summaryrefslogtreecommitdiff
path: root/src/Kernels/include/gudhi/kernel.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Kernels/include/gudhi/kernel.h')
-rw-r--r--src/Kernels/include/gudhi/kernel.h480
1 files changed, 187 insertions, 293 deletions
diff --git a/src/Kernels/include/gudhi/kernel.h b/src/Kernels/include/gudhi/kernel.h
index 900db092..3293cc62 100644
--- a/src/Kernels/include/gudhi/kernel.h
+++ b/src/Kernels/include/gudhi/kernel.h
@@ -28,6 +28,9 @@
#include <algorithm>
#include <cmath>
#include <random>
+#include <limits> //for numeric_limits<>
+#include <utility> //for pair<>
+
#include <boost/math/constants/constants.hpp>
@@ -37,6 +40,13 @@ namespace kernel {
using PD = std::vector<std::pair<double,double> >;
double pi = boost::math::constants::pi<double>();
+
+
+
+// ********************************************************************
+// Utils.
+// ********************************************************************
+
bool sortAngle(const std::pair<double, std::pair<int,int> >& p1, const std::pair<double, std::pair<int,int> >& p2){return (p1.first < p2.first);}
bool myComp(const std::pair<int,double> & P1, const std::pair<int,double> & P2){return P1.second < P2.second;}
@@ -49,80 +59,6 @@ double arctan_weight(std::pair<double,double> P){
return atan(P.second - P.first);
}
-
-
-
-// ********************************************************************
-// Exact computation.
-// ********************************************************************
-
-/** \brief Computes the Linear Persistence Weighted Gaussian Kernel between two persistence diagrams.
- * \ingroup kernel
- *
- * @param[in] PD1 first persistence diagram.
- * @param[in] PD2 second persistence diagram.
- * @param[in] sigma bandwidth parameter of the Gaussian Kernel used for the Kernel Mean Embedding of the diagrams.
- * @param[in] weight weight function for the points in the diagrams.
- *
- */
-template<class Weight = double(*)(std::pair<double,double>) >
-double lpwgk(const PD & PD1, const PD & PD2, double sigma, Weight weight = arctan_weight){
- int num_pts1 = PD1.size(); int num_pts2 = PD2.size(); double k = 0;
- for(int i = 0; i < num_pts1; i++)
- for(int j = 0; j < num_pts2; j++)
- k += (*weight)(PD1[i])*(*weight)(PD2[j])*exp(-(pow(PD1[i].first-PD2[j].first,2) + pow(PD1[i].second-PD2[j].second,2))/(2*pow(sigma,2)));
- return k;
-}
-
-/** \brief Computes the Persistence Scale Space Kernel between two persistence diagrams.
- * \ingroup kernel
- *
- * @param[in] PD1 first persistence diagram.
- * @param[in] PD2 second persistence diagram.
- * @param[in] sigma bandwidth parameter of the Gaussian Kernel used for the Kernel Mean Embedding of the diagrams.
- *
- */
-double pssk(const PD & PD1, const PD & PD2, double sigma){
- PD pd1 = PD1; int numpts = PD1.size(); for(int i = 0; i < numpts; i++) pd1.push_back(std::pair<double,double>(PD1[i].second,PD1[i].first));
- PD pd2 = PD2; numpts = PD2.size(); for(int i = 0; i < numpts; i++) pd2.push_back(std::pair<double,double>(PD2[i].second,PD2[i].first));
- return lpwgk(pd1, pd2, 2*sqrt(sigma), &pss_weight) / (2*8*pi*sigma);
-}
-
-/** \brief Computes the Gaussian Persistence Weighted Gaussian Kernel between two persistence diagrams.
- * \ingroup kernel
- *
- * @param[in] PD1 first persistence diagram.
- * @param[in] PD2 second persistence diagram.
- * @param[in] sigma bandwidth parameter of the Gaussian Kernel used for the Kernel Mean Embedding of the diagrams.
- * @param[in] tau bandwidth parameter of the Gaussian Kernel used between the embeddings.
- * @param[in] weight weight function for the points in the diagrams.
