summaryrefslogtreecommitdiff
path: root/src/Contraction/example/Garland_heckbert/Error_quadric.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Contraction/example/Garland_heckbert/Error_quadric.h')
-rw-r--r--src/Contraction/example/Garland_heckbert/Error_quadric.h169
1 files changed, 169 insertions, 0 deletions
diff --git a/src/Contraction/example/Garland_heckbert/Error_quadric.h b/src/Contraction/example/Garland_heckbert/Error_quadric.h
new file mode 100644
index 00000000..49250d7a
--- /dev/null
+++ b/src/Contraction/example/Garland_heckbert/Error_quadric.h
@@ -0,0 +1,169 @@
+/* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
+ * See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
+ * Author(s): David Salinas
+ *
+ * Copyright (C) 2014 Inria
+ *
+ * Modification(s):
+ * - YYYY/MM Author: Description of the modification
+ */
+
+#ifndef GARLAND_HECKBERT_ERROR_QUADRIC_H_
+#define GARLAND_HECKBERT_ERROR_QUADRIC_H_
+
+#include <boost/optional/optional.hpp>
+
+#include <vector>
+#include <utility>
+
+template <typename Point> class Error_quadric {
+ private:
+ double coeff[10];
+
+ public:
+ Error_quadric() {
+ clear();
+ }
+
+ /**
+ * Quadric corresponding to the L2 distance to the plane.
+ *
+ * According to the notation of Garland Heckbert, they
+ * denote a quadric symetric matrix as :
+ * Q = [ q11 q12 q13 q14]
+ * [ q12 q22 q23 q24]
+ * [ q13 q23 q33 q34]
+ * [ q14 q24 q34 q44]
+ *
+ * which is represented by a vector with 10 elts that
+ * are denoted ci for clarity with :
+ * Q = [ c0 c1 c2 c3 ]
+ * [ c1 c4 c5 c6 ]
+ * [ c2 c5 c7 c8 ]
+ * [ c3 c6 c8 c9 ]
+ *
+ * The constructor return the quadrics that represents
+ * the squared distance to the plane defined by triangle p0,p1,p2
+ * times the area of triangle p0,p1,p2.
+ */
+ Error_quadric(const Point & p0, const Point & p1, const Point & p2) {
+ Point normal(unit_normal(p0, p1, p2));
+ double a = normal[0];
+ double b = normal[1];
+ double c = normal[2];
+ double d = -a * p0[0] - b * p0[1] - c * p0[2];
+ coeff[0] = a*a;
+ coeff[1] = a*b;
+ coeff[2] = a*c;
+ coeff[3] = a*d;
+ coeff[4] = b*b;
+ coeff[5] = b*c;
+ coeff[6] = b*d;
+ coeff[7] = c*c;
+ coeff[8] = c*d;
+ coeff[9] = d*d;
+
+ double area_p0p1p2 = std::sqrt(squared_area(p0, p1, p2));
+ for (auto& x : coeff)
+ x *= area_p0p1p2;
+ }
+
+ inline double squared_area(const Point& p0, const Point& p1, const Point& p2) {
+ // if (x1,x2,x3) = p1-p0 and (y1,y2,y3) = p2-p0
+ // then the squared area is = (u^2+v^2+w^2)/4
+ // with: u = x2 * y3 - x3 * y2;
+ // v = x3 * y1 - x1 * y3;
+ // w = x1 * y2 - x2 * y1;
+ Point p0p1(p1 - p0);
+ Point p0p2(p2 - p0);
+ double A = p0p1[1] * p0p2[2] - p0p1[2] * p0p2[1];
+ double B = p0p1[2] * p0p2[0] - p0p1[0] * p0p2[2];
+ double C = p0p1[0] * p0p2[1] - p0p1[1] * p0p2[0];
+ return 1. / 4. * (A * A + B * B + C * C);
+ }
+
+ void clear() {
+ for (auto& x : coeff)
+ x = 0;
+ }
+
+ Error_quadric& operator+=(const Error_quadric& other) {
+ if (this != &other) {
+ for (int i = 0; i < 10; ++i)
+ coeff[i] += other.coeff[i];
+ }
+ return *this;
+ }
+
+ /**
+ * @return The quadric quost defined by the scalar product v^T Q v where Q is the quadratic form of Garland/Heckbert
+ */
+ inline double cost(const Point& point) const {
+ double cost =
+ coeff[0] * point.x() * point.x() + coeff[4] * point.y() * point.y() + coeff[7] * point.z() * point.z()
+ + 2 * (coeff[1] * point.x() * point.y() + coeff[5] * point.y() * point.z() + coeff[2] * point.z() * point.x())
+ + 2 * (coeff[3] * point.x() + coeff[6] * point.y() + coeff[8] * point.z())
+ + coeff[9];
+ if (cost < 0) {
+ return 0;
+ } else {
+ return cost;
+ }
+ }
+
+ inline double grad_determinant() const {
+ return
+ coeff[0] * coeff[4] * coeff[7]
+ - coeff[0] * coeff[5] * coeff[5]
+ - coeff[1] * coeff[1] * coeff[7]
+ + 2 * coeff[1] * coeff[5] * coeff[2]
+ - coeff[4] * coeff[2] * coeff[2];
+ }
+
+ /**
+ * Return the point such that it minimizes the gradient of the quadric.
+ * Det must be passed with the determinant value of the gradient (should be non zero).
+ */
+ inline Point solve_linear_gradient(double det) const {
+ return Point({
+ (-coeff[1] * coeff[5] * coeff[8] + coeff[1] * coeff[7] * coeff[6] + coeff[2] * coeff[8] * coeff[4] -
+ coeff[2] * coeff[5] * coeff[6] - coeff[3] * coeff[4] * coeff[7] + coeff[3] * coeff[5] * coeff[5])
+ / det,
+ (coeff[0] * coeff[5] * coeff[8] - coeff[0] * coeff[7] * coeff[6] - coeff[5] * coeff[2] * coeff[3] -
+ coeff[1] * coeff[2] * coeff[8] + coeff[6] * coeff[2] * coeff[2] + coeff[1] * coeff[3] * coeff[7])
+ / det,
+ (-coeff[8] * coeff[0] * coeff[4] + coeff[8] * coeff[1] * coeff[1] + coeff[2] * coeff[3] * coeff[4] +
+ coeff[5] * coeff[0] * coeff[6] - coeff[5] * coeff[1] * coeff[3] - coeff[1] * coeff[2] * coeff[6])
+ / det
+ });
+ }
+
+ /**
+ * returns the point that minimizes the quadric.
+ * It inverses the quadric if its determinant is higher that a given threshold .
+ * If the determinant is lower than this value the returned value is uninitialized.
+ */
+ boost::optional<Point> min_cost(double scale = 1) const {
+ // const double min_determinant = 1e-4 * scale*scale;
+ const double min_determinant = 1e-5;
+ boost::optional<Point> pt_res;
+ double det = grad_determinant();
+ if (std::abs(det) > min_determinant)
+ pt_res = solve_linear_gradient(det);
+ return pt_res;
+ }
+
+ friend std::ostream& operator<<(std::ostream& stream, const Error_quadric& quadric) {
+ stream << "\n[ " << quadric.coeff[0] << "," << quadric.coeff[1] << "," << quadric.coeff[2] << "," <<
+ quadric.coeff[3] << ";\n";
+ stream << " " << quadric.coeff[1] << "," << quadric.coeff[4] << "," << quadric.coeff[5] << "," <<
+ quadric.coeff[6] << ";\n";
+ stream << " " << quadric.coeff[2] << "," << quadric.coeff[5] << "," << quadric.coeff[7] << "," <<
+ quadric.coeff[8] << ";\n";
+ stream << " " << quadric.coeff[3] << "," << quadric.coeff[6] << "," << quadric.coeff[8] << "," <<
+ quadric.coeff[9] << "]";
+ return stream;
+ }
+};
+
+#endif // GARLAND_HECKBERT_ERROR_QUADRIC_H_