summaryrefslogtreecommitdiff
path: root/src/Collapse/include/gudhi/Flag_complex_edge_collapser.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Collapse/include/gudhi/Flag_complex_edge_collapser.h')
-rw-r--r--src/Collapse/include/gudhi/Flag_complex_edge_collapser.h579
1 files changed, 266 insertions, 313 deletions
diff --git a/src/Collapse/include/gudhi/Flag_complex_edge_collapser.h b/src/Collapse/include/gudhi/Flag_complex_edge_collapser.h
index 713c6608..d0b3fe4a 100644
--- a/src/Collapse/include/gudhi/Flag_complex_edge_collapser.h
+++ b/src/Collapse/include/gudhi/Flag_complex_edge_collapser.h
@@ -1,11 +1,12 @@
/* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
* See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
- * Author(s): Siddharth Pritam
+ * Author(s): Siddharth Pritam, Marc Glisse
*
* Copyright (C) 2020 Inria
*
* Modification(s):
* - 2020/03 Vincent Rouvreau: integration to the gudhi library
+ * - 2021 Marc Glisse: complete rewrite
* - YYYY/MM Author: Description of the modification
*/
@@ -14,367 +15,319 @@
#include <gudhi/Debug_utils.h>
-#include <boost/functional/hash.hpp>
-#include <boost/iterator/iterator_facade.hpp>
-
-#include <Eigen/Sparse>
-#include <Eigen/src/Core/util/Macros.h> // for EIGEN_VERSION_AT_LEAST
+#include <boost/container/flat_map.hpp>
+#include <boost/container/flat_set.hpp>
#ifdef GUDHI_USE_TBB
#include <tbb/parallel_sort.h>
#endif
-#include <iostream>
-#include <utility> // for std::pair
+#include <utility>
#include <vector>
-#include <unordered_map>
-#include <unordered_set>
-#include <set>
-#include <tuple> // for std::tie
-#include <algorithm> // for std::includes
-#include <iterator> // for std::inserter
-#include <type_traits> // for std::decay
-
-// Make compilation fail - required for external projects - https://github.com/GUDHI/gudhi-devel/issues/10
-#if !EIGEN_VERSION_AT_LEAST(3,1,0)
-# error Edge Collapse is only available for Eigen3 >= 3.1.0
-#endif
+#include <tuple>
+#include <algorithm>
+#include <limits>
namespace Gudhi {
namespace collapse {
/** \private
- *
- * \brief Flag complex sparse matrix data structure.
*
- * \details
- * This class stores a <a target="_blank" href="https://en.wikipedia.org/wiki/Clique_complex">Flag complex</a>
- * in an <a target="_blank" href="https://eigen.tuxfamily.org/dox/group__TutorialSparse.html">Eigen sparse matrix</a>.
+ * \brief Flag complex sparse matrix data structure.
*
- * \tparam Vertex type must be a signed integer type. It admits a total order <.
- * \tparam Filtration type for the value of the filtration function. Must be comparable with <.
+ * \tparam Vertex type must be an integer type.
+ * \tparam Filtration type for the value of the filtration function.