- *
- */
-template<class Weight = double(*)(std::pair<double,double>) >
-double gpwgk(const PD & PD1, const PD & PD2, double sigma, double tau, Weight weight = arctan_weight){
- double k1 = lpwgk(PD1,PD1,sigma,weight);
- double k2 = lpwgk(PD2,PD2,sigma,weight);
- double k3 = lpwgk(PD1,PD2,sigma,weight);
- return exp( - (k1+k2-2*k3) / (2*pow(tau,2)) );
-}
-
-/** \brief Computes the RKHS distance induced by the Gaussian Kernel Embedding between two persistence diagrams.
- * \ingroup kernel
- *
- * @param[in] PD1 first persistence diagram.
- * @param[in] PD2 second persistence diagram.
- * @param[in] sigma bandwidth parameter of the Gaussian Kernel used for the Kernel Mean Embedding of the diagrams.
- * @param[in] weight weight function for the points in the diagrams.
- *
- */
-template<class Weight = double(*)(std::pair<double,double>) >
-double dpwg(const PD & PD1, const PD & PD2, double sigma, Weight weight = arctan_weight){
- double k1 = lpwgk(PD1,PD1,sigma,weight);
- double k2 = lpwgk(PD2,PD2,sigma,weight);
- double k3 = lpwgk(PD1,PD2,sigma,weight);
- return std::sqrt(k1+k2-2*k3);
-}
-
// Compute the angle formed by two points of a PD
double compute_angle(const PD & PersDiag, const int & i, const int & j){
std::pair<double,double> vect; double x1,y1, x2,y2;
@@ -140,15 +76,13 @@ double compute_angle(const PD & PersDiag, const int & i, const int & j){
vect.first = 0;
vect.second = abs(x1 - x2);}
}
- double norm = std::sqrt(pow(vect.first,2) + pow(vect.second,2));
+ double norm = std::sqrt(vect.first*vect.first + vect.second*vect.second);
return asin(vect.second/norm);
}
-// Compute the integral of |cos()| between alpha and beta
-// Valid only if alpha is in [-pi,pi] and beta-alpha is in [0,pi]
+// Compute the integral of |cos()| between alpha and beta, valid only if alpha is in [-pi,pi] and beta-alpha is in [0,pi]
double compute_int_cos(const double & alpha, const double & beta){
double res = 0;
- //assert((alpha >= 0 && alpha <= pi) || (alpha >= -pi && alpha <= 0));
if (alpha >= 0 && alpha <= pi){
if (cos(alpha) >= 0){
if(pi/2 <= beta){res = 2-sin(alpha)-sin(beta);}
@@ -173,7 +107,7 @@ double compute_int_cos(const double & alpha, const double & beta){
}
double compute_int(const double & theta1, const double & theta2, const int & p, const int & q, const PD & PD1, const PD & PD2){
- double norm = std::sqrt(pow(PD1[p].first-PD2[q].first,2) + pow(PD1[p].second-PD2[q].second,2));
+ double norm = std::sqrt( (PD1[p].first-PD2[q].first)*(PD1[p].first-PD2[q].first) + (PD1[p].second-PD2[q].second)*(PD1[p].second-PD2[q].second) );
double angle1;
if (PD1[p].first > PD2[q].first)
angle1 = theta1 - asin( (PD1[p].second-PD2[q].second)/norm );
@@ -184,122 +118,32 @@ double compute_int(const double & theta1, const double & theta2, const int & p,
return norm*integral;
}
-
-
-double compute_sw(const std::vector<std::vector<std::pair<int,double> > > & V1, const std::vector<std::vector<std::pair<int,double> > > & V2, const PD & PD1, const PD & PD2){
- int N = V1.size(); double sw = 0;
- for (int i = 0; i < N; i++){
- std::vector<std::pair<int,double> > U,V; U = V1[i]; V = V2[i];
- double theta1, theta2; theta1 = -pi/2;
- unsigned int ku, kv; ku = 0; kv = 0; theta2 = std::min(U[ku].second,V[kv].second);
- while(theta1 != pi/2){
- if(PD1[U[ku].first].first != PD2[V[kv].first].first || PD1[U[ku].first].second != PD2[V[kv].first].second)
- if(theta1 != theta2)
- sw += compute_int(theta1, theta2, U[ku].first, V[kv].first, PD1, PD2);
- theta1 = theta2;
- if ( (theta2 == U[ku].second) && ku < U.size()-1 ) ku++;
- if ( (theta2 == V[kv].second) && kv < V.size()-1 ) kv++;
- theta2 = std::min(U[ku].second, V[kv].second);
+template<class Weight = std::function<double (std::pair<double,double>) > >
+std::vector<std::pair<double,double> > Fourier_feat(PD D, std::vector<std::pair<double,double> > Z, Weight weight = arctan_weight){
+ int m = D.size(); std::vector<std::pair<double,double> > B; int M = Z.size();
+ for(int i = 0; i < M; i++){
+ double d1 = 0; double d2 = 0; double zx = Z[i].first; double zy = Z[i].second;
+ for(int j = 0; j < m; j++){
+ double x = D[j].first; double y = D[j].second;
+ d1 += weight(D[j])*cos(x*zx + y*zy);
+ d2 += weight(D[j])*sin(x*zx + y*zy);
}
+ B.emplace_back(d1,d2);
}
- return sw/pi;
+ return B;
}
-/** \brief Computes the Sliced Wasserstein distance between two persistence diagrams.
