summaryrefslogtreecommitdiff
path: root/src/Coxeter_triangulation/example/manifold_tracing_custom_function.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/Coxeter_triangulation/example/manifold_tracing_custom_function.cpp')
-rw-r--r--src/Coxeter_triangulation/example/manifold_tracing_custom_function.cpp87
1 files changed, 87 insertions, 0 deletions
diff --git a/src/Coxeter_triangulation/example/manifold_tracing_custom_function.cpp b/src/Coxeter_triangulation/example/manifold_tracing_custom_function.cpp
new file mode 100644
index 00000000..fe2051bb
--- /dev/null
+++ b/src/Coxeter_triangulation/example/manifold_tracing_custom_function.cpp
@@ -0,0 +1,87 @@
+#include <iostream>
+
+#include <gudhi/Coxeter_triangulation.h>
+#include <gudhi/Functions/Function_Sm_in_Rd.h>
+#include <gudhi/Implicit_manifold_intersection_oracle.h>
+#include <gudhi/Manifold_tracing.h>
+#include <gudhi/Coxeter_triangulation/Cell_complex/Cell_complex.h>
+#include <gudhi/Functions/Linear_transformation.h>
+
+#include <gudhi/IO/build_mesh_from_cell_complex.h>
+#include <gudhi/IO/output_meshes_to_medit.h>
+
+using namespace Gudhi::coxeter_triangulation;
+
+/* A definition of a function that defines a 2d surface embedded in R^4, but that normally
+ * lives on a complex projective plane.
+ * In terms of harmonic coordinates [x:y:z] of points on the complex projective plane,
+ * the equation of the manifold is x^3*y + y^3*z + z^3*x = 0.
+ * The embedding consists of restricting the manifold to the affine subspace z = 1.
+ */
+struct Function_surface_on_CP2_in_R4 {
+ Eigen::VectorXd operator()(const Eigen::VectorXd& p) const {
+ // The real and imaginary parts of the variables x and y
+ double xr = p(0), xi = p(1), yr = p(2), yi = p(3);
+ Eigen::VectorXd result(cod_d());
+
+ // Squares and cubes of real and imaginary parts used in the computations
+ double xr2 = xr * xr, xi2 = xi * xi, yr2 = yr * yr, yi2 = yi * yi, xr3 = xr2 * xr, xi3 = xi2 * xi, yr3 = yr2 * yr,
+ yi3 = yi2 * yi;
+
+ // The first coordinate of the output is Re(x^3*y + y^3 + x)
+ result(0) = xr3 * yr - 3 * xr * xi2 * yr - 3 * xr2 * xi * yi + xi3 * yi + yr3 - 3 * yr * yi2 + xr;
+ // The second coordinate of the output is Im(x^3*y + y^3 + x)
+ result(1) = 3 * xr2 * xi * yr + xr3 * yi - 3 * xr * xi2 * yi - xi3 * yr + 3 * yr2 * yi - yi3 + xi;
+ return result;
+ }
+
+ std::size_t amb_d() const { return 4; };
+ std::size_t cod_d() const { return 2; };
+
+ Eigen::VectorXd seed() const {
+ Eigen::VectorXd result = Eigen::VectorXd::Zero(4);
+ return result;
+ }
+
+ Function_surface_on_CP2_in_R4() {}
+};
+
+int main(int argc, char** argv) {
+ // The function for the (non-compact) manifold
+ Function_surface_on_CP2_in_R4 fun;
+
+ // Seed of the function
+ Eigen::VectorXd seed = fun.seed();
+
+ // Creating the function that defines the boundary of a compact region on the manifold
+ double radius = 3.0;
+ Function_Sm_in_Rd fun_sph(radius, 3, seed);
+
+ // Defining the intersection oracle
+ auto oracle = make_oracle(fun, fun_sph);
+
+ // Define a Coxeter triangulation scaled by a factor lambda.
+ // The triangulation is translated by a random vector to avoid violating the genericity hypothesis.
+ double lambda = 0.2;
+ Coxeter_triangulation<> cox_tr(oracle.amb_d());
+ cox_tr.change_offset(Eigen::VectorXd::Random(oracle.amb_d()));
+ cox_tr.change_matrix(lambda * cox_tr.matrix());
+
+ // Manifold tracing algorithm
+ using MT = Manifold_tracing<Coxeter_triangulation<> >;
+ using Out_simplex_map = typename MT::Out_simplex_map;
+ std::vector<Eigen::VectorXd> seed_points(1, seed);
+ Out_simplex_map interior_simplex_map, boundary_simplex_map;
+ manifold_tracing_algorithm(seed_points, cox_tr, oracle, interior_simplex_map, boundary_simplex_map);
+
+ // Constructing the cell complex
+ std::size_t intr_d = oracle.amb_d() - oracle.cod_d();
+ Cell_complex<Out_simplex_map> cell_complex(intr_d);
+ cell_complex.construct_complex(interior_simplex_map, boundary_simplex_map);
+
+ // Output the cell complex to a file readable by medit
+ output_meshes_to_medit(3, "manifold_on_CP2_with_boundary",
+ build_mesh_from_cell_complex(cell_complex, Configuration(true, true, true, 1, 5, 3),
+ Configuration(true, true, true, 2, 13, 14)));
+ return 0;
+}