handle;
-using Alpha_shape_simplex_tree_map = std::map<Alpha_shape_3::Vertex_handle, Simplex_tree_vertex>;
-using Simplex_tree_vector_vertex = std::vector<Simplex_tree_vertex>;
-using Persistent_cohomology =
- Gudhi::persistent_cohomology::Persistent_cohomology<ST, Gudhi::persistent_cohomology::Field_Zp>;
-
-void program_options(int argc, char *argv[], std::string &off_file_points, std::string &weight_file,
- std::string &output_file_diag, int &coeff_field_characteristic, Filtration_value &min_persistence);
-
-int main(int argc, char **argv) {
- std::string off_file_points;
- std::string weight_file;
- std::string output_file_diag;
- int coeff_field_characteristic;
- Filtration_value min_persistence;
-
- program_options(argc, argv, off_file_points, weight_file, output_file_diag, coeff_field_characteristic,
- min_persistence);
-
- // Read the OFF file (input file name given as parameter) and triangulate points
- Gudhi::Points_3D_off_reader<Point_3> off_reader(off_file_points);
- // Check the read operation was correct
- if (!off_reader.is_valid()) {
- std::cerr << "Unable to read OFF file " << off_file_points << std::endl;
- exit(-1);
- }
-
- // Retrieve the points
- std::vector<Point_3> lp = off_reader.get_point_cloud();
-
- // Read weights information from file
- std::ifstream weights_ifstr(weight_file);
- std::vector<Weighted_point_3> wp;
- if (weights_ifstr.good()) {
- double weight = 0.0;
- std::size_t index = 0;
- wp.reserve(lp.size());
- // Attempt read the weight in a double format, return false if it fails
- while ((weights_ifstr >> weight) && (index < lp.size())) {
- wp.push_back(Weighted_point_3(lp[index], weight));
- index++;
- }
- if (index != lp.size()) {
- std::cerr << "Bad number of weights in file " << weight_file << std::endl;
- exit(-1);
- }
- } else {
- std::cerr << "Unable to read weights file " << weight_file << std::endl;
- exit(-1);
- }
-
- // alpha shape construction from points. CGAL has a strange behavior in REGULARIZED mode.
- Alpha_shape_3 as(wp.begin(), wp.end(), 0, Alpha_shape_3::GENERAL);
-#ifdef DEBUG_TRACES
- std::cout << "Alpha shape computed in GENERAL mode" << std::endl;
-#endif // DEBUG_TRACES
-
- // filtration with alpha values from alpha shape
- std::vector<Object> the_objects;
- std::vector<Alpha_value_type> the_alpha_values;
-
- Dispatch disp = CGAL::dispatch_output<Object, Alpha_value_type>(std::back_inserter(the_objects),
- std::back_inserter(the_alpha_values));
-
- as.filtration_with_alpha_values(disp);
-#ifdef DEBUG_TRACES
- std::cout << "filtration_with_alpha_values returns : " << the_objects.size() << " objects" << std::endl;
-#endif // DEBUG_TRACES
-
- Alpha_shape_3::size_type count_vertices = 0;
- Alpha_shape_3::size_type count_edges = 0;
- Alpha_shape_3::size_type count_facets = 0;
- Alpha_shape_3::size_type count_cells = 0;
-
- // Loop on objects vector
- Vertex_list vertex_list;
- ST simplex_tree;
- Alpha_shape_simplex_tree_map map_cgal_simplex_tree;
- std::vector<Alpha_value_type>::iterator the_alpha_value_iterator = the_alpha_values.begin();
- for (auto object_iterator : the_objects) {
- // Retrieve Alpha shape vertex list from object
- if (const Cell_handle *cell = CGAL::object_cast<Cell_handle>(&object_iterator)) {