- * \ingroup kernel
- *
- * @param[in] PD1 first persistence diagram.
- * @param[in] PD2 second persistence diagram.
- *
- */
- double sw(PD PD1, PD PD2){
-
- // Add projections onto diagonal.
- int n1, n2; n1 = PD1.size(); n2 = PD2.size(); double max_ordinate = std::numeric_limits<double>::lowest();
- for (int i = 0; i < n2; i++){
- max_ordinate = std::max(max_ordinate, PD2[i].second);
- PD1.push_back( std::pair<double,double>( ((PD2[i].first+PD2[i].second)/2), ((PD2[i].first+PD2[i].second)/2) ) );
- }
- for (int i = 0; i < n1; i++){
- max_ordinate = std::max(max_ordinate, PD1[i].second);
- PD2.push_back( std::pair<double,double>( ((PD1[i].first+PD1[i].second)/2), ((PD1[i].first+PD1[i].second)/2) ) );
- }
- int N = PD1.size();
-
- // Slightly perturb the points so that the PDs are in generic positions.
- int mag = 0; while(max_ordinate > 10){mag++; max_ordinate/=10;}
- double thresh = pow(10,-5+mag);
- srand(time(NULL));
- for (int i = 0; i < N; i++){
- PD1[i].first += thresh*(1.0-2.0*rand()/RAND_MAX); PD1[i].second += thresh*(1.0-2.0*rand()/RAND_MAX);
- PD2[i].first += thresh*(1.0-2.0*rand()/RAND_MAX); PD2[i].second += thresh*(1.0-2.0*rand()/RAND_MAX);
- }
-
- // Compute all angles in both PDs.
- std::vector<std::pair<double, std::pair<int,int> > > angles1, angles2;
- for (int i = 0; i < N; i++){
- for (int j = i+1; j < N; j++){
- double theta1 = compute_angle(PD1,i,j); double theta2 = compute_angle(PD2,i,j);
- angles1.push_back(std::pair<double, std::pair<int,int> >(theta1, std::pair<int,int>(i,j)));
- angles2.push_back(std::pair<double, std::pair<int,int> >(theta2, std::pair<int,int>(i,j)));
- }
- }
-
- // Sort angles.
- std::sort(angles1.begin(), angles1.end(), sortAngle); std::sort(angles2.begin(), angles2.end(), sortAngle);
-
- // Initialize orders of the points of both PDs (given by ordinates when theta = -pi/2).
- std::vector<int> orderp1, orderp2;
- for (int i = 0; i < N; i++){ orderp1.push_back(i); orderp2.push_back(i); }
- std::sort( orderp1.begin(), orderp1.end(), [=](int i, int j){ if(PD1[i].second != PD1[j].second) return (PD1[i].second < PD1[j].second); else return (PD1[i].first > PD1[j].first); } );
- std::sort( orderp2.begin(), orderp2.end(), [=](int i, int j){ if(PD2[i].second != PD2[j].second) return (PD2[i].second < PD2[j].second); else return (PD2[i].first > PD2[j].first); } );
-
- // Find the inverses of the orders.
- std::vector<int> order1(N); std::vector<int> order2(N);
- for(int i = 0; i < N; i++) for (int j = 0; j < N; j++) if(orderp1[j] == i){ order1[i] = j; break; }
- for(int i = 0; i < N; i++) for (int j = 0; j < N; j++) if(orderp2[j] == i){ order2[i] = j; break; }
-
- // Record all inversions of points in the orders as theta varies along the positive half-disk.
