summaryrefslogtreecommitdiff
path: root/src/Cech_complex/include/gudhi/Cech_complex_blocker.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Cech_complex/include/gudhi/Cech_complex_blocker.h')
-rw-r--r--src/Cech_complex/include/gudhi/Cech_complex_blocker.h90
1 files changed, 80 insertions, 10 deletions
diff --git a/src/Cech_complex/include/gudhi/Cech_complex_blocker.h b/src/Cech_complex/include/gudhi/Cech_complex_blocker.h
index 31b9aab5..e78e37b7 100644
--- a/src/Cech_complex/include/gudhi/Cech_complex_blocker.h
+++ b/src/Cech_complex/include/gudhi/Cech_complex_blocker.h
@@ -11,10 +11,12 @@
#ifndef CECH_COMPLEX_BLOCKER_H_
#define CECH_COMPLEX_BLOCKER_H_
-#include <gudhi/distance_functions.h> // for Gudhi::Minimal_enclosing_ball_radius
+#include <CGAL/NT_converter.h> // for casting from FT to Filtration_value
+#include <CGAL/Lazy_exact_nt.h> // for CGAL::exact
#include <iostream>
#include <vector>
+#include <set>
#include <cmath> // for std::sqrt
namespace Gudhi {
@@ -30,37 +32,104 @@ namespace cech_complex {
* \details
* Čech blocker is an oracle constructed from a Cech_complex and a simplicial complex.
*
- * \tparam SimplicialComplexForProximityGraph furnishes `Simplex_handle` and `Filtration_value` type definition,
+ * \tparam SimplicialComplexForCech furnishes `Simplex_handle` and `Filtration_value` type definition,
* `simplex_vertex_range(Simplex_handle sh)`and `assign_filtration(Simplex_handle sh, Filtration_value filt)` methods.
*
- * \tparam Chech_complex is required by the blocker.
+ * \tparam Cech_complex is required by the blocker.
+ *
+ * \tparam Kernel CGAL kernel: either Epick_d or Epeck_d.
*/
-template <typename SimplicialComplexForCech, typename Cech_complex>
+template <typename SimplicialComplexForCech, typename Cech_complex, typename Kernel>
class Cech_blocker {
+
+ public:
+
+ using Point_d = typename Kernel::Point_d;
+ // Numeric type of coordinates in the kernel
+ using FT = typename Kernel::FT;
+ // Sphere is a pair of point and squared radius.
+ using Sphere = typename std::pair<Point_d, FT>;
+
private:
- using Point_cloud = typename Cech_complex::Point_cloud;
using Simplex_handle = typename SimplicialComplexForCech::Simplex_handle;
using Filtration_value = typename SimplicialComplexForCech::Filtration_value;
+ using Simplex_key = typename SimplicialComplexForCech::Simplex_key;
+
+ template<class PointIterator>
+ Sphere get_sphere(PointIterator begin, PointIterator end) const {
+ Point_d c = kernel_.construct_circumcenter_d_object()(begin, end);
+ FT r = kernel_.squared_distance_d_object()(c, *begin);
+ return std::make_pair(std::move(c), std::move(r));
+ }
public:
+
/** \internal \brief Čech complex blocker operator() - the oracle - assigns the filtration value from the simplex
* radius and returns if the simplex expansion must be blocked.
* \param[in] sh The Simplex_handle.
* \return true if the simplex radius is greater than the Cech_complex max_radius*/
bool operator()(Simplex_handle sh) {
+ using Point_cloud = std::vector<Point_d>;
+ Filtration_value radius = 0;
+ bool is_min_enclos_ball = false;
Point_cloud points;
- for (auto vertex : sc_ptr_->simplex_vertex_range(sh)) {
- points.push_back(cc_ptr_->get_point(vertex));
+ points.reserve(sc_ptr_->dimension(sh)+1);
+
+ // for each face of simplex sh, test outsider point is indeed inside enclosing ball, if yes, take it and exit loop, otherwise, new sphere is circumsphere of all vertices
+ for (auto face_opposite_vertex : sc_ptr_->boundary_opposite_vertex_simplex_range(sh)) {
+ auto k = sc_ptr_->key(face_opposite_vertex.first);
+ Simplex_key sph_key;
+ if(k != sc_ptr_->null_key()) {
+ sph_key = k;
+ }
+ else {
+ for (auto vertex : sc_ptr_->simplex_vertex_range(face_opposite_vertex.first)) {
+ points.push_back(cc_ptr_->get_point(vertex));
+#ifdef DEBUG_TRACES
+ std::clog << "#(" << vertex << ")#";
+#endif // DEBUG_TRACES
+ }
+ // Put edge sphere in cache
+ sph_key = cc_ptr_->get_cache().size();
+ sc_ptr_->assign_key(face_opposite_vertex.first, sph_key);
+ cc_ptr_->get_cache().push_back(get_sphere(points.cbegin(), points.cend()));
+ // Clear face points
+ points.clear();
+ }
+ // Check if the minimal enclosing ball of current face contains the extra point/opposite vertex
+ Sphere const& sph = cc_ptr_->get_cache()[sph_key];
+ if (kernel_.squared_distance_d_object()(sph.first, cc_ptr_->get_point(face_opposite_vertex.second)) <= sph.second) {
+ is_min_enclos_ball = true;
+ sc_ptr_->assign_key(sh, sph_key);
+ radius = sc_ptr_->filtration(face_opposite_vertex.first);
#ifdef DEBUG_TRACES
- std::clog << "#(" << vertex << ")#";
+ std::clog << "center: " << sph.first << ", radius: " << radius << std::endl;
#endif // DEBUG_TRACES
+ break;
+ }
}
- Filtration_value radius = Gudhi::Minimal_enclosing_ball_radius()(points);
+ // Spheres of each face don't contain the whole simplex
+ if(!is_min_enclos_ball) {
+ for (auto vertex : sc_ptr_->simplex_vertex_range(sh)) {
+ points.push_back(cc_ptr_->get_point(vertex));
+ }
+ Sphere sph = get_sphere(points.cbegin(), points.cend());
+#if CGAL_VERSION_NR >= 1050000000
+ if(cc_ptr_->is_exact()) CGAL::exact(sph.second);
+#endif
+ CGAL::NT_converter<FT, Filtration_value> cast_to_fv;
+ radius = std::sqrt(cast_to_fv(sph.second));
+
+ sc_ptr_->assign_key(sh, cc_ptr_->get_cache().size());
+ cc_ptr_->get_cache().push_back(std::move(sph));
+ }
+
#ifdef DEBUG_TRACES
if (radius > cc_ptr_->max_radius()) std::clog << "radius > max_radius => expansion is blocked\n";
#endif // DEBUG_TRACES
- sc_ptr_->assign_filtration(sh, radius);
+ // Check that the filtration to be assigned (radius) would be valid
+ if (radius > sc_ptr_->filtration(sh)) sc_ptr_->assign_filtration(sh, radius);
return (radius > cc_ptr_->max_radius());
}
@@ -70,6 +139,7 @@ class Cech_blocker {
private:
SimplicialComplexForCech* sc_ptr_;
Cech_complex* cc_ptr_;
+ Kernel kernel_;
};
} // namespace cech_complex