- vertex_list = from_cell<Vertex_list, Cell_handle>(*cell);
- count_cells++;
- } else if (const Facet *facet = CGAL::object_cast<Facet>(&object_iterator)) {
- vertex_list = from_facet<Vertex_list, Facet>(*facet);
- count_facets++;
- } else if (const Edge_3 *edge = CGAL::object_cast<Edge_3>(&object_iterator)) {
- vertex_list = from_edge<Vertex_list, Edge_3>(*edge);
- count_edges++;
- } else if (const Vertex_handle *vertex = CGAL::object_cast<Vertex_handle>(&object_iterator)) {
- count_vertices++;
- vertex_list = from_vertex<Vertex_list, Vertex_handle>(*vertex);
- }
- // Construction of the vector of simplex_tree vertex from list of alpha_shapes vertex
- Simplex_tree_vector_vertex the_simplex;
- for (auto the_alpha_shape_vertex : vertex_list) {
- Alpha_shape_simplex_tree_map::iterator the_map_iterator = map_cgal_simplex_tree.find(the_alpha_shape_vertex);
- if (the_map_iterator == map_cgal_simplex_tree.end()) {
- // alpha shape not found
- Simplex_tree_vertex vertex = map_cgal_simplex_tree.size();
-#ifdef DEBUG_TRACES
- std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] not found - insert " << vertex << std::endl;
-#endif // DEBUG_TRACES
- the_simplex.push_back(vertex);
- map_cgal_simplex_tree.emplace(the_alpha_shape_vertex, vertex);
- } else {
- // alpha shape found
- Simplex_tree_vertex vertex = the_map_iterator->second;
-#ifdef DEBUG_TRACES
- std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] found in " << vertex << std::endl;
-#endif // DEBUG_TRACES
- the_simplex.push_back(vertex);
- }
- }
- // Construction of the simplex_tree
- Filtration_value filtr = /*std::sqrt*/ (*the_alpha_value_iterator);
-#ifdef DEBUG_TRACES
- std::cout << "filtration = " << filtr << std::endl;
-#endif // DEBUG_TRACES
- simplex_tree.insert_simplex(the_simplex, filtr);
- if (the_alpha_value_iterator != the_alpha_values.end())
- ++the_alpha_value_iterator;
- else
- std::cout << "This shall not happen" << std::endl;
- }
-
-#ifdef DEBUG_TRACES
- std::cout << "vertices \t\t" << count_vertices << std::endl;
- std::cout << "edges \t\t" << count_edges << std::endl;
- std::cout << "facets \t\t" << count_facets << std::endl;
- std::cout << "cells \t\t" << count_cells << std::endl;
-
- std::cout << "Information of the Simplex Tree: " << std::endl;
- std::cout << " Number of vertices = " << simplex_tree.num_vertices() << " ";
- std::cout << " Number of simplices = " << simplex_tree.num_simplices() << std::endl << std::endl;
- std::cout << " Dimension = " << simplex_tree.dimension() << " ";
-#endif // DEBUG_TRACES
-
-#ifdef DEBUG_TRACES
- std::cout << "Iterator on vertices: " << std::endl;
- for (auto vertex : simplex_tree.complex_vertex_range()) {
- std::cout << vertex << " ";
- }
-#endif // DEBUG_TRACES
-
- // Sort the simplices in the order of the filtration
- simplex_tree.initialize_filtration();
-
- std::cout << "Simplex_tree dim: " << simplex_tree.dimension() << std::endl;
- // Compute the persistence diagram of the complex
- Persistent_cohomology pcoh(simplex_tree, true);
- // initializes the coefficient field for homology
- pcoh.init_coefficients(coeff_field_characteristic);
-
- pcoh.compute_persistent_cohomology(min_persistence);
-