*/
-template<typename Vertex, typename Filtration>
-class Flag_complex_edge_collapser {
- public:
- /** \brief Re-define Vertex as Vertex_handle type to ease the interface with `Gudhi::Proximity_graph`. */
- using Vertex_handle = Vertex;
- /** \brief Re-define Filtration as Filtration_value type to ease the interface with `Gudhi::Proximity_graph`. */
- using Filtration_value = Filtration;
-
- private:
- // internal numbering of vertices and edges
- using IVertex = std::size_t;
- using Edge_index = std::size_t;
- using IEdge = std::pair<IVertex, IVertex>;
-
- // The sparse matrix data type
- // (Eigen::SparseMatrix<Edge_index, Eigen::RowMajor> has slow insertions)
- using Sparse_vector = Eigen::SparseVector<Edge_index>;
- using Sparse_row_matrix = std::vector<Sparse_vector>;
-
- // Range of neighbors of a vertex
- template<bool closed>
- struct Neighbours {
- class iterator : public boost::iterator_facade<iterator,
- IVertex, /* value_type */
- std::input_iterator_tag, // or boost::single_pass_traversal_tag
- IVertex /* reference */ >
- {
- public:
- iterator():ptr(nullptr){}
- iterator(Neighbours const*p):ptr(p){find_valid();}
- private:
- friend class boost::iterator_core_access;
- Neighbours const*ptr;
- void increment(){
- ++ptr->it;
- find_valid();
- }
- void find_valid(){
- auto& it = ptr->it;
- do {
- if(!it) { ptr=nullptr; break; }
- if(IVertex(it.index()) == ptr->u) {
- if(closed) break;
- else continue;
- }
- Edge_index e = it.value();
- if(e <= ptr->ec->current_backward || ptr->ec->critical_edge_indicator_[e]) break;
- } while(++it, true);
- }
- bool equal(iterator const& other) const { return ptr == other.ptr; }
- IVertex dereference() const { return ptr->it.index(); }
- };
- typedef iterator const_iterator;
- mutable typename Sparse_vector::InnerIterator it;
- Flag_complex_edge_collapser const*ec;
- IVertex u;
- iterator begin() const { return this; }
- iterator end() const { return {}; }
- explicit Neighbours(Flag_complex_edge_collapser const*p,IVertex u):it(p->sparse_row_adjacency_matrix_[u]),ec(p),u(u){}
- };
-
- // A range of row indices
- using IVertex_vector = std::vector<IVertex>;
-
- public:
- /** \brief Filtered_edge is a type to store an edge with its filtration value. */
- using Filtered_edge = std::tuple<Vertex_handle, Vertex_handle, Filtration_value>;
-
- private:
- // Map from row index to its vertex handle
- std::vector<Vertex_handle> row_to_vertex_;
-
- // Index of the current edge in the backwards walk. Edges <= current_backward are part of the temporary graph,
- // while edges > current_backward are removed unless critical_edge_indicator_.
- Edge_index current_backward = -1;
-
- // Map from IEdge to its index
- std::unordered_map<IEdge, Edge_index, boost::hash<IEdge>> iedge_to_index_map_;
-
- // Boolean vector to indicate if the edge is critical.
- std::vector<bool> critical_edge_indicator_;
-
- // Map from vertex handle to its row index
- std::unordered_map<Vertex_handle, IVertex> vertex_to_row_;
-
- // Stores the Sparse matrix of Filtration values representing the original graph.
- // The matrix rows and columns are indexed by IVertex.
- Sparse_row_matrix sparse_row_adjacency_matrix_;
-
- // The input, a vector of filtered edges.
- std::vector<Filtered_edge> f_edge_vector_;
-
- // Edge is the actual edge (u,v), with Vertex_handle u and v, not IVertex.
- bool edge_is_dominated(Vertex_handle u, Vertex_handle v) const
- {
- const IVertex rw_u = vertex_to_row_.at(u);
- const IVertex rw_v = vertex_to_row_.at(v);
-#ifdef DEBUG_TRACES
- std::cout << "The edge {" << u << ", " << v << "} is going for domination check." << std::endl;
-#endif // DEBUG_TRACES
- auto common_neighbours = open_common_neighbours_row_index(rw_u, rw_v);
-#ifdef DEBUG_TRACES
- std::cout << "And its common neighbours are." << std::endl;
- for (auto neighbour : common_neighbours) {
- std::cout << row_to_vertex_[neighbour] << ", " ;
- }
- std::cout<< std::endl;
-#endif // DEBUG_TRACES
- if (common_neighbours.size() == 1)
- return true;
- else
- for (auto rw_c : common_neighbours) {
- auto neighbours_c = neighbours_row_index<true>(rw_c);
- // If neighbours_c contains the common neighbours.
- if (std::includes(neighbours_c.begin(), neighbours_c.end(),
- common_neighbours.begin(), common_neighbours.end()))
- return true;
- }
- return false;
+template<typename Vertex, typename Filtration_value>
+struct Flag_complex_edge_collapser {
+ using Filtered_edge = std::tuple<Vertex, Vertex, Filtration_value>;
+ typedef std::pair<Vertex,Vertex> Edge;
+ struct Cmpi { template<class T, class U> bool operator()(T const&a, U const&b)const{return b<a; } };
+ typedef boost::container::flat_map<Vertex, Filtration_value> Ngb_list;
+ typedef std::vector<Ngb_list> Neighbors;
+ Neighbors neighbors; // closed neighborhood
+ std::size_t num_vertices;
+ std::vector<std::tuple<Vertex, Vertex, Filtration_value>> res;
+
+#ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
+ // Minimal matrix interface
+ // Using this matrix generally helps performance, but the memory use may be excessive for a very sparse graph
+ // (and in extreme cases the constant initialization of the matrix may start to dominate the running time).