- std::vector<std::vector<std::pair<int,double> > > anglePerm1(N);
- std::vector<std::vector<std::pair<int,double> > > anglePerm2(N);
-
- int M1 = angles1.size();
- for (int i = 0; i < M1; i++){
- double theta = angles1[i].first; int p = angles1[i].second.first; int q = angles1[i].second.second;
- anglePerm1[order1[p]].push_back(std::pair<int, double>(p,theta));
- anglePerm1[order1[q]].push_back(std::pair<int, double>(q,theta));
- int a = order1[p]; int b = order1[q]; order1[p] = b; order1[q] = a;
- }
-
- int M2 = angles2.size();
- for (int i = 0; i < M2; i++){
- double theta = angles2[i].first; int p = angles2[i].second.first; int q = angles2[i].second.second;
- anglePerm2[order2[p]].push_back(std::pair<int, double>(p,theta));
- anglePerm2[order2[q]].push_back(std::pair<int, double>(q,theta));
- int a = order2[p]; int b = order2[q]; order2[p] = b; order2[q] = a;
- }
-
- for (int i = 0; i < N; i++){
- anglePerm1[order1[i]].push_back(std::pair<int, double>(i,pi/2));
- anglePerm2[order2[i]].push_back(std::pair<int, double>(i,pi/2));
+std::vector<std::pair<double,double> > random_Fourier(double sigma, int M = 1000){
+ std::normal_distribution<double> distrib(0,1); std::vector<std::pair<double,double> > Z; std::random_device rd;
+ for(int i = 0; i < M; i++){
+ std::mt19937 e1(rd()); std::mt19937 e2(rd());
+ double zx = distrib(e1); double zy = distrib(e2);
+ Z.emplace_back(zx/sigma,zy/sigma);
}
-
- // Compute the SW distance with the list of inversions.
- return compute_sw(anglePerm1, anglePerm2, PD1, PD2);
-
+ return Z;
}
- /** \brief Computes the Sliced Wasserstein Kernel between two persistence diagrams.
- * \ingroup kernel
- *
- * @param[in] PD1 first persistence diagram.
- * @param[in] PD2 second persistence diagram.
- * @param[in] sigma bandwidth parameter.
- *
- */
- double swk(PD PD1, PD PD2, double sigma){
- return exp( - sw(PD1,PD2) / (2*pow(sigma, 2)) );
- }
+
@@ -309,92 +153,59 @@ double compute_sw(const std::vector<std::vector<std::pair<int,double> > > & V1,
// ********************************************************************
-// Approximate computation.
+// Kernel computation.
// ********************************************************************
-double approx_lpwg_Fourier(const std::vector<std::pair<double,double> >& B1, const std::vector<std::pair<double,double> >& B2){
- double d = 0; int M = B1.size();
- for(int i = 0; i < M; i++) d += B1[i].first*B2[i].first + B1[i].second*B2[i].second;
- return (1.0/M)*d;
-}
-
-double approx_gpwg_Fourier(const std::vector<std::pair<double,double> >& B1, const std::vector<std::pair<double,double> >& B2, double tau){
- int M = B1.size();
- double d3 = approx_lpwg_Fourier(B1, B2);
- double d1 = 0; double d2 = 0;
- for(int i = 0; i < M; i++){d1 += pow(B1[i].first,2) + pow(B1[i].second,2); d2 += pow(B2[i].first,2) + pow(B2[i].second,2);}
- return exp( -((1.0/M)*(d1+d2)-2*d3) / (2*pow(tau,2)) );
-}
-
-double approx_dpwg_Fourier(const std::vector<std::pair<double,double> >& B1, const std::vector<std::pair<double,double> >& B2){
- int M = B1.size();
- double d3 = approx_lpwg_Fourier(B1, B2);
- double d1 = 0; double d2 = 0;
- for(int i = 0; i < M; i++){d1 += pow(B1[i].first,2) + pow(B1[i].second,2); d2 += pow(B2[i].first,2) + pow(B2[i].second,2);}
- return std::sqrt((1.0/M)*(d1+d2)-2*d3);
-}
-template<class Weight = double(*)(std::pair<double,double>) >
-std::vector<std::pair<double,double> > Fourier_feat(PD D, std::vector<std::pair<double,double> > Z, Weight weight = arctan_weight){
- int m = D.size(); std::vector<std::pair<double,double> > B; int M = Z.size();
- for(int i = 0; i < M; i++){
- double d1 = 0; double d2 = 0; double zx = Z[i].first; double zy = Z[i].second;
- for(int j = 0; j < m; j++){
- double x = D[j].first; double y = D[j].second;
- d1 += (*weight)(D[j])*cos(x*zx + y*zy);
- d2 += (*weight)(D[j])*sin(x*zx + y*zy);
- }
- B.push_back(std::pair<double,double>(d1,d2));
- }
- return B;
-}
-std::vector<std::pair<double,double> > random_Fourier(double sigma, int M = 1000){
- std::normal_distribution<double> distrib(0,1); std::vector<std::pair<double,double> > Z; std::random_device rd;
- for(int i = 0; i < M; i++){
- std::mt19937 e1(rd()); std::mt19937 e2(rd());
- double zx = distrib(e1); double zy = distrib(e2);
- Z.push_back(std::pair<double,double>((1.0/sigma)*zx,(1.0/sigma)*zy));
- }
- return Z;
-}
-/** \brief Computes an approximation of the Linear Persistence Weighted Gaussian Kernel between two persistence diagrams with random Fourier features.