- // Output the diagram in filediag
- if (output_file_diag.empty()) {
- pcoh.output_diagram();
- } else {
- std::cout << "Result in file: " << output_file_diag << std::endl;
- std::ofstream out(output_file_diag);
- pcoh.output_diagram(out);
- out.close();
- }
-
- return 0;
-}
-
-void program_options(int argc, char *argv[], std::string &off_file_points, std::string &weight_file,
- std::string &output_file_diag, int &coeff_field_characteristic,
- Filtration_value &min_persistence) {
- namespace po = boost::program_options;
- po::options_description hidden("Hidden options");
- hidden.add_options()("input-file", po::value<std::string>(&off_file_points),
- "Name of file containing a point set. Format is one point per line: X1 ... Xd ")(
- "weight-file", po::value<std::string>(&weight_file),
- "Name of file containing a point weights. Format is one weigt per line: W1\n...\nWn ");
-
- po::options_description visible("Allowed options", 100);
- visible.add_options()("help,h", "produce help message")(
- "output-file,o", po::value<std::string>(&output_file_diag)->default_value(std::string()),
- "Name of file in which the persistence diagram is written. Default print in std::cout")(
- "field-charac,p", po::value<int>(&coeff_field_characteristic)->default_value(11),
- "Characteristic p of the coefficient field Z/pZ for computing homology.")(
- "min-persistence,m", po::value<Filtration_value>(&min_persistence),
- "Minimal lifetime of homology feature to be recorded. Default is 0. Enter a negative value to see zero length "
- "intervals");
-
- po::positional_options_description pos;
- pos.add("input-file", 1);
- pos.add("weight-file", 2);
-
- po::options_description all;
- all.add(visible).add(hidden);
-
- po::variables_map vm;
- po::store(po::command_line_parser(argc, argv).options(all).positional(pos).run(), vm);
- po::notify(vm);
-
- if (vm.count("help") || !vm.count("input-file") || !vm.count("weight-file")) {
- std::cout << std::endl;
- std::cout << "Compute the persistent homology with coefficient field Z/pZ \n";
- std::cout << "of a weighted 3D Alpha complex defined on a set of input points.\n \n";
- std::cout << "The output diagram contains one bar per line, written with the convention: \n";
- std::cout << " p dim b d \n";
- std::cout << "where dim is the dimension of the homological feature,\n";
- std::cout << "b and d are respectively the birth and death of the feature and \n";
- std::cout << "p is the characteristic of the field Z/pZ used for homology coefficients." << std::endl << std::endl;
-
- std::cout << "Usage: " << argv[0] << " [options] input-file weight-file" << std::endl << std::endl;
- std::cout << visible << std::endl;
- exit(-1);
- }
-}
diff --git a/src/Alpha_complex/utilities/weighted_periodic_alpha_complex_3d_persistence.cpp b/src/Alpha_complex/utilities/weighted_periodic_alpha_complex_3d_persistence.cpp
deleted file mode 100644
index d030c88c..00000000
--- a/src/Alpha_complex/utilities/weighted_periodic_alpha_complex_3d_persistence.cpp
+++ /dev/null
@@ -1,288 +0,0 @@
-/* This file is part of the Gudhi Library. The Gudhi library
- * (Geometric Understanding in Higher Dimensions) is a generic C++
- * library for computational topology.