+ // Are there cases where the matrix is too big but a hash table would help?
+ std::vector<Filtration_value> neighbors_data;
+ void init_neighbors_dense(){
+ neighbors_data.clear();
+ neighbors_data.resize(num_vertices*num_vertices, std::numeric_limits<Filtration_value>::infinity());
}
+ Filtration_value& neighbors_dense(Vertex i, Vertex j){return neighbors_data[num_vertices*j+i];}
+#endif
- // Returns the edges connecting u and v (extremities of crit) to their common neighbors (not themselves)
- std::set<Edge_index> three_clique_indices(Edge_index crit) {
- std::set<Edge_index> edge_indices;
-
- Vertex_handle u = std::get<0>(f_edge_vector_[crit]);
- Vertex_handle v = std::get<1>(f_edge_vector_[crit]);
-
-#ifdef DEBUG_TRACES
- std::cout << "The current critical edge to re-check criticality with filt value is : f {" << u << "," << v
- << "} = " << std::get<2>(f_edge_vector_[crit]) << std::endl;
-#endif // DEBUG_TRACES
- auto rw_u = vertex_to_row_[u];
- auto rw_v = vertex_to_row_[v];
-
- IVertex_vector common_neighbours = open_common_neighbours_row_index(rw_u, rw_v);
+ // This does not touch the events list, only the adjacency matrix(es)
+ void delay_neighbor(Vertex u, Vertex v, Filtration_value f) {
+ neighbors[u][v]=f;
+ neighbors[v][u]=f;
+#ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
+ neighbors_dense(u,v)=f;
+ neighbors_dense(v,u)=f;
+#endif
+ }
+ void remove_neighbor(Vertex u, Vertex v) {
+ neighbors[u].erase(v);
+ neighbors[v].erase(u);
+#ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
+ neighbors_dense(u,v)=std::numeric_limits<Filtration_value>::infinity();
+ neighbors_dense(v,u)=std::numeric_limits<Filtration_value>::infinity();
+#endif
+ }
- for (auto rw_c : common_neighbours) {
- IEdge e_with_new_nbhr_v = std::minmax(rw_u, rw_c);
- IEdge e_with_new_nbhr_u = std::minmax(rw_v, rw_c);
- edge_indices.emplace(iedge_to_index_map_[e_with_new_nbhr_v]);
- edge_indices.emplace(iedge_to_index_map_[e_with_new_nbhr_u]);
+ template<class FilteredEdgeRange>
+ void read_edges(FilteredEdgeRange const&r){
+ neighbors.resize(num_vertices);
+#ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
+ init_neighbors_dense();
+#endif
+ // Use the raw sequence to avoid maintaining the order
+ std::vector<typename Ngb_list::sequence_type> neighbors_seq(num_vertices);
+ for(auto&&e : r){
+ using std::get;
+ Vertex u = get<0>(e);
+ Vertex v = get<1>(e);
+ Filtration_value f = get<2>(e);
+ neighbors_seq[u].emplace_back(v, f);
+ neighbors_seq[v].emplace_back(u, f);
+#ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
+ neighbors_dense(u,v)=f;
+ neighbors_dense(v,u)=f;
+#endif
+ }
+ for(std::size_t i=0;i<neighbors_seq.size();++i){
+ neighbors_seq[i].emplace_back(i, -std::numeric_limits<Filtration_value>::infinity());
+ neighbors[i].adopt_sequence(std::move(neighbors_seq[i])); // calls sort
+#ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
+ neighbors_dense(i,i)=-std::numeric_limits<Filtration_value>::infinity();
+#endif
}
- return edge_indices;
}
- // Detect and set all edges that are becoming critical
- template<typename FilteredEdgeOutput>
- void set_edge_critical(Edge_index indx, Filtration_value filt, FilteredEdgeOutput filtered_edge_output) {
-#ifdef DEBUG_TRACES
- std::cout << "The curent index with filtration value " << indx << ", " << filt << " is primary critical" <<
- std::endl;
-#endif // DEBUG_TRACES
- std::set<Edge_index> effected_indices = three_clique_indices(indx);
- // Cannot use boost::adaptors::reverse in such dynamic cases apparently
- for (auto it = effected_indices.rbegin(); it != effected_indices.rend(); ++it) {
- current_backward = *it;
- Vertex_handle u = std::get<0>(f_edge_vector_[current_backward]);
- Vertex_handle v = std::get<1>(f_edge_vector_[current_backward]);
