summaryrefslogtreecommitdiff
path: root/src/Coxeter_triangulation/include/gudhi/Implicit_manifold_intersection_oracle.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Coxeter_triangulation/include/gudhi/Implicit_manifold_intersection_oracle.h')
-rw-r--r--src/Coxeter_triangulation/include/gudhi/Implicit_manifold_intersection_oracle.h261
1 files changed, 261 insertions, 0 deletions
diff --git a/src/Coxeter_triangulation/include/gudhi/Implicit_manifold_intersection_oracle.h b/src/Coxeter_triangulation/include/gudhi/Implicit_manifold_intersection_oracle.h
new file mode 100644
index 00000000..277f8b6c
--- /dev/null
+++ b/src/Coxeter_triangulation/include/gudhi/Implicit_manifold_intersection_oracle.h
@@ -0,0 +1,261 @@
+/* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
+ * See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
+ * Author(s): Siargey Kachanovich
+ *
+ * Copyright (C) 2019 Inria
+ *
+ * Modification(s):
+ * - YYYY/MM Author: Description of the modification
+ */
+
+#ifndef IMPLICIT_MANIFOLD_INTERSECTION_ORACLE_H_
+#define IMPLICIT_MANIFOLD_INTERSECTION_ORACLE_H_
+
+#include <Eigen/Dense>
+
+#include <gudhi/Permutahedral_representation/face_from_indices.h>
+#include <gudhi/Functions/Constant_function.h>
+#include <gudhi/Functions/PL_approximation.h>
+#include <gudhi/Coxeter_triangulation/Query_result.h>
+#include <gudhi/Debug_utils.h> // for GUDHI_CHECK
+
+#include <vector>
+#include <limits> // for std::numeric_limits<>
+#include <cmath> // for std::fabs
+
+namespace Gudhi {
+
+namespace coxeter_triangulation {
+
+/** \class Implicit_manifold_intersection_oracle
+ * \brief An oracle that supports the intersection query on an implicit manifold.
+ *
+ * \tparam Function_ The function template parameter. Should be a model of
+ * the concept FunctionForImplicitManifold.
+ * \tparam Domain_function_ The domain function template parameter. Should be a model of
+ * the concept FunctionForImplicitManifold.
+ *
+ * \ingroup coxeter_triangulation
+ */
+template <class Function_, class Domain_function_ = Constant_function>
+class Implicit_manifold_intersection_oracle {
+ /* Computes the affine coordinates of the intersection point of the implicit manifold
+ * and the affine hull of the simplex. */
+ template <class Simplex_handle, class Triangulation>
+ Eigen::VectorXd compute_lambda(const Simplex_handle& simplex, const Triangulation& triangulation) const {
+ std::size_t cod_d = this->cod_d();
+ Eigen::MatrixXd matrix(cod_d + 1, cod_d + 1);
+ for (std::size_t i = 0; i < cod_d + 1; ++i) matrix(0, i) = 1;
+ std::size_t j = 0;
+ for (auto v : simplex.vertex_range()) {
+ Eigen::VectorXd v_coords = fun_(triangulation.cartesian_coordinates(v));
+ for (std::size_t i = 1; i < cod_d + 1; ++i) matrix(i, j) = v_coords(i - 1);
+ j++;
+ }
+ Eigen::VectorXd z(cod_d + 1);
+ z(0) = 1;
+ for (std::size_t i = 1; i < cod_d + 1; ++i) z(i) = 0;
+ Eigen::VectorXd lambda = matrix.colPivHouseholderQr().solve(z);
+ if (!z.isApprox(matrix*lambda)) {
+ // NaN non valid results
+ for (std::size_t i = 0; i < (std::size_t)lambda.size(); ++i) lambda(i) =
+ std::numeric_limits<double>::quiet_NaN();
+ }
+ return lambda;
+ }
+
+ /* Computes the affine coordinates of the intersection point of the boundary
+ * of the implicit manifold and the affine hull of the simplex. */
+ template <class Simplex_handle, class Triangulation>
+ Eigen::VectorXd compute_boundary_lambda(const Simplex_handle& simplex, const Triangulation& triangulation) const {
+ std::size_t cod_d = this->cod_d();
+ Eigen::MatrixXd matrix(cod_d + 2, cod_d + 2);
+ for (std::size_t i = 0; i < cod_d + 2; ++i) matrix(0, i) = 1;
+ std::size_t j = 0;
+ for (auto v : simplex.vertex_range()) {
+ Eigen::VectorXd v_coords = fun_(triangulation.cartesian_coordinates(v));