- *
- * Author(s): Vincent Rouvreau
- * Pawel Dlotko - 2017 - Swansea University, UK
- *
- * Copyright (C) 2014 Inria
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
-
-#include <boost/variant.hpp>
-
-#include <gudhi/Simplex_tree.h>
-#include <gudhi/Persistent_cohomology.h>
-#include <gudhi/Points_3D_off_io.h>
-
-#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
-#include <CGAL/Periodic_3_regular_triangulation_traits_3.h>
-#include <CGAL/Periodic_3_regular_triangulation_3.h>
-#include <CGAL/Alpha_shape_3.h>
-#include <CGAL/Alpha_shape_cell_base_3.h>
-#include <CGAL/Alpha_shape_vertex_base_3.h>
-#include <CGAL/iterator.h>
-
-#include <fstream>
-#include <cmath>
-#include <string>
-#include <tuple>
-#include <map>
-#include <utility>
-#include <vector>
-#include <cstdlib>
-
-#include "alpha_complex_3d_helper.h"
-
-// Traits
-using Kernel = CGAL::Exact_predicates_inexact_constructions_kernel;
-using PK = CGAL::Periodic_3_regular_triangulation_traits_3<Kernel>;
-
-// Vertex type
-using DsVb = CGAL::Periodic_3_triangulation_ds_vertex_base_3<>;
-using Vb = CGAL::Regular_triangulation_vertex_base_3<PK, DsVb>;
-using AsVb = CGAL::Alpha_shape_vertex_base_3<PK, Vb>;
-// Cell type
-using DsCb = CGAL::Periodic_3_triangulation_ds_cell_base_3<>;
-using Cb = CGAL::Regular_triangulation_cell_base_3<PK, DsCb>;
-using AsCb = CGAL::Alpha_shape_cell_base_3<PK, Cb>;
-using Tds = CGAL::Triangulation_data_structure_3<AsVb, AsCb>;
-using P3RT3 = CGAL::Periodic_3_regular_triangulation_3<PK, Tds>;
-using Alpha_shape_3 = CGAL::Alpha_shape_3<P3RT3>;
-
-using Point_3 = P3RT3::Bare_point;
-using Weighted_point_3 = P3RT3::Weighted_point;
-
-// filtration with alpha values needed type definition
-using Alpha_value_type = Alpha_shape_3::FT;
-using Object = CGAL::Object;
-using Dispatch =
- CGAL::Dispatch_output_iterator<CGAL::cpp11::tuple<Object, Alpha_value_type>,
- CGAL::cpp11::tuple<std::back_insert_iterator<std::vector<Object> >,
- std::back_insert_iterator<std::vector<Alpha_value_type> > > >;
-using Cell_handle = Alpha_shape_3::Cell_handle;
-using Facet = Alpha_shape_3::Facet;
-using Edge_3 = Alpha_shape_3::Edge;
-using Vertex_handle = Alpha_shape_3::Vertex_handle;
-using Vertex_list = std::vector<Alpha_shape_3::Vertex_handle>;
-
-// gudhi type definition
-using ST = Gudhi::Simplex_tree<Gudhi::Simplex_tree_options_fast_persistence>;
-using Filtration_value = ST::Filtration_value;
-using Simplex_tree_vertex = ST::Vertex_handle;
-using Alpha_shape_simplex_tree_map = std::map<Alpha_shape_3::Vertex_handle, Simplex_tree_vertex>;
-using Simplex_tree_vector_vertex = std::vector<Simplex_tree_vertex>;
-using Persistent_cohomology =
- Gudhi::persistent_cohomology::Persistent_cohomology<ST, Gudhi::persistent_cohomology::Field_Zp>;
-
-void usage(const std::string& progName) {
- std::cerr << "Usage: " << progName << " path_to_the_OFF_file path_to_weight_file path_to_the_cuboid_file "
- "coeff_field_characteristic[integer > 0] min_persistence[float >= -1.0]\n";
- exit(-1);
-}
-
-int main(int argc, char* const argv[]) {
- // program args management
- if (argc != 6) {
- std::cerr << "Error: Number of arguments (" << argc << ") is not correct\n";
- usage(argv[0]);
- }
-
- int coeff_field_characteristic = atoi(argv[4]);
- Filtration_value min_persistence = strtof(argv[5], nullptr);
-
- // Read points from file
- std::string offInputFile(argv[1]);
- // Read the OFF file (input file name given as parameter) and triangulate points
- Gudhi::Points_3D_off_reader<Point_3> off_reader(offInputFile);
- // Check the read operation was correct
- if (!off_reader.is_valid()) {
- std::cerr << "Unable to read file " << offInputFile << std::endl;
- usage(argv[0]);
- }
-
- // Retrieve the points
- std::vector<Point_3> lp = off_reader.get_point_cloud();
-
- // Read iso_cuboid_3 information from file
- std::ifstream iso_cuboid_str(argv[3]);
- double x_min, y_min, z_min, x_max, y_max, z_max;
- if (iso_cuboid_str.is_open()) {
- if (!(iso_cuboid_str >> x_min >> y_min >> z_min >> x_max >> y_max >> z_max)) {
- std::cerr << argv[3] << " - Bad file format." << std::endl;
- usage(argv[0]);
- }
-
- } else {
- std::cerr << "Unable to read file " << argv[3] << std::endl;
- usage(argv[0]);
- }
- // Checking if the cuboid is the same in x,y and z direction. If not, CGAL will not process it.