- // If current_backward is not critical so it should be processed, otherwise it stays in the graph
- if (!critical_edge_indicator_[current_backward]) {
- if (!edge_is_dominated(u, v)) {
-#ifdef DEBUG_TRACES
- std::cout << "The curent index became critical " << current_backward << std::endl;
-#endif // DEBUG_TRACES
- critical_edge_indicator_[current_backward] = true;
- filtered_edge_output(u, v, filt);
- std::set<Edge_index> inner_effected_indcs = three_clique_indices(current_backward);
- for (auto inr_idx : inner_effected_indcs) {
- if(inr_idx < current_backward) // && !critical_edge_indicator_[inr_idx]
- effected_indices.emplace(inr_idx);
- }
-#ifdef DEBUG_TRACES
- std::cout << "The following edge is critical with filt value: {" << u << "," << v << "}; "
- << filt << std::endl;
-#endif // DEBUG_TRACES
- }
+ // Open neighborhood
+ // At some point it helped gcc to add __attribute__((noinline)) here, otherwise we had +50% on the running time
+ // on one example. It looks ok now, or I forgot which example that was.
+ void common_neighbors(boost::container::flat_set<Vertex>& e_ngb,
+ std::vector<std::pair<Filtration_value, Vertex>>& e_ngb_later,
+ Vertex u, Vertex v, Filtration_value f_event){
+ // Using neighbors_dense here seems to hurt, even if we loop on the smaller of nu and nv.
+ Ngb_list const&nu = neighbors[u];
+ Ngb_list const&nv = neighbors[v];
+ auto ui = nu.begin();
+ auto ue = nu.end();
+ auto vi = nv.begin();
+ auto ve = nv.end();
+ assert(ui != ue && vi != ve);
+ while(ui != ue && vi != ve){
+ Vertex w = ui->first;
+ if(w < vi->first) { ++ui; continue; }
+ if(w > vi->first) { ++vi; continue; }
+ // nu and nv are closed, so we need to exclude e here.
+ if(w != u && w != v) {
+ Filtration_value f = std::max(ui->second, vi->second);
+ if(f > f_event)
+ e_ngb_later.emplace_back(f, w);
+ else
+ e_ngb.insert(e_ngb.end(), w);
}
+ ++ui; ++vi;
}
- // Clear the implicit "removed from graph" data structure
- current_backward = -1;
}
- // Returns list of neighbors of a particular vertex.
- template<bool closed>
- auto neighbours_row_index(IVertex rw_u) const
- {
- return Neighbours<closed>(this, rw_u);
+ // Test if the neighborhood of e is included in the closed neighborhood of c
+ template<class Ngb>
+ bool is_dominated_by(Ngb const& e_ngb, Vertex c, Filtration_value f){
+ // The best strategy probably depends on the distribution, how sparse / dense the adjacency matrix is,
+ // how (un)balanced the sizes of e_ngb and nc are.
+ // Some efficient operations on sets work best with bitsets, although the need for a map complicates things.
+#ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
+ for(auto v : e_ngb) {
+ // if(v==c)continue;
+ if(neighbors_dense(v,c) > f) return false;
+ }
+ return true;
+#else
+ auto&&nc = neighbors[c];
+ // if few neighbors, use dichotomy? Seems slower.
+ // I tried storing a copy of neighbors as a vector<absl::flat_hash_map> and using it for nc, but it was
+ // a bit slower here. It did help with neighbors[dominator].find(w) in the main function though,
+ // sometimes enough, sometimes not.
+ auto ci = nc.begin();
+ auto ce = nc.end();
+ auto eni = e_ngb.begin();
+ auto ene = e_ngb.end();
+ assert(eni != ene);
+ assert(ci != ce);
+ // if(*eni == c && ++eni == ene) return true;
+ for(;;){
+ Vertex ve = *eni;
+ Vertex vc = ci->first;
+ while(ve > vc) {
+ // try a gallop strategy (exponential search)? Seems slower
+ if(++ci == ce) return false;
+ vc = ci->first;
+ }
+ if(ve < vc) return false;
+ // ve == vc
+ if(ci->second > f) return false;
+ if(++eni == ene)return true;
+ // If we stored an open neighborhood of c (excluding c), we would need to test for c here and before the loop
+ // if(*eni == c && ++eni == ene)return true;
+ if(++ci == ce) return false;
+ }
+#endif
}
- // Returns the list of open neighbours of the edge :{u,v}.