+/** \brief Computes the Linear Persistence Weighted Gaussian Kernel between two persistence diagrams with random Fourier features.
* \ingroup kernel
*
* @param[in] PD1 first persistence diagram.
* @param[in] PD2 second persistence diagram.
* @param[in] sigma bandwidth parameter of the Gaussian Kernel used for the Kernel Mean Embedding of the diagrams.
* @param[in] weight weight function for the points in the diagrams.
- * @param[in] M number of Fourier features.
+ * @param[in] M number of Fourier features (set -1 for exact computation).
*
*/
-template<class Weight = double(*)(std::pair<double,double>) >
-double approx_lpwgk(const PD & PD1, const PD & PD2, double sigma, Weight weight = arctan_weight, int M = 1000){
- std::vector<std::pair<double,double> > Z = random_Fourier(sigma, M);
- std::vector<std::pair<double,double> > B1 = Fourier_feat(PD1,Z,weight);
- std::vector<std::pair<double,double> > B2 = Fourier_feat(PD2,Z,weight);
- return approx_lpwg_Fourier(B1,B2);
+template<class Weight = std::function<double (std::pair<double,double>) > >
+double linear_persistence_weighted_gaussian_kernel(const PD & PD1, const PD & PD2, double sigma, Weight weight = arctan_weight, int M = 1000){
+
+ if(M == -1){
+ int num_pts1 = PD1.size(); int num_pts2 = PD2.size(); double k = 0;
+ for(int i = 0; i < num_pts1; i++)
+ for(int j = 0; j < num_pts2; j++)
+ k += weight(PD1[i])*weight(PD2[j])*exp(-((PD1[i].first-PD2[j].first)*(PD1[i].first-PD2[j].first) + (PD1[i].second-PD2[j].second)*(PD1[i].second-PD2[j].second))/(2*sigma*sigma));
+ return k;
+ }
+ else{
+ std::vector<std::pair<double,double> > Z = random_Fourier(sigma, M);
+ std::vector<std::pair<double,double> > B1 = Fourier_feat(PD1,Z,weight);
+ std::vector<std::pair<double,double> > B2 = Fourier_feat(PD2,Z,weight);
+ double d = 0; for(int i = 0; i < M; i++) d += B1[i].first*B2[i].first + B1[i].second*B2[i].second;
+ return d/M;
+ }
}
-/** \brief Computes an approximation of the Persistence Scale Space Kernel between two persistence diagrams with random Fourier features.
+/** \brief Computes the Persistence Scale Space Kernel between two persistence diagrams with random Fourier features.
* \ingroup kernel
*
* @param[in] PD1 first persistence diagram.
* @param[in] PD2 second persistence diagram.
* @param[in] sigma bandwidth parameter of the Gaussian Kernel used for the Kernel Mean Embedding of the diagrams.
- * @param[in] M number of Fourier features.
+ * @param[in] M number of Fourier features (set -1 for exact computation).