- if ((x_max - x_min != y_max - y_min) || (x_max - x_min != z_max - z_min) || (z_max - z_min != y_max - y_min)) {
- std::cerr << "The size of the cuboid in every directions is not the same." << std::endl;
- exit(-1);
- }
-
- double maximal_possible_weight = 0.015625 * (x_max - x_min) * (x_max - x_min);
-
- // Read weights information from file
- std::ifstream weights_ifstr(argv[2]);
- std::vector<Weighted_point_3> wp;
- if (weights_ifstr.is_open()) {
- double weight = 0.0;
- std::size_t index = 0;
- wp.reserve(lp.size());
- // Attempt read the weight in a double format, return false if it fails
- while ((weights_ifstr >> weight) && (index < lp.size())) {
- if ((weight >= maximal_possible_weight) || (weight < 0)) {
- std::cerr << "At line " << (index + 1) << ", the weight (" << weight
- << ") is negative or more than or equal to maximal possible weight (" << maximal_possible_weight
- << ") = 1/64*cuboid length squared, which is not an acceptable input." << std::endl;
- exit(-1);
- }
-
- wp.push_back(Weighted_point_3(lp[index], weight));
- index++;
- }
- if (index != lp.size()) {
- std::cerr << "Bad number of weights in file " << argv[2] << std::endl;
- usage(argv[0]);
- }
- } else {
- std::cerr << "Unable to read file " << argv[2] << std::endl;
- usage(argv[0]);
- }
-
- // Define the periodic cube
- P3RT3 prt(PK::Iso_cuboid_3(x_min, y_min, z_min, x_max, y_max, z_max));
- // Heuristic for inserting large point sets (if pts is reasonably large)
- prt.insert(wp.begin(), wp.end(), true);
- // As prt won't be modified anymore switch to 1-sheeted cover if possible
- if (prt.is_triangulation_in_1_sheet()) {
- prt.convert_to_1_sheeted_covering();
- } else {
- std::cerr << "ERROR: we were not able to construct a triangulation within a single periodic domain." << std::endl;
- exit(-1);
- }
- std::cout << "Weighted Periodic Delaunay computed." << std::endl;
-
- // alpha shape construction from points. CGAL has a strange behavior in REGULARIZED mode. This is the default mode
- // Maybe need to set it to GENERAL mode
- Alpha_shape_3 as(prt, 0, Alpha_shape_3::GENERAL);
-
- // filtration with alpha values from alpha shape
- std::vector<Object> the_objects;
- std::vector<Alpha_value_type> the_alpha_values;
-
- Dispatch disp = CGAL::dispatch_output<Object, Alpha_value_type>(std::back_inserter(the_objects),
- std::back_inserter(the_alpha_values));
-
- as.filtration_with_alpha_values(disp);
-#ifdef DEBUG_TRACES
- std::cout << "filtration_with_alpha_values returns : " << the_objects.size() << " objects" << std::endl;
-#endif // DEBUG_TRACES
-
- Alpha_shape_3::size_type count_vertices = 0;
- Alpha_shape_3::size_type count_edges = 0;
- Alpha_shape_3::size_type count_facets = 0;
- Alpha_shape_3::size_type count_cells = 0;
-
- // Loop on objects vector
- Vertex_list vertex_list;
- ST simplex_tree;
- Alpha_shape_simplex_tree_map map_cgal_simplex_tree;
- std::vector<Alpha_value_type>::iterator the_alpha_value_iterator = the_alpha_values.begin();
- for (auto object_iterator : the_objects) {
- // Retrieve Alpha shape vertex list from object
- if (const Cell_handle* cell = CGAL::object_cast<Cell_handle>(&object_iterator)) {
- vertex_list = from_cell<Vertex_list, Cell_handle>(*cell);