- IVertex_vector open_common_neighbours_row_index(IVertex rw_u, IVertex rw_v) const
- {
- auto non_zero_indices_u = neighbours_row_index<false>(rw_u);
- auto non_zero_indices_v = neighbours_row_index<false>(rw_v);
- IVertex_vector common;
- std::set_intersection(non_zero_indices_u.begin(), non_zero_indices_u.end(), non_zero_indices_v.begin(),
- non_zero_indices_v.end(), std::back_inserter(common));
-
- return common;
- }
+ template<class FilteredEdgeRange, class Delay>
+ void process_edges(FilteredEdgeRange const& edges, Delay&& delay) {
+ {
+ Vertex maxi = 0, maxj = 0;
+ for(auto& fe : edges) {
+ Vertex i = std::get<0>(fe);
+ Vertex j = std::get<1>(fe);
+ if (i > maxi) maxi = i;
+ if (j > maxj) maxj = j;
+ }
+ num_vertices = std::max(maxi, maxj) + 1;
+ }
- // Insert a vertex in the data structure
- IVertex insert_vertex(Vertex_handle vertex) {
- auto n = row_to_vertex_.size();
- auto result = vertex_to_row_.emplace(vertex, n);
- // If it was not already inserted - Value won't be updated by emplace if it is already present
- if (result.second) {
- // Expand the matrix. The size of rows is irrelevant.
- sparse_row_adjacency_matrix_.emplace_back((std::numeric_limits<Eigen::Index>::max)());
- // Initializing the diagonal element of the adjency matrix corresponding to rw_b.
- sparse_row_adjacency_matrix_[n].insert(n) = -1; // not an edge
- // Must be done after reading its size()
- row_to_vertex_.push_back(vertex);
+ read_edges(edges);
+
+ boost::container::flat_set<Vertex> e_ngb;
+ e_ngb.reserve(num_vertices);
+ std::vector<std::pair<Filtration_value, Vertex>> e_ngb_later;
+ for(auto&e:edges) {
+ {
+ Vertex u = std::get<0>(e);
+ Vertex v = std::get<1>(e);
+ Filtration_value input_time = std::get<2>(e);
+ auto time = delay(input_time);
+ auto start_time = time;
+ e_ngb.clear();
+ e_ngb_later.clear();
+ common_neighbors(e_ngb, e_ngb_later, u, v, time);
+ // If we identify a good candidate (the first common neighbor) for being a dominator of e until infinity,
+ // we could check that a bit more cheaply. It does not seem to help though.
+ auto cmp1=[](auto const&a, auto const&b){return a.first > b.first;};
+ auto e_ngb_later_begin=e_ngb_later.begin();
+ auto e_ngb_later_end=e_ngb_later.end();
+ bool heapified = false;
+
+ bool dead = false;
+ while(true) {
+ Vertex dominator = -1;
+ // special case for size 1
+ // if(e_ngb.size()==1){dominator=*e_ngb.begin();}else
+ // It is tempting to test the dominators in increasing order of filtration value, which is likely to reduce
+ // the number of calls to is_dominated_by before finding a dominator, but sorting, even partially / lazily,
+ // is very expensive.
+ for(auto c : e_ngb){
+ if(is_dominated_by(e_ngb, c, time)){
+ dominator = c;
+ break;
+ }
+ }
+ if(dominator==-1) break;
+ // Push as long as dominator remains a dominator.
+ // Iterate on times where at least one neighbor appears.
+ for (bool still_dominated = true; still_dominated; ) {
+ if(e_ngb_later_begin == e_ngb_later_end) {
+ dead = true; goto end_move;
+ }
+ if(!heapified) {
+ // Eagerly sorting can be slow
+ std::make_heap(e_ngb_later_begin, e_ngb_later_end, cmp1);
+ heapified=true;
+ }
+ time = e_ngb_later_begin->first; // first place it may become critical
+ // Update the neighborhood for this new time, while checking if any of the new neighbors break domination.