*
*/
-double approx_pssk(const PD & PD1, const PD & PD2, double sigma, int M = 1000){
- PD pd1 = PD1; int numpts = PD1.size(); for(int i = 0; i < numpts; i++) pd1.push_back(std::pair<double,double>(PD1[i].second,PD1[i].first));
- PD pd2 = PD2; numpts = PD2.size(); for(int i = 0; i < numpts; i++) pd2.push_back(std::pair<double,double>(PD2[i].second,PD2[i].first));
- return approx_lpwgk(pd1, pd2, 2*sqrt(sigma), &pss_weight, M) / (2*8*pi*sigma);
+double persistence_scale_space_kernel(const PD & PD1, const PD & PD2, double sigma, int M = 1000){
+ PD pd1 = PD1; int numpts = PD1.size(); for(int i = 0; i < numpts; i++) pd1.emplace_back(PD1[i].second,PD1[i].first);
+ PD pd2 = PD2; numpts = PD2.size(); for(int i = 0; i < numpts; i++) pd2.emplace_back(PD2[i].second,PD2[i].first);
+ return linear_persistence_weighted_gaussian_kernel(pd1, pd2, 2*sqrt(sigma), pss_weight, M) / (2*8*pi*sigma);
}
-/** \brief Computes an approximation of the Gaussian Persistence Weighted Gaussian Kernel between two persistence diagrams with random Fourier features.
+/** \brief Computes the Gaussian Persistence Weighted Gaussian Kernel between two persistence diagrams with random Fourier features.
* \ingroup kernel
*
* @param[in] PD1 first persistence diagram.
@@ -402,66 +213,149 @@ double approx_pssk(const PD & PD1, const PD & PD2, double sigma, int M = 1000){
* @param[in] sigma bandwidth parameter of the Gaussian Kernel used for the Kernel Mean Embedding of the diagrams.
* @param[in] tau bandwidth parameter of the Gaussian Kernel used between the embeddings.
* @param[in] weight weight function for the points in the diagrams.
- * @param[in] M number of Fourier features.
+ * @param[in] M number of Fourier features (set -1 for exact computation).
*
*/
-template<class Weight = double(*)(std::pair<double,double>) >
-double approx_gpwgk(const PD & PD1, const PD & PD2, double sigma, double tau, Weight weight = arctan_weight, int M = 1000){
- std::vector<std::pair<double,double> > Z = random_Fourier(sigma, M);
- std::vector<std::pair<double,double> > B1 = Fourier_feat(PD1,Z,weight);
- std::vector<std::pair<double,double> > B2 = Fourier_feat(PD2,Z,weight);
- return approx_gpwg_Fourier(B1,B2,tau);
+template<class Weight = std::function<double (std::pair<double,double>) > >
+double gaussian_persistence_weighted_gaussian_kernel(const PD & PD1, const PD & PD2, double sigma, double tau, Weight weight = arctan_weight, int M = 1000){
+ double k1 = linear_persistence_weighted_gaussian_kernel(PD1,PD1,sigma,weight,M);
+ double k2 = linear_persistence_weighted_gaussian_kernel(PD2,PD2,sigma,weight,M);
+ double k3 = linear_persistence_weighted_gaussian_kernel(PD1,PD2,sigma,weight,M);
+ return exp( - (k1+k2-2*k3) / (2*tau*tau) );
}
-/** \brief Computes an approximation of the Sliced Wasserstein distance between two persistence diagrams.
+/** \brief Computes the Sliced Wasserstein Kernel between two persistence diagrams with sampled directions.
* \ingroup kernel
*
* @param[in] PD1 first persistence diagram.
* @param[in] PD2 second persistence diagram.
- * @param[in] N number of points sampled on the circle.
+ * @param[in] sigma bandwidth parameter.
+ * @param[in] N number of points sampled on the circle (set -1 for exact computation).
*
*/
-double approx_sw(PD PD1, PD PD2, int N = 100){
-
- double step = pi/N; double sw = 0;
-
- // Add projections onto diagonal.
- int n1, n2; n1 = PD1.size(); n2 = PD2.size();
- for (int i = 0; i < n2; i++)
- PD1.push_back(std::pair<double,double>( (PD2[i].first + PD2[i].second)/2, (PD2[i].first + PD2[i].second)/2) );
- for (int i = 0; i < n1; i++)
- PD2.push_back(std::pair<double,double>( (PD1[i].first + PD1[i].second)/2, (PD1[i].first + PD1[i].second)/2) );
- int n = PD1.size();
-
- // Sort and compare all projections.