- count_cells++;
- } else if (const Facet* facet = CGAL::object_cast<Facet>(&object_iterator)) {
- vertex_list = from_facet<Vertex_list, Facet>(*facet);
- count_facets++;
- } else if (const Edge_3* edge = CGAL::object_cast<Edge_3>(&object_iterator)) {
- vertex_list = from_edge<Vertex_list, Edge_3>(*edge);
- count_edges++;
- } else if (const Vertex_handle* vertex = CGAL::object_cast<Vertex_handle>(&object_iterator)) {
- count_vertices++;
- vertex_list = from_vertex<Vertex_list, Vertex_handle>(*vertex);
- }
- // Construction of the vector of simplex_tree vertex from list of alpha_shapes vertex
- Simplex_tree_vector_vertex the_simplex;
- for (auto the_alpha_shape_vertex : vertex_list) {
- Alpha_shape_simplex_tree_map::iterator the_map_iterator = map_cgal_simplex_tree.find(the_alpha_shape_vertex);
- if (the_map_iterator == map_cgal_simplex_tree.end()) {
- // alpha shape not found
- Simplex_tree_vertex vertex = map_cgal_simplex_tree.size();
-#ifdef DEBUG_TRACES
- std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] not found - insert " << vertex << std::endl;
-#endif // DEBUG_TRACES
- the_simplex.push_back(vertex);
- map_cgal_simplex_tree.emplace(the_alpha_shape_vertex, vertex);
- } else {
- // alpha shape found
- Simplex_tree_vertex vertex = the_map_iterator->second;
-#ifdef DEBUG_TRACES
- std::cout << "vertex [" << the_alpha_shape_vertex->point() << "] found in " << vertex << std::endl;
-#endif // DEBUG_TRACES
- the_simplex.push_back(vertex);
- }
- }
- // Construction of the simplex_tree
- Filtration_value filtr = /*std::sqrt*/ (*the_alpha_value_iterator);
-#ifdef DEBUG_TRACES
- std::cout << "filtration = " << filtr << std::endl;
-#endif // DEBUG_TRACES
- simplex_tree.insert_simplex(the_simplex, filtr);
- if (the_alpha_value_iterator != the_alpha_values.end())
- ++the_alpha_value_iterator;
- else
- std::cout << "This shall not happen" << std::endl;
- }
-
-#ifdef DEBUG_TRACES
- std::cout << "vertices \t\t" << count_vertices << std::endl;
- std::cout << "edges \t\t" << count_edges << std::endl;
- std::cout << "facets \t\t" << count_facets << std::endl;
- std::cout << "cells \t\t" << count_cells << std::endl;
-
- std::cout << "Information of the Simplex Tree: " << std::endl;
- std::cout << " Number of vertices = " << simplex_tree.num_vertices() << " ";
- std::cout << " Number of simplices = " << simplex_tree.num_simplices() << std::endl << std::endl;
- std::cout << " Dimension = " << simplex_tree.dimension() << " ";
-#endif // DEBUG_TRACES
-
-#ifdef DEBUG_TRACES
- std::cout << "Iterator on vertices: " << std::endl;
- for (auto vertex : simplex_tree.complex_vertex_range()) {
- std::cout << vertex << " ";
- }
-#endif // DEBUG_TRACES
-
- // Sort the simplices in the order of the filtration
- simplex_tree.initialize_filtration();
-
- std::cout << "Simplex_tree dim: " << simplex_tree.dimension() << std::endl;
- // Compute the persistence diagram of the complex
- Persistent_cohomology pcoh(simplex_tree, true);
- // initializes the coefficient field for homology
- pcoh.init_coefficients(coeff_field_characteristic);
-
- pcoh.compute_persistent_cohomology(min_persistence);
-
- pcoh.output_diagram();
-
- return 0;
-}