+ for (std::size_t i = 1; i < cod_d + 1; ++i) matrix(i, j) = v_coords(i - 1);
+ Eigen::VectorXd bv_coords = domain_fun_(triangulation.cartesian_coordinates(v));
+ matrix(cod_d + 1, j) = bv_coords(0);
+ j++;
+ }
+ Eigen::VectorXd z(cod_d + 2);
+ z(0) = 1;
+ for (std::size_t i = 1; i < cod_d + 2; ++i) z(i) = 0;
+ Eigen::VectorXd lambda = matrix.colPivHouseholderQr().solve(z);
+ if (!z.isApprox(matrix*lambda)) {
+ // NaN non valid results
+ for (std::size_t i = 0; i < (std::size_t)lambda.size(); ++i) lambda(i) =
+ std::numeric_limits<double>::quiet_NaN();
+ }
+ return lambda;
+ }
+
+ /* Computes the intersection result for a given simplex in a triangulation. */
+ template <class Simplex_handle, class Triangulation>
+ Query_result<Simplex_handle> intersection_result(const Eigen::VectorXd& lambda, const Simplex_handle& simplex,
+ const Triangulation& triangulation) const {
+ using QR = Query_result<Simplex_handle>;
+ std::size_t amb_d = triangulation.dimension();
+ std::size_t cod_d = simplex.dimension();
+ for (std::size_t i = 0; i < (std::size_t)lambda.size(); ++i) {
+ if (std::isnan(lambda(i))) return QR({Eigen::VectorXd(), false});
+ GUDHI_CHECK((std::fabs(lambda(i) - 1.) > std::numeric_limits<double>::epsilon() &&
+ std::fabs(lambda(i) - 0.) > std::numeric_limits<double>::epsilon()),
+ std::invalid_argument("A vertex of the triangulation lies exactly on the manifold"));
+ if (lambda(i) < 0. || lambda(i) > 1.) return QR({Eigen::VectorXd(), false});
+ }
+ Eigen::MatrixXd vertex_matrix(cod_d + 1, amb_d);
+ auto v_range = simplex.vertex_range();
+ auto v_it = v_range.begin();
+ for (std::size_t i = 0; i < cod_d + 1 && v_it != v_range.end(); ++v_it, ++i) {
+ Eigen::VectorXd v_coords = triangulation.cartesian_coordinates(*v_it);
+ for (std::size_t j = 0; j < amb_d; ++j) vertex_matrix(i, j) = v_coords(j);
+ }
+ Eigen::VectorXd intersection = lambda.transpose() * vertex_matrix;
+ return QR({intersection, true});
+ }
+
+ public:
+ /** \brief Ambient dimension of the implicit manifold. */
+ std::size_t amb_d() const { return fun_.amb_d(); }
+
+ /** \brief Codimension of the implicit manifold. */
+ std::size_t cod_d() const { return fun_.cod_d(); }
+
+ /** \brief The seed point of the implicit manifold. */
+ Eigen::VectorXd seed() const { return fun_.seed(); }
+
+ /** \brief Intersection query with the relative interior of the manifold.
+ *
+ * \details The returned structure Query_result contains the boolean value
+ * that is true only if the intersection point of the query simplex and
+ * the relative interior of the manifold exists, the intersection point
+ * and the face of the query simplex that contains
+ * the intersection point.
+ *
+ * \tparam Simplex_handle The class of the query simplex.
+ * Needs to be a model of the concept SimplexInCoxeterTriangulation.
+ * \tparam Triangulation The class of the triangulation.
+ * Needs to be a model of the concept TriangulationForManifoldTracing.
+ *
+ * @param[in] simplex The query simplex. The dimension of the simplex
+ * should be the same as the codimension of the manifold
+ * (the codomain dimension of the function).
+ * @param[in] triangulation The ambient triangulation. The dimension of
+ * the triangulation should be the same as the ambient dimension of the manifold
+ * (the domain dimension of the function).
+ */
+ template <class Simplex_handle, class Triangulation>
+ Query_result<Simplex_handle> intersects(const Simplex_handle& simplex, const Triangulation& triangulation) const {
+ Eigen::VectorXd lambda = compute_lambda(simplex, triangulation);
+ return intersection_result(lambda, simplex, triangulation);
+ }
+
+ /** \brief Intersection query with the boundary of the manifold.