- //#pragma omp parallel for
- for (int i = 0; i < N; i++){
- std::vector<std::pair<int,double> > L1, L2;
- for (int j = 0; j < n; j++){
- L1.push_back( std::pair<int,double>(j, PD1[j].first*cos(-pi/2+i*step) + PD1[j].second*sin(-pi/2+i*step)) );
- L2.push_back( std::pair<int,double>(j, PD2[j].first*cos(-pi/2+i*step) + PD2[j].second*sin(-pi/2+i*step)) );
+double sliced_wasserstein_kernel(PD PD1, PD PD2, double sigma, int N = 100){
+
+ if(N == -1){
+
+ // Add projections onto diagonal.
+ int n1, n2; n1 = PD1.size(); n2 = PD2.size(); double max_ordinate = std::numeric_limits<double>::lowest();
+ for (int i = 0; i < n2; i++){
+ max_ordinate = std::max(max_ordinate, PD2[i].second);
+ PD1.emplace_back( (PD2[i].first+PD2[i].second)/2, (PD2[i].first+PD2[i].second)/2 );
+ }
+ for (int i = 0; i < n1; i++){
+ max_ordinate = std::max(max_ordinate, PD1[i].second);
+ PD2.emplace_back( (PD1[i].first+PD1[i].second)/2, (PD1[i].first+PD1[i].second)/2 );
+ }
+ int num_pts_dgm = PD1.size();
+
+ // Slightly perturb the points so that the PDs are in generic positions.
+ int mag = 0; while(max_ordinate > 10){mag++; max_ordinate/=10;}
+ double thresh = pow(10,-5+mag);
+ srand(time(NULL));
+ for (int i = 0; i < num_pts_dgm; i++){
+ PD1[i].first += thresh*(1.0-2.0*rand()/RAND_MAX); PD1[i].second += thresh*(1.0-2.0*rand()/RAND_MAX);
+ PD2[i].first += thresh*(1.0-2.0*rand()/RAND_MAX); PD2[i].second += thresh*(1.0-2.0*rand()/RAND_MAX);
+ }
+
+ // Compute all angles in both PDs.
+ std::vector<std::pair<double, std::pair<int,int> > > angles1, angles2;
+ for (int i = 0; i < num_pts_dgm; i++){
+ for (int j = i+1; j < num_pts_dgm; j++){
+ double theta1 = compute_angle(PD1,i,j); double theta2 = compute_angle(PD2,i,j);
+ angles1.emplace_back(theta1, std::pair<int,int>(i,j));
+ angles2.emplace_back(theta2, std::pair<int,int>(i,j));
+ }
+ }
+
+ // Sort angles.
+ std::sort(angles1.begin(), angles1.end(), sortAngle); std::sort(angles2.begin(), angles2.end(), sortAngle);
+
+ // Initialize orders of the points of both PDs (given by ordinates when theta = -pi/2).
+ std::vector<int> orderp1, orderp2;
+ for (int i = 0; i < num_pts_dgm; i++){ orderp1.push_back(i); orderp2.push_back(i); }
+ std::sort( orderp1.begin(), orderp1.end(), [=](int i, int j){ if(PD1[i].second != PD1[j].second) return (PD1[i].second < PD1[j].second); else return (PD1[i].first > PD1[j].first); } );
+ std::sort( orderp2.begin(), orderp2.end(), [=](int i, int j){ if(PD2[i].second != PD2[j].second) return (PD2[i].second < PD2[j].second); else return (PD2[i].first > PD2[j].first); } );
+
+ // Find the inverses of the orders.
+ std::vector<int> order1(num_pts_dgm); std::vector<int> order2(num_pts_dgm);
+ for(int i = 0; i < num_pts_dgm; i++) for (int j = 0; j < num_pts_dgm; j++) if(orderp1[j] == i){ order1[i] = j; break; }
+ for(int i = 0; i < num_pts_dgm; i++) for (int j = 0; j < num_pts_dgm; j++) if(orderp2[j] == i){ order2[i] = j; break; }
+
+ // Record all inversions of points in the orders as theta varies along the positive half-disk.
