summaryrefslogtreecommitdiff
path: root/src/Bitmap_cubical_complex/doc/Gudhi_Cubical_Complex_doc.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Bitmap_cubical_complex/doc/Gudhi_Cubical_Complex_doc.h')
-rw-r--r--src/Bitmap_cubical_complex/doc/Gudhi_Cubical_Complex_doc.h110
1 files changed, 110 insertions, 0 deletions
diff --git a/src/Bitmap_cubical_complex/doc/Gudhi_Cubical_Complex_doc.h b/src/Bitmap_cubical_complex/doc/Gudhi_Cubical_Complex_doc.h
new file mode 100644
index 00000000..d2b9ccd6
--- /dev/null
+++ b/src/Bitmap_cubical_complex/doc/Gudhi_Cubical_Complex_doc.h
@@ -0,0 +1,110 @@
+/* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
+ * See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
+ * Author(s): Pawel Dlotko
+ *
+ * Copyright (C) 2015 Inria
+ *
+ * Modification(s):
+ * - YYYY/MM Author: Description of the modification
+ */
+
+
+#ifndef DOC_GUDHI_CUBICAL_COMPLEX_COMPLEX_H_
+#define DOC_GUDHI_CUBICAL_COMPLEX_COMPLEX_H_
+
+namespace Gudhi {
+
+namespace cubical_complex {
+
+/** \defgroup cubical_complex Cubical complex
+ *
+ * \author Pawel Dlotko
+ *
+ * @{
+ *
+
+ * Bitmap_cubical_complex is an example of a structured complex useful in computational mathematics (specially rigorous
+ * numerics) and image analysis. The presented implementation of cubical complexes is based on the following
+ * definition.
+ *
+ * An <em>elementary interval</em> is an interval of a form \f$ [n,n+1] \f$, or \f$[n,n]\f$, for \f$ n \in \mathcal{Z}
+ * \f$. The first one is called <em>non-degenerate</em>, while the second one is \a degenerate interval. A
+ * <em>boundary of a elementary interval</em> is a chain \f$\partial [n,n+1] = [n+1,n+1]-[n,n] \f$ in case of
+ * non-degenerated elementary interval and \f$\partial [n,n] = 0 \f$ in case of degenerate elementary interval. An
+ * <em>elementary cube</em> \f$ C \f$ is a product of elementary intervals, \f$C=I_1 \times \ldots \times I_n\f$.
+ * <em>Embedding dimension</em> of a cube is n, the number of elementary intervals (degenerate or not) in the product.
+ * A <em>dimension of a cube</em> \f$C=I_1 \times ... \times I_n\f$ is the number of non degenerate elementary
+ * intervals in the product. A <em>boundary of a cube</em> \f$C=I_1 \times \ldots \times I_n\f$ is a chain obtained
+ * in the following way:
+ * \f[\partial C = (\partial I_1 \times \ldots \times I_n) + (I_1 \times \partial I_2 \times \ldots \times I_n) +
+ * \ldots + (I_1 \times I_2 \times \ldots \times \partial I_n).\f]
+ * A <em>cubical complex</em> \f$\mathcal{K}\f$ is a collection of cubes closed under operation of taking boundary
+ * (i.e. boundary of every cube from the collection is in the collection). A cube \f$C\f$ in cubical complex
+ * \f$\mathcal{K}\f$ is <em>maximal</em> if it is not in a boundary of any other cube in \f$\mathcal{K}\f$. A \a
+ * support of a cube \f$C\f$ is the set in \f$\mathbb{R}^n\f$ occupied by \f$C\f$ (\f$n\f$ is the embedding dimension
+ * of \f$C\f$).
+ *
+ * Cubes may be equipped with a filtration values in which case we have filtered cubical complex. All the cubical
+ * complexes considered in this implementation are filtered cubical complexes (although, the range of a filtration may
+ * be a set of two elements).
+ *
+ * For further details and theory of cubical complexes, please consult \cite kaczynski2004computational as well as the
+ * following paper \cite peikert2012topological .