+ while (e_ngb_later_begin != e_ngb_later_end && e_ngb_later_begin->first <= time) {
+ Vertex w = e_ngb_later_begin->second;
+#ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
+ if (neighbors_dense(dominator,w) > e_ngb_later_begin->first)
+ still_dominated = false;
+#else
+ auto& ngb_dom = neighbors[dominator];
+ auto wit = ngb_dom.find(w); // neighborhood may be open or closed, it does not matter
+ if (wit == ngb_dom.end() || wit->second > e_ngb_later_begin->first)
+ still_dominated = false;
+#endif
+ e_ngb.insert(w);
+ std::pop_heap(e_ngb_later_begin, e_ngb_later_end--, cmp1);
+ }
+ } // this doesn't seem to help that much...
+ }
+end_move:
+ if(dead) {
+ remove_neighbor(u, v);
+ } else if(start_time != time) {
+ delay_neighbor(u, v, time);
+ res.emplace_back(u, v, time);
+ } else {
+ res.emplace_back(u, v, input_time);
+ }
+ }
}
- return result.first->second;
}
- // Insert an edge in the data structure
- // @exception std::invalid_argument In debug mode, if u == v
- IEdge insert_new_edge(Vertex_handle u, Vertex_handle v, Edge_index idx)
- {
- GUDHI_CHECK((u != v), std::invalid_argument("Flag_complex_edge_collapser::insert_new_edge with u == v"));
- // The edge must not be added before, it should be a new edge.
- IVertex rw_u = insert_vertex(u);
- IVertex rw_v = insert_vertex(v);
-#ifdef DEBUG_TRACES
- std::cout << "Inserting the edge " << u <<", " << v << std::endl;
-#endif // DEBUG_TRACES
- sparse_row_adjacency_matrix_[rw_u].insert(rw_v) = idx;
- sparse_row_adjacency_matrix_[rw_v].insert(rw_u) = idx;
- return std::minmax(rw_u, rw_v);
+ std::vector<Filtered_edge> output() {
+ return std::move(res);
}
- public:
- /** \brief Flag_complex_edge_collapser constructor from a range of filtered edges.
- *
- * @param[in] edges Range of Filtered edges range.There is no need the range to be sorted, as it will be performed in
- * `Flag_complex_edge_collapser::process_edges`.
- *
- * \tparam FilteredEdgeRange must be a range for which std::begin and std::end return iterators on a
- * `Flag_complex_edge_collapser::Filtered_edge`.
- */
- template<typename FilteredEdgeRange>
- Flag_complex_edge_collapser(const FilteredEdgeRange& edges)
- : f_edge_vector_(std::begin(edges), std::end(edges)) { }
+};
- /** \brief Performs edge collapse in a increasing sequence of the filtration value.
- *
- * \tparam filtered_edge_output is a functor that is called on the output edges, in non-decreasing order of
- * filtration, as filtered_edge_output(u, v, f) where u and v are Vertex_handle representing the extremities of the
- * edge, and f is its new Filtration_value.
- */
- template<typename FilteredEdgeOutput>
- void process_edges(FilteredEdgeOutput filtered_edge_output) {
- // Sort edges
- auto sort_by_filtration = [](const Filtered_edge& edge_a, const Filtered_edge& edge_b) -> bool
- {
- return (std::get<2>(edge_a) < std::get<2>(edge_b));
- };
+template<class R> R to_range(R&& r) { return std::move(r); }
+template<class R, class T> R to_range(T&& t) { R r; r.insert(r.end(), t.begin(), t.end()); return r; }
+template<class FilteredEdgeRange, class Delay>
+auto flag_complex_collapse_edges(FilteredEdgeRange&& edges, Delay&&delay) {
+ // Would it help to label the points according to some spatial sorting?
+ auto first_edge_itr = std::begin(edges);
+ using Vertex = std::decay_t<decltype(std::get<0>(*first_edge_itr))>;
+ using Filtration_value = std::decay_t<decltype(std::get<2>(*first_edge_itr))>;
+ using Edge_collapser = Flag_complex_edge_collapser<Vertex, Filtration_value>;
+ if (first_edge_itr != std::end(edges)) {
+ auto edges2 = to_range<std::vector<typename Edge_collapser::Filtered_edge>>(std::forward<FilteredEdgeRange>(edges));
#ifdef GUDHI_USE_TBB
- tbb::parallel_sort(f_edge_vector_.begin(), f_edge_vector_.end(), sort_by_filtration);
+ // I think this sorting is always negligible compared to the collapse, but parallelizing it shouldn't hurt.