+ std::vector<std::vector<std::pair<int,double> > > anglePerm1(num_pts_dgm);
+ std::vector<std::vector<std::pair<int,double> > > anglePerm2(num_pts_dgm);
+
+ int M1 = angles1.size();
+ for (int i = 0; i < M1; i++){
+ double theta = angles1[i].first; int p = angles1[i].second.first; int q = angles1[i].second.second;
+ anglePerm1[order1[p]].emplace_back(p,theta);
+ anglePerm1[order1[q]].emplace_back(q,theta);
+ int a = order1[p]; int b = order1[q]; order1[p] = b; order1[q] = a;
+ }
+
+ int M2 = angles2.size();
+ for (int i = 0; i < M2; i++){
+ double theta = angles2[i].first; int p = angles2[i].second.first; int q = angles2[i].second.second;
+ anglePerm2[order2[p]].emplace_back(p,theta);
+ anglePerm2[order2[q]].emplace_back(q,theta);
+ int a = order2[p]; int b = order2[q]; order2[p] = b; order2[q] = a;
+ }
+
+ for (int i = 0; i < num_pts_dgm; i++){
+ anglePerm1[order1[i]].emplace_back(i,pi/2);
+ anglePerm2[order2[i]].emplace_back(i,pi/2);
+ }
+
+ // Compute the SW distance with the list of inversions.
+ double sw = 0;
+ for (int i = 0; i < num_pts_dgm; i++){
+ std::vector<std::pair<int,double> > U,V; U = anglePerm1[i]; V = anglePerm2[i];
+ double theta1, theta2; theta1 = -pi/2;
+ unsigned int ku, kv; ku = 0; kv = 0; theta2 = std::min(U[ku].second,V[kv].second);
+ while(theta1 != pi/2){
+ if(PD1[U[ku].first].first != PD2[V[kv].first].first || PD1[U[ku].first].second != PD2[V[kv].first].second)
+ if(theta1 != theta2)
+ sw += compute_int(theta1, theta2, U[ku].first, V[kv].first, PD1, PD2);
+ theta1 = theta2;
+ if ( (theta2 == U[ku].second) && ku < U.size()-1 ) ku++;
+ if ( (theta2 == V[kv].second) && kv < V.size()-1 ) kv++;
+ theta2 = std::min(U[ku].second, V[kv].second);
+ }
}
- std::sort(L1.begin(),L1.end(), myComp); std::sort(L2.begin(),L2.end(), myComp);
- double f = 0; for (int j = 0; j < n; j++) f += std::abs(L1[j].second - L2[j].second);
- sw += f*step;
+
+ return exp( -(sw/pi)/(2*sigma*sigma) );
+
}
- return sw/pi;
-}
-/** \brief Computes an approximation of the Sliced Wasserstein Kernel between two persistence diagrams.
- * \ingroup kernel
- *
- * @param[in] PD1 first persistence diagram.
- * @param[in] PD2 second persistence diagram.
- * @param[in] sigma bandwidth parameter.
- * @param[in] N number of points sampled on the circle.
- *
- */
-double approx_swk(PD PD1, PD PD2, double sigma, int N = 100){
- return exp( - approx_sw(PD1,PD2,N) / (2*pow(sigma,2)));
-}
+ else{
+ double step = pi/N; double sw = 0;
+
+ // Add projections onto diagonal.
+ int n1, n2; n1 = PD1.size(); n2 = PD2.size();
+ for (int i = 0; i < n2; i++)
+ PD1.emplace_back( (PD2[i].first + PD2[i].second)/2, (PD2[i].first + PD2[i].second)/2 );
+ for (int i = 0; i < n1; i++)
+ PD2.emplace_back( (PD1[i].first + PD1[i].second)/2, (PD1[i].first + PD1[i].second)/2 );
+ int n = PD1.size();
+
+ // Sort and compare all projections.
+ //#pragma omp parallel for
+ for (int i = 0; i < N; i++){
+ std::vector<std::pair<int,double> > L1, L2;
+ for (int j = 0; j < n; j++){
+ L1.emplace_back( j, PD1[j].first*cos(-pi/2+i*step) + PD1[j].second*sin(-pi/2+i*step) );
+ L2.emplace_back( j, PD2[j].first*cos(-pi/2+i*step) + PD2[j].second*sin(-pi/2+i*step) );
+ }
+ std::sort(L1.begin(),L1.end(), myComp); std::sort(L2.begin(),L2.end(), myComp);
+ double f = 0; for (int j = 0; j < n; j++) f += std::abs(L1[j].second - L2[j].second);
+ sw += f*step;
+ }
+ return exp( -(sw/pi)/(2*sigma*sigma) );
+ }
+}
} // namespace kernel