+ *
+ * \section cubicalcomplexdatastructure Data structure
+ *
+ * The implementation of Cubical complex provides a representation of complexes that occupy a rectangular region in
+ * \f$\mathbb{R}^n\f$. This extra assumption allows for a memory efficient way of storing cubical complexes in a form
+ * of so called bitmaps. Let \f$R = [b_1,e_1] \times \ldots \times [b_n,e_n]\f$, for \f$b_1,...b_n,e_1,...,e_n \in
+ * \mathbb{Z}\f$, \f$b_i \leq d_i\f$ be the considered rectangular region and let \f$\mathcal{K}\f$ be a filtered
+ * cubical complex having the rectangle \f$R\f$ as its support. Note that the structure of the coordinate system gives
+ * a way a lexicographical ordering of cells of \f$\mathcal{K}\f$. This ordering is a base of the presented
+ * bitmap-based implementation. In this implementation, the whole cubical complex is stored as a vector of the values
+ * of filtration. This, together with dimension of \f$\mathcal{K}\f$ and the sizes of \f$\mathcal{K}\f$ in all
+ * directions, allows to determine, dimension, neighborhood, boundary and coboundary of every cube \f$C \in
+ * \mathcal{K}\f$.
+ *
+ * \image html "Cubical_complex_representation.png" Cubical complex.
+ *
+ * Note that the cubical complex in the figure above is, in a natural way, a product of one dimensional cubical
+ * complexes in \f$\mathbb{R}\f$. The number of all cubes in each direction is equal \f$2n+1\f$, where \f$n\f$ is the
+ * number of maximal cubes in the considered direction. Let us consider a cube at the position \f$k\f$ in the bitmap.
+ * Knowing the sizes of the bitmap, by a series of modulo operation, we can determine which elementary intervals are
+ * present in the product that gives the cube \f$C\f$. In a similar way, we can compute boundary and the coboundary of
+ * each cube. Further details can be found in the literature.
+ *
+ * \section inputformat Input Format
+ *
+ * In the current implementation, filtration is given at the maximal cubes, and it is then extended by the lower star
+ * filtration to all cubes. There are a number of constructors that can be used to construct cubical complex by users
+ * who want to use the code directly. They can be found in the \a Bitmap_cubical_complex class.
+ * Currently one input from a text file is used. It uses a format inspired from the Perseus software
+ * (http://www.sas.upenn.edu/~vnanda/perseus/) by Vidit Nanda.
+ * \note While Perseus assume the filtration of all maximal cubes to be non-negative, over here we do not enforce this
+ * and we allow any filtration values. As a consequence one cannot use `-1`'s to indicate missing cubes. If you have
+ * missing cubes in your complex, please set their filtration to \f$+\infty\f$ (aka. `inf` in the file).
+ *
+ * The file format is described in details in \ref FileFormatsPerseus file format section.
+ *
+ * \section PeriodicBoundaryConditions Periodic boundary conditions
+ * Often one would like to impose periodic boundary conditions to the cubical complex. Let \f$ I_1\times ... \times
+ * I_n \f$ be a box that is decomposed with a cubical complex \f$ \mathcal{K} \f$. Imposing periodic boundary
+ * conditions in the direction i, means that the left and the right side of a complex \f$ \mathcal{K} \f$ are
+ * considered the same. In particular, if for a bitmap \f$ \mathcal{K} \f$ periodic boundary conditions are imposed
+ * in all directions, then complex \f$ \mathcal{K} \f$ became n-dimensional torus. One can use various constructors
+ * from the file Bitmap_cubical_complex_periodic_boundary_conditions_base.h to construct cubical complex with periodic
+ * boundary conditions. One can also use Perseus style input files (see \ref FileFormatsPerseus).
+ *
+ * \section BitmapExamples Examples
+ * End user programs are available in example/Bitmap_cubical_complex and utilities/Bitmap_cubical_complex folders.
+ *
+ */
+/** @} */ // end defgroup cubical_complex
+
+} // namespace cubical_complex
+
+namespace Cubical_complex = cubical_complex;
+
+} // namespace Gudhi
+
+#endif // DOC_GUDHI_CUBICAL_COMPLEX_COMPLEX_H_