+ tbb::parallel_sort(edges2.begin(), edges2.end(),
+ [](auto const&a, auto const&b){return std::get<2>(a)>std::get<2>(b);});
#else
- std::sort(f_edge_vector_.begin(), f_edge_vector_.end(), sort_by_filtration);
+ std::sort(edges2.begin(), edges2.end(), [](auto const&a, auto const&b){return std::get<2>(a)>std::get<2>(b);});
#endif
-
- for (Edge_index endIdx = 0; endIdx < f_edge_vector_.size(); endIdx++) {
- Filtered_edge fec = f_edge_vector_[endIdx];
- Vertex_handle u = std::get<0>(fec);
- Vertex_handle v = std::get<1>(fec);
- Filtration_value filt = std::get<2>(fec);
-
- // Inserts the edge in the sparse matrix to update the graph (G_i)
- IEdge ie = insert_new_edge(u, v, endIdx);
-
- iedge_to_index_map_.emplace(ie, endIdx);
- critical_edge_indicator_.push_back(false);
-
- if (!edge_is_dominated(u, v)) {
- critical_edge_indicator_[endIdx] = true;
- filtered_edge_output(u, v, filt);
- if (endIdx > 1)
- set_edge_critical(endIdx, filt, filtered_edge_output);
- }
- }
+ Edge_collapser edge_collapser;
+ edge_collapser.process_edges(edges2, std::forward<Delay>(delay));
+ return edge_collapser.output();
}
-
-};
+ return std::vector<typename Edge_collapser::Filtered_edge>();
+}
/** \brief Implicitly constructs a flag complex from edges as an input, collapses edges while preserving the persistent
- * homology and returns the remaining edges as a range.
+ * homology and returns the remaining edges as a range. The filtration value of vertices is irrelevant to this function.
*
- * \param[in] edges Range of Filtered edges.There is no need the range to be sorted, as it will be performed.
+ * \param[in] edges Range of Filtered edges. There is no need for the range to be sorted, as it will be done internally.
*
- * \tparam FilteredEdgeRange furnishes `std::begin` and `std::end` methods and returns an iterator on a
- * FilteredEdge of type `std::tuple<Vertex_handle, Vertex_handle, Filtration_value>` where `Vertex_handle` is the type
- * of a vertex index and `Filtration_value` is the type of an edge filtration value.
+ * \tparam FilteredEdgeRange Range of `std::tuple<Vertex_handle, Vertex_handle, Filtration_value>`
+ * where `Vertex_handle` is the type of a vertex index.
*
* \return Remaining edges after collapse as a range of
* `std::tuple<Vertex_handle, Vertex_handle, Filtration_value>`.
- *
+ *
* \ingroup edge_collapse
- *
+ *
+ * \note
+ * Advanced: Defining the macro GUDHI_COLLAPSE_USE_DENSE_ARRAY tells gudhi to allocate a square table of size the
+ * maximum vertex index. This usually speeds up the computation for dense graphs. However, for sparse graphs, the memory
+ * use may be problematic and initializing this large table may be slow.
*/
template<class FilteredEdgeRange> auto flag_complex_collapse_edges(const FilteredEdgeRange& edges) {
- auto first_edge_itr = std::begin(edges);
- using Vertex_handle = std::decay_t<decltype(std::get<0>(*first_edge_itr))>;
- using Filtration_value = std::decay_t<decltype(std::get<2>(*first_edge_itr))>;
- using Edge_collapser = Flag_complex_edge_collapser<Vertex_handle, Filtration_value>;
- std::vector<typename Edge_collapser::Filtered_edge> remaining_edges;
- if (first_edge_itr != std::end(edges)) {
- Edge_collapser edge_collapser(edges);
- edge_collapser.process_edges(
- [&remaining_edges](Vertex_handle u, Vertex_handle v, Filtration_value filtration) {
- // insert the edge
- remaining_edges.emplace_back(u, v, filtration);
- });
- }
- return remaining_edges;
+ return flag_complex_collapse_edges(edges, [](auto const&d){return d;});
}
} // namespace collapse