+ *
+ * \details The returned structure Query_result contains the boolean value
+ * that is true only if the intersection point of the query simplex and
+ * the boundary of the manifold exists, the intersection point
+ * and the face of the query simplex that contains
+ * the intersection point.
+ *
+ * \tparam Simplex_handle The class of the query simplex.
+ * Needs to be a model of the concept SimplexInCoxeterTriangulation.
+ * \tparam Triangulation The class of the triangulation.
+ * Needs to be a model of the concept TriangulationForManifoldTracing.
+ *
+ * @param[in] simplex The query simplex. The dimension of the simplex
+ * should be the same as the codimension of the boundary of the manifold
+ * (the codomain dimension of the function + 1).
+ * @param[in] triangulation The ambient triangulation. The dimension of
+ * the triangulation should be the same as the ambient dimension of the manifold
+ * (the domain dimension of the function).
+ */
+ template <class Simplex_handle, class Triangulation>
+ Query_result<Simplex_handle> intersects_boundary(const Simplex_handle& simplex,
+ const Triangulation& triangulation) const {
+ //std::cout << "intersects_boundary" << std::endl;
+ Eigen::VectorXd lambda = compute_boundary_lambda(simplex, triangulation);
+ return intersection_result(lambda, simplex, triangulation);
+ }
+
+ /** \brief Returns true if the input point lies inside the piecewise-linear
+ * domain induced by the given ambient triangulation that defines the relative
+ * interior of the piecewise-linear approximation of the manifold.
+ *
+ * @param p The input point. Needs to have the same dimension as the ambient
+ * dimension of the manifold (the domain dimension of the function).
+ * @param triangulation The ambient triangulation. Needs to have the same
+ * dimension as the ambient dimension of the manifold
+ * (the domain dimension of the function).
+ */
+ template <class Triangulation>
+ bool lies_in_domain(const Eigen::VectorXd& p, const Triangulation& triangulation) const {
+ Eigen::VectorXd pl_p = make_pl_approximation(domain_fun_, triangulation)(p);
+ return pl_p(0) < 0;
+ }
+
+ /** \brief Returns the function that defines the interior of the manifold */
+ const Function_& function() const { return fun_; }
+
+ /** \brief Constructs an intersection oracle for an implicit manifold potentially
+ * with boundary from given function and domain.
+ *
+ * @param function The input function that represents the implicit manifold
+ * before the restriction with the domain.
+ * @param domain_function The input domain function that can be used to define an implicit
+ * manifold with boundary.
+ */
+ Implicit_manifold_intersection_oracle(const Function_& function, const Domain_function_& domain_function)
+ : fun_(function), domain_fun_(domain_function) {}
+
+ /** \brief Constructs an intersection oracle for an implicit manifold
+ * without boundary from a given function.
+ *
+ * \details To use this constructor, the template Domain_function_ needs to be left
+ * at its default value (Gudhi::coxeter_triangulation::Constant_function).
+ *
+ * @param function The input function that represents the implicit manifold
+ * without boundary.
+ */
+ Implicit_manifold_intersection_oracle(const Function_& function)
+ : fun_(function), domain_fun_(function.amb_d(), 1, Eigen::VectorXd::Constant(1, -1)) {}
+
+ private:
+ Function_ fun_;
+ Domain_function_ domain_fun_;
+};
+
+/** \brief Static constructor of an intersection oracle from a function with a domain.
+ *
+ * @param function The input function that represents the implicit manifold
+ * before the restriction with the domain.
+ * @param domain_function The input domain function that can be used to define an implicit
+ * manifold with boundary.
+ *
+ * \ingroup coxeter_triangulation
+ */
+template <class Function_, class Domain_function_>
+Implicit_manifold_intersection_oracle<Function_, Domain_function_> make_oracle(
+ const Function_& function, const Domain_function_& domain_function) {
+ return Implicit_manifold_intersection_oracle<Function_, Domain_function_>(function, domain_function);
+}
+
+/** \brief Static constructor of an intersection oracle from a function without a domain.
+ *
+ * @param function The input function that represents the implicit manifold
+ * without boundary.
+ *
+ * \ingroup coxeter_triangulation
+ */
+template <class Function_>
+Implicit_manifold_intersection_oracle<Function_> make_oracle(const Function_& function) {
+ return Implicit_manifold_intersection_oracle<Function_>(function);
+}
+
+} // namespace coxeter_triangulation
+
+} // namespace Gudhi
+
+#endif