summaryrefslogtreecommitdiff
path: root/src/Coxeter_triangulation/concept/IntersectionOracle.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Coxeter_triangulation/concept/IntersectionOracle.h')
-rw-r--r--src/Coxeter_triangulation/concept/IntersectionOracle.h104
1 files changed, 104 insertions, 0 deletions
diff --git a/src/Coxeter_triangulation/concept/IntersectionOracle.h b/src/Coxeter_triangulation/concept/IntersectionOracle.h
new file mode 100644
index 00000000..e4e397fa
--- /dev/null
+++ b/src/Coxeter_triangulation/concept/IntersectionOracle.h
@@ -0,0 +1,104 @@
+/* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
+ * See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
+ * Author(s): Siargey Kachanovich
+ *
+ * Copyright (C) 2019 Inria
+ *
+ * Modification(s):
+ * - YYYY/MM Author: Description of the modification
+ */
+
+#ifndef CONCEPT_COXETER_TRIANGULATION_INTERSECTION_ORACLE_H_
+#define CONCEPT_COXETER_TRIANGULATION_INTERSECTION_ORACLE_H_
+
+#include <cstdlib> // for std::size_t
+
+#include <Eigen/Dense>
+
+namespace Gudhi {
+
+namespace coxeter_triangulation {
+
+/** \brief The concept IntersectionOracle describes the requirements
+ * for a type to implement an intersection oracle class used for example in Manifold_tracing.
+ *
+ */
+struct IntersectionOracle {
+ /** \brief Returns the domain (ambient) dimension of the underlying manifold. */
+ std::size_t amb_d() const;
+
+ /** \brief Returns the codomain dimension of the underlying manifold. */
+ std::size_t cod_d() const;
+
+ /** \brief Intersection query with the relative interior of the manifold.
+ *
+ * \details The returned structure Query_result contains the boolean value
+ * that is true only if the intersection point of the query simplex and
+ * the relative interior of the manifold exists, the intersection point
+ * and the face of the query simplex that contains
+ * the intersection point.
+ *
+ * \tparam Simplex_handle The class of the query simplex.
+ * Needs to be a model of the concept SimplexInCoxeterTriangulation.
+ * \tparam Triangulation The class of the triangulation.
+ * Needs to be a model of the concept TriangulationForManifoldTracing.
+ *
+ * @param[in] simplex The query simplex. The dimension of the simplex
+ * should be the same as the codimension of the manifold
+ * (the codomain dimension of the function).
+ * @param[in] triangulation The ambient triangulation. The dimension of
+ * the triangulation should be the same as the ambient dimension of the manifold
+ * (the domain dimension of the function).
+ */
+ template <class Simplex_handle, class Triangulation>
+ Query_result<Simplex_handle> intersects(const Simplex_handle& simplex, const Triangulation& triangulation) const;
+
+ /** \brief Intersection query with the boundary of the manifold.
+ *
+ * \details The returned structure Query_result contains the boolean value
+ * that is true only if the intersection point of the query simplex and
+ * the boundary of the manifold exists, the intersection point
+ * and the face of the query simplex that contains
+ * the intersection point.
+ *
+ * \tparam Simplex_handle The class of the query simplex.
+ * Needs to be a model of the concept SimplexInCoxeterTriangulation.
+ * \tparam Triangulation The class of the triangulation.
+ * Needs to be a model of the concept TriangulationForManifoldTracing.
+ *
+ * @param[in] simplex The query simplex. The dimension of the simplex
+ * should be the same as the codimension of the boundary of the manifold
+ * (the codomain dimension of the function + 1).
+ * @param[in] triangulation The ambient triangulation. The dimension of
+ * the triangulation should be the same as the ambient dimension of the manifold
+ * (the domain dimension of the function).
+ */
+ template <class Simplex_handle, class Triangulation>
+ Query_result<Simplex_handle> intersects_boundary(const Simplex_handle& simplex,
+ const Triangulation& triangulation) const;
+
+ /** \brief Returns true if the input point lies inside the piecewise-linear
+ * domain induced by the given ambient triangulation that defines the relative
+ * interior of the piecewise-linear approximation of the manifold.
+ *
+ * @param p The input point. Needs to have the same dimension as the ambient
+ * dimension of the manifold (the domain dimension of the function).
+ * @param triangulation The ambient triangulation. Needs to have the same
+ * dimension as the ambient dimension of the manifold
+ * (the domain dimension of the function).
+ */
+ template <class Triangulation>
+ bool lies_in_domain(const Eigen::VectorXd& p, const Triangulation& triangulation) const {
+ Eigen::VectorXd pl_p = make_pl_approximation(domain_fun_, triangulation)(p);
+ return pl_p(0) < 0;
+ }
+
+ /** \brief Returns the function that defines the interior of the manifold */
+ const Function_& function() const;
+};
+
+} // namespace coxeter_triangulation
+
+} // namespace Gudhi
+